The high resolution Fourier-transform chemiluminescence spectrum of the HS2 radical

Stephen Hugh Ashworth, Ewald H Fink

To cite this version:

Stephen Hugh Ashworth, Ewald H Fink. The high resolution Fourier-transform chemiluminescence spectrum of the HS2 radical. Molecular Physics, 2007, 105 (05-07), pp.715-725. 10.1080/00268970601146880 . hal-00513069

HAL Id: hal-00513069

https://hal.science/hal-00513069

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The high resolution Fourier-transform chemiluminescence spectrum of the $\mathrm{HS}_{\mathbf{2}}$ radical

Journal:	Molecular Physics
Manuscript ID:	TMPH-2006-0063.R1
Manuscript Type:	Full Paper
Date Submitted by the Author:	27-Nov-2006
Complete List of Authors:	Ashworth, Stephen; University of East Anglia, School of Chemical Sciences and Pharmacy Fink, Ewald; Bergische Universität Wuppertal, Physikalische Chemie-Fachbereich C
Keywords:	Thiosulfeno radical, chemiluminescence, Fourier-transform spectroscopy, rotational analysis

Equation Section 1
Catchline (head of first page only) Molecular Physics, Vol. X, No. X, Month 200x, xxxxxx
Running heads (verso) S. H. Ashworth and E. H. Fink
(recto) \quad FT chemiluminescence spectrum of HS_{2}
Article Type (e.g. Review Article, Research Note, Brief Communication - if known)

The high resolution Fourier-transform chemiluminescence

spectrum of the $\mathbf{H S}_{\mathbf{2}}$ radical

Stephen H. Ashworth* ${ }^{*}$ and Ewald H. Fink \ddagger
\dagger The School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4
7TJ, UK.
\ddagger Physikalische Chemie-Fachbereich
C, Bergische Universität Wuppertal, D-42097
Wuppertal, Germany

*Corresponding author. Email: S.Ashworth@uea.ac.uk

Abstract

The chemiluminescence spectrum of the HS_{2} radical has been recorded with a Fouriertransform spectrometer. The overview spectrum in the region $9000 \mathrm{~cm}^{-1}$ to $4000 \mathrm{~cm}^{-1}$ has been analysed and the vibrational parameters obtained are presented. In addition three of the bands $\left(0_{0}^{0}, 3_{0}^{1}\right.$ and $\left.3_{1}^{0}\right)$ which have been recorded at high resolution have been rotationally analysed and the results of the fit are presented. The results are discussed in the context of previous theoretical and experimental studies.

Keywords: Thiosulfeno radical; rotational analysis; chemiluminescence; Fourier-transform spectroscopy;

Introduction

The HS_{2} radical was first detected in 1950 during early flash-photolysis studies of hydrogen sulphide [1]. The new band systems were red-degraded, transient and diffuse between 315 and 380 nm . Porter's assignment was supported by later work where these new band systems were shown to occur much more strongly in the flash-photolysis of hydrogen disulphide [2]. A detailed theoretical study by Gosavi et al. [3] used a semi-empirical open-shell CNDO calculation to suggest these bands were the lowest-energy ${ }^{2} \mathrm{~A}^{\prime} \leftarrow{ }^{2} \mathrm{~A}^{\prime \prime}$ electronic transition of HS_{2}. This interpretation was questioned by Sannigrahi et al. [4] who pointed out that the analogous transitions of the isovalent HO_{2} and HSO radicals had been found at much lower energies experimentally as well as in ab initio SCF and CI calculations. These authors carried out detailed calculations of the energies, molecular structure, potential curves, and vibrational constants of HS_{2} and DS_{2} in their low-lying electronic states and of f -values for various transitions. They assigned the strong UV absorption system to a ${ }^{2} \mathrm{~A}^{\prime \prime} \leftarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ transition and predicted the lowest energy ${ }^{2} \mathrm{~A}^{\prime}$ state of HS_{2} to lie at 0.85 eV with very similar characteristics as in the isovalent radicals HO_{2} and HSO .

Stimulated by these predictions and earlier experimental work on HO_{2} [5] and HSO [6], Holstein et al. [7] studied the near-infrared chemiluminescence spectrum of HS_{2} excited by energy transfer from metastable singlet oxygen in a fast-flow system. They observed a new band system in the range $1100-1700 \mathrm{~nm}$ for both, HS_{2} and DS_{2}, and attributed the bands to the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime} \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ transitions of the radicals. Initial work was at low resolution but this still enabled the investigators to make several important observations. Not only were the wavenumbers of the v_{3} vibrations in both electronic states determined but also the v_{2} vibrational wavenumber in the $\tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ state was observed. In addition band contour analysis allowed estimates of the rotational constants to be made. It was this analysis which first
indicated that a significant degree of unexpected $\Delta K_{a}=0$ character was present in the band contour.

The ground state of this radical has been well characterised spectroscopically. First, Yamamoto and co-workers recorded and analysed the spectrum of both HS_{2} and DS_{2} in the microwave region [8]. Later, HS_{2} was discovered by Ashworth et al. during work on the far infra-red laser magnetic resonance (LMR) spectrum of the SH radical [9]. Subsequently further recordings were made and the FIR LMR spectrum analysed [10]. Further work on the ground state has been carried out by Winnewisser and co-workers [11] in the millimetre wave region.

The HS_{2} radical continues to be of interest both theoretically and experimentally. On the one hand its analogues HO_{2} and HSO are important in a variety of environments, notably combustion and the oxidation of reduced forms of sulfur [12, 13]. On the other it can be regarded as the simplest species with a $S-S$ bond and as such the proton affinity [14] and the matrix isolated photolysis products of $\mathrm{H}_{2} \mathrm{~S}_{2}$ [15] have been investigated. In addition there have been further attempts to predict the equilibrium structure and other properties of the radical $a b$ initio $[16,17]$. The most recent of these and only the second to calculate properties of the excited state is by Denis [18].

This paper deals with the analysis of both low and high resulution Fourier-transform chemiluminescence spectra of the HS_{2} radical recorded at the University of Wuppertal. The vibrational parameters fre \approx analysis of the low resolution spectra are first presented. The results of the analysis of three of the electronic b $\left(0_{0}^{0}, 3_{0}^{1}\right.$ and $\left.3_{1}^{0}\right)$ are reported and compared with the earlier low-resolution results.

Experimental

The experiments were carried out in a fast-flow system using a 120 cm long Pyrex tube of 6 cm diameter with quartz windows at both ends as the observation volume. The tube was

Comment [SHA1]: Deleted "hand"

Comment [SHA2]: Citation moved

equipped with two glass inlet systems of smaller diameter and a pumping port. In one inlet system, $\mathrm{HS}_{2}\left(\mathrm{DS}_{2}\right)$ radicals were generated by reacting $\mathrm{H}(\mathrm{D})$ atoms with sulfur vapor $\left(\mathrm{S}_{\mathrm{x}}\right)$. A mixture of $5-10 \mathrm{~Pa} \mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$ and $100-150 \mathrm{~Pa}$ helium was passed through a 100 W microwave discharge and over molten sulfur contained in a 0.5 L glass vessel which was heated to about $150^{\circ} \mathrm{C}$. In the second inlet system, metastable oxygen molecules ${ }^{1} \Delta_{\mathrm{g}}$), were generated by passing $100-150 \mathrm{~Pa} \mathrm{O}_{2}$ with a trace of mercury vapor through a second microwave discharge. The film of HgO forming behind the discharge on the wall of the inlet system served to remove most of the oxygen atoms from the gas flow. The $\mathrm{O}_{2}\left(\mathrm{a}^{1} \Delta_{\mathrm{g}}\right)$ molecules served as energy carriers and were used to excite the $\mathrm{HS}_{2}\left(\mathrm{DS}_{2}\right)$ radicals in the observation tube to their $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}$ state by near-resonant electronic-to-electronic (E-E) energy exchange. The system was pumped with a $500 \mathrm{~m}^{3} \mathrm{~h}^{-1}$ roots pump in series with a $30 \mathrm{~m}^{3} \mathrm{~h}^{-1}$ forepump resulting in flow velocities of about $20 \mathrm{~ms}^{-1}$ in the large diameter tube. The total pressure, as measured with a Baratron capacitance manometer, was in the range $200-300 \mathrm{~Pa}$ and consisted of about equal partial pressures of O_{2} and He and $<20 \mathrm{~Pa}$ of sulfur containing compounds.

The near-infrared radiation emitted along the axis of the glass tube was focused onto the entrance iris of a Bruker IFS 120 HR Fourier-transform spectrometer with a quartz lens. A mirror was placed at the far end of the observation tube and aligned so that the signal at the entrance aperture was maximised. Spectra were measured in the range $3500-10000 \mathrm{~cm}^{-1}$ at nominal resolutions of $2 \mathrm{~cm}^{-1}$ to $0.01 \mathrm{~cm}^{-1}$ using liquid-nitrogen-cooled germanium (Applied Detector Corp. Model 403 S) or InSb (Cincinnati Electronics Corp. Model IDH 100) detectors. The latter was equipped with a cooled $2.8 \mu \mathrm{~m}$ short-pass filter. All gases and chemicals were research grade and were used without further purification. The wavenumber scale of the spectrometer was calibrated by use of reference lines of the $\mathrm{O}_{2}(\mathrm{a} \rightarrow \mathrm{X})$ band [19] which showed up in all spectra. The absolute error of the given vacuum wavenumbers is less

Comment [SHA8]: Numbering
changed. This citation added to list
than $\pm 0.005 \mathrm{~cm}^{-1}$, and the relative precision of wavenumbers of strong lines is on the order of $10^{-4} \mathrm{~cm}^{-1}$.

Results and Analysis

Figure 1 about here
Figures 1a and 1 b show overview spectra of the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime} \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ transitions of HS_{2} and DS_{2} recorded at low spectral resolution $\left(2 \mathrm{~cm}^{-1}\right)$ in the sensitivity range of the Ge detector. The dominant features in both spectra are some short sequences of $00 v_{3}^{\prime}-00 v_{3}^{\prime \prime}$ bands and the $0-$ 0 band of the $b^{1} \Sigma_{g}^{+} \rightarrow X^{3} \Sigma_{g}^{-}$transition of S_{2} near $8000 \mathrm{~cm}^{-1}$. As in the low-resolution work of Holstein et al. [7] some weaker features which show up in the spectrum of HS_{2} but not in that of DS_{2} are tentatively assigned to bands involving transitions in the bending mode. For HS_{2}, the spectrum has also been measured in the range $4000-9000 \mathrm{~cm}^{-1}$ with the less sensitive InSb detector. As is seen from Figure 2 , two more sequences of the $\Delta v_{3}=$ const. series are observed. A weak band at $4560 \mathrm{~cm}^{-1}$ which does not belong to this series is tentatively assigned to the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}(000) \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}(100)$ transition.

As is seen from the figures, the $00 v_{3}^{\prime}-00 v_{3}^{\prime \prime}$ bands show characteristic sharp peaks at their short wavelength sides. By comparison with high-resolution spectra which have been rotationally analysed (see below) it is seen that the peaks consist mostly of the R lines and low- $N \mathrm{Q}$ and P lines of the $\Delta K_{a}=+1$ sub-bands and possibly of weak but very dense R lines of $\Delta K_{a}=0$ sub-bands. Such $\Delta K_{a}=0$ bands, which are "forbidden" in perpendicular transitions, have been identified in the analogous bands of HO_{2} and were found to be mainly due to magnetic dipole transitions [20,21]. In band contour analyses of the low-resolution bands, $\Delta K_{a}=0$ sub-bands were also needed for HS_{2} to fit the calculated and experimental
at high resolution and rotationally analysed (see below), the wavenumbers of the peaks are respectively $8.2,8.5$, and $9.0 \mathrm{~cm}^{-1}$ larger than those of the corresponding band origins.

Wavenumbers of the sharp peaks have been measured for 18 bands of HS_{2} and 7 bands of DS_{2}, and were fitted to Equation (1) [22]

$$
\begin{equation*}
v\left(v_{3}^{\prime}-v_{3}^{\prime \prime}\right)=v_{0}+\omega_{3}^{\prime 0} v_{3}^{\prime} \rho_{3}^{\prime 2}-\omega_{3}^{\prime \prime 0} v_{3}^{\prime \prime}-x_{33}^{\prime \prime} v_{3}^{\prime \prime 2}, \tag{1}
\end{equation*}
$$

where v_{0} is the energy separation of the $\left.\tilde{\mathrm{A}}^{2} n^{\prime} 00\right)$ and $\tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}(000)$ vibrational ground states and $\omega_{3}{ }^{0}$ and $x_{33}{ }^{0}$ are parameters the sum of which yields the vibrational quantum v_{3}. The wavenumbers of the bands and the observed-calculated differences are given in Table 1. The results of the fit and other data deduced from the low-resolution spectra are collected in Table 2.

$$
\begin{array}{|l|l|}
\hline \text { Table } 1 \text { about here } & \text { Table } 2 \text { about here } \\
\hline
\end{array}
$$

The spectrum of HS_{2} in the range $6400-8100 \mathrm{~cm}^{-1}$ was measured at a nominal resolution of $0.01 \mathrm{~cm}^{-1}$ and showed apodized line half-widths of $0.016 \mathrm{~cm}^{-1}$. An overview spectrum of the 000-000 and 001-001 bands is shown in Figure 3. Neither individual rotational lines nor coarse K_{a} structure are obvious in this spectrum. An expanded portion of the 001-000 band

Comment [SHA12]: "000-001"

 replaced by "001-000"is shown in Figure 4. The most obvious features in each band are two series of strong doublets, where the splitting of each pair of lines slowly decreases as one moves to lower wavenumbers. The spacing between doublets is, however, steadily increasing. At the start of the analysis these two features were assumed to be the Q-branch lines of the $K_{a}=1-0$ and $K_{a}=0-1$ subbands respectively.

Figure 3 about here	Figure 4 about here

The ground state of the HS_{2} radical has already been well characterised $[8,10,11]$ and the energy levels for the ground state can be calculated with confidence. The data in this work have been analysed using a program based on the asymmetric rotor program originally developed by Brown and Sears [23] and released into the public domain as ASYTOP [24].

Having calculated the position of the levels with $K_{a}=1$ in the lower state, common differences were calculated and each Q -branch line tested for the presence of associated P and R-branch transitions.

The same procedure could not be used for the $K_{a}=1-0$ transitions. The lack of K-doubling in the $K_{a}=0$ level of the lower electronic state meant that the transitions observed to levels with $K_{a}=1$ in the upper state would show residual K-doubling and the magnitude of this K doubling in the upper electronic state was unknown. Fortunately, the parameters determined from the $K_{a}=0-1$ band were sufficient to allow $K_{a}=1-0$ band to be assigned quite straightforwardly.

At this level of resolution second order effects tend make certain misassignments obvious. For example the off-diagonal element of the spin-tensor, $\frac{1}{2}\left|\varepsilon_{a b}+\varepsilon_{b a}\right|$, describes the interaction of levels differing in N and K by one unit. Thus when one spin component, $N=n$, in the $K=k$ stack has approximately the same energy as the same spin component with $N=n-1, K=k+1$ the two levels interact. The ensuing in ion is described by the off-diagonal element in the spin-tensor. This matrix element has only weak, if any, K dependence and thus tends to pin-point the crossing of the two K stacks. At the present resolution this is a very sensitive way to determine both the A rotational constant and the N numbering of the transitions. This particular perturbation can be seen in the residuals for one of the spin components. At $J=17$ in the $v_{3}^{\prime}=1 \rightarrow v_{3}^{\prime \prime}=0$ band the perturbation is a maximum with a positive residual. The residuals get progressively larger from lower J and suddenly become negative. This pattern was reproduced with residuals of the same magnitude in the corresponding $\mathrm{P}-$ and R - branches.

The fit was extended in an iterative procedure by predicting additional transitions and searching for appropriate matches. To a great extent the fits were limited to Q-branch
transitions. This was because, within any one K-sub-band, the Q - branch transitions were significantly more intense than the P - and R - branch transitions. Transitions which lie at the high frequency end of the spectrum have also been, in some cases, difficult to assign. This proved particularly so in the $K_{a}=3-2$ sub-band of the $1_{0}^{0} 22_{0}^{0} 3_{0}^{1}$ vibrational band. The most likely reason is that the energy levels are perturbed in some manner. This is not surprising as the analogous band system in the HO_{2} radical has been found [20] to be highly perturbed. Given that the HS_{2} radical has a higher density of states than HO_{2} perturbations are more likely. The relatively low signal to noise ratio and high line density of the present spectra means that perturbations are neither easy to pick out nor to confirm by comparing other transitions with common energy levels.

The $1_{0}^{0}{ }_{0}^{0} 3_{0}^{1}$ vibrational band was analysed first, simply because it was the strongest band in which the transitions terminated in the vibrationless levels of all three vibrational modes. A separate analysis was performed for the $1_{0}^{0} 2_{0}^{0} 3_{0}^{0}$ vibrational band. In both cases the microwave and millimetre wave data from references 8 and 11 were included with weights appropriate to the uncertainties of the measurements. The ground state parameters were allowed to float in the analysis of the $1_{0}^{0} 2_{0}^{0} 3_{0}^{0}$ vibrational band but not in that of the $1_{0}^{0} 2_{0}^{0} 3_{0}^{1}$ vibrational band. This allowed the ground state parameters to reflect the much larger values of N which were assigned in the present work. A selection of the strongest $\mathrm{Q}-$ branch lines from the $\Delta K_{a}=+1$ and $\Delta K_{a}=-1$ sub-bands in each of the three bands analysed here are given in Table 3, along

Table 3 about here

 Once reliable parameters for the $1_{0}^{0} 2_{0}^{0} 3_{0}^{1}$ vibrational band had been determined an analysis of the $1_{0}^{0} 2_{0}^{0} 3_{1}^{0}$ band was undertaken. This proved to be relatively straightforward but the molecular parameters determined in the $v_{3}=1$ vibrational level are far less precise that in the $v_{3}=0$ level because the uncertainties of the Fourier transform data have higheruncertainty than the microwave and millimetre wave data used to determine the parameters in the $v_{3}=0$ level.

$$
\text { Table } 4 \text { about here }
$$

The K-sub-band structure in all the bands which have been observed is predominantly perpendicular in nature $\left(\Delta K_{a}= \pm 1\right)$. There is, however, evidence at low resolution [7] that shows that significant parallel transition ($\Delta K_{a}=0$) intensity must also be invoked in order to model the band contour correctly. Parallel transitions have been sought in the high resolution spectrum but no consistent results have been obtained. The line density is sufficiently high that there are many coincidences between calculated and observed transitions but no branches with $\Delta K_{a}=0$ have been identified that can be traced with any certainty. Given that all the necessary parameters for both the ground and excited states have been determined, the parallel transitions should be straightforward to predict. It seems, therefore, that at the present signal to noise ratio the parallel transitions are too weak to be picked out reliably, even though sufficient intensity is present that, when integrated in a low resolution scan or when a high resolution scan is convoluted, the overall band contour shows distinct parallel character.

The usual expressions for the energy levels in asymmetric top molecules refer to five centrifugal distortion parameters. This formulation has been shown to be over-determined in the case of a planar molecule $[25,26]$ in which case only four are required. In the course of the analysis the program was adapted to allow the fifth constant to be evaluated from the other four. Although this did not allow us to determine more parameters than were varied, it gave an important cross-check which proved useful when the higher-order terms were not well determined.

Discussion

The data in Table 2 show that there is a very good agreement between the present low resolution data and the results of the high resolution analysis. The implication is that the maximum of the band at low resolution is in a consistent position with respect to the band origin. These are both consistent with earlier low resolution data [7]. It is obvious from Figure 1a that the bands involving excitation of v_{2} are much weaker and less well defined than the bands involving v_{3} and the uncertainty is correspondingly large.

One of the bands, shown in Figure 2 is assigned as having one quantum of vibration of v_{1} excited in the ground state. This is consistent with the calculated wavenumber of $2607 \mathrm{~cm}^{-1}$ from reference [18]. On the other hand an experimental wavenumber of $2463 \mathrm{~cm}^{-1}$ has been measured in a matrix [15] and the Franck-Condon factors reported in reference [4] show that the transitions involving v_{3} would be about one hundred times more intense than those involving v_{1}. This impucs that transitions exciting v_{1} would not be observable in the current experiment. Although it coul argued that matrix effects have perturbed the frequency of the vibration there is no obvious reason for the far greater than expected intensity. It is, however, hard to envisage another assignment for the band assigned 1_{1}^{0} here. HS_{2} has two heavy sulphur atoms which because of their mass lie very nearly on a principal inertial axis. This has the effect that although HS_{2} is an asymmetric top it is very nearly at the limit of a prolate symmetric top. This can be shown by considering a measure such as Ray's asymmetry parameter κ, which is given by,

$$
\kappa=\frac{(2 B-A-C)}{(A-C)}
$$

κ runs from -1 when the top is near prolate through zero in the very asymmetric case to +1 at the oblate limit. In this case for the lower state $\kappa=-0.99848$ and for the upper state $\kappa=-0.99868$ which are both almost indistinguishable from -1 . Hence the deviation from

Comment [SHA19]: Numbering
prolate symmetric top energy levels would be expected to be very small indeed. On the other hand the high density of states means that many unpredictable perturbations are possible.

Rotational constants have been determined for both $v_{3}=0$ and $v_{3}=1$ in both upper and lower states. This has allowed the determination of the vibrational dependence of the rotational constants on excitation of v_{3}. The derived constants are given in Table 5. The derived parameters are denoted $B_{00 e}$ to indicate that the vibrational dependence of these parameters with respect to the v_{1} and v_{2} vibrations has not been taken into account.

Table 5 about here

 There have been many attempts to determine the structure of the HS_{2} radical. Most of these have been through ab initio calculation [3, 16-18]. Saito et al. [8] have used the microwave spectra of HS_{2} and DS_{2} to try to determine both r_{e} and r_{z} structures. Of all previous structural calculations the rotational constants calculat ${ }^{-\rho}$, the most recent publication [18] are the closest to those determined here. In addition the structure of the radical in the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}$ electronic state was calculated. The results for the excited state are qualitatively similar results to those calculated earlier by Sannigrahi et al. [4] but yield rotational constants which are closer to those observed. Obviously these parameters are not directly comparable as the $a b$ initio calculation generates an equilibrium structure and in the present work only the vibrational dependence of the v_{3} vibration has been taken into account.The same study [18] also calculated the vibrational quanta in both $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}$ and $\tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ states. These are given in Table 5 in comparison with the vibrational quanta determined here. It is interesting to note that the v_{3} vibrational wavenumber decreases by nearly 20% whereas the rotational constants $B_{00 e}$ and $C_{00 e}$ decrease by only 10% and $A_{00 e}$ decreases by less than 3% on electronic excitation. This is consistent with the prediction [18] that the electronic

Comment [SHA23]: Numbering changed.

Comment [SHA24]: Numbering

 changed.Comment [SHA25]: Numbering changed. excitation results primarily in the contraction of the bond angle and the lengthening of the SS

bond, the SH distance being essentially unchanged. It also accounts neatly for the fact that the spectrum is primarily a progression in the v_{3} vibration.

Acknowledgements

We would like to thank the Alexander von Humboldt Stiftung which provided a travel grant for SHA to work at Wuppertal University. SHA would also like to acknowledge the encouragement and support received from Professor John M. Brown throughout his research career and to thank him for the introduction to these data.

Figure Captions

Fig. 1. Overview spectra of the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime} \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ transitions of $\mathrm{HS}_{2}(\mathrm{a})$ and $\mathrm{DS}_{2}(\mathrm{~b})$ in the sensitivity range of the Ge detector. The resolution is $2 \mathrm{~cm}^{-1}$.
Fig. 2. Section of the overview spectrum of HS_{2} measured with the InSb detector at a resolution of $2 \mathrm{~cm}^{-1}$. The asterisks mark strong atomic lines.
Fig. 3. Spectrum of the $000-000$ and 001-001 bands of the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime} \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ system of HS_{2} at a nominal resolution of $0.01 \mathrm{~cm}^{-1}$. The apodized line width is $0.016 \mathrm{~cm}^{-1}$.
Fig. 4. Section of the high-resolution spectrum of the 001-000 band with rotational assignment of some Qlines of the $K_{a}=1-0$ sub-band.

Table 2.

		HS_{2}		D		
		Experiment	Theory [7] ${ }^{\text {a }}$	Experiment	Theory [7]	
$\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime} \rightarrow \tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$	000-000	7254(1) ${ }^{\text {b }}$	6936	7262(2)	6936	
		$7254.035(5)^{\mathrm{c}}$		7264(15) ${ }^{\text {d }}$		
		$7255(7)^{\text {d }}$				
	000-001	6658(1)		6667(2)		
		6657.755(5) ${ }^{\text {c }}$				
	001-000	7758(1)		7764(2)		
		7758.693(5) ${ }^{\text {c }}$				
	001-010	6858(10)				
	000-010	6352(10)				
	010-020	6268(10)				
	000-100	4566(10)				
$\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$	$\begin{aligned} & \omega_{3}{ }^{0} \\ & x_{33}{ }^{0} \end{aligned}$	598.42(6)	559	597.7(9)		
		-2.692(9)		$-3.33(48)$		
	v_{3}	595.73(7)		594.4(10)	555	
		$596.27996(44){ }^{\text {c }}$ $595(4)^{\text {d }}$		591(10) ${ }^{\text {d }}$		Comment [SHA28]: Correction made to value
	V_{2}	892(10)	953	696(20) ${ }^{\text {d }}$	674	
		$\begin{aligned} & 904(8)^{d} \\ & 903^{\mathrm{e}} \end{aligned}$				
	v_{1}	2688(10)	2748		1966	
		2463^{e}				
$\tilde{A}^{2} \mathrm{~A}^{\prime}$	$\begin{aligned} & \omega_{3}{ }^{0} \\ & x_{33}{ }^{0} \end{aligned}$	506.46(9)	514	504.8(6)		
		-2.333(25)		-2.10 (21)		
	v_{3}	504.13(10)		502.7(8)	511	
		$504.533914(44)^{\text {c }}$ $504(4)^{\text {d }}$		502(15) ${ }^{\text {d }}$		Comment [SHA29]: Correction made to value
	V_{2}	808(10)	838		593	
	v_{1}		2775		1986	

[^0]${ }^{\mathrm{b}}$ Numbers in parentheses are estimated error limits or standarc
 ons of the parameters from fits in unts of the tigit. Band origins of the low-resolution bands have been estimatec characteristic peaks.
${ }^{\text {c From high-resolution analyses. }}$
${ }^{\mathrm{d}}$ Results of the low-resolution studies [7].
${ }^{\mathrm{e}}$ Results of an infrared absorption study in Ar matrices [15].

Comment [SHA32]: Numbering changed.

23	0	23	22.5	23	1	23	22.5	6635.53504	1.31	7230.90622	1.22	7734.61164	1.00
24	0	24	24.5	24	1	24	24.5	6634.59529	0.04	7229.87917 *		7733.51970	1.13
24	0	24	23.5	24	1	24	23.5	6634.44925	1.62	7229.74104	1.18	7733.37569	0.90
25	0	25	25.5	25	1	25	25.5	6633.45620	0.60	7228.65792	0.29	7732.22299	-0.48
25	0	25	24.5	25	1	25	24.5	6633.31596	0.55	7228.52658	1.25	7732.08397	-2.64
26	0	26	26.5	26	1	26	26.5	6632.26992	-0.26	7227.38700*		7730.87768	1.34
26	0	26	25.5	26	1	26	25.5	6632.13703 *		7227.26136*		7730.74683	0.79
27	0	27	27.5	27	1	27	27.5	6631.03875	-0.13	7226.06648	-0.74	7729.47776	0.67
27	0	27	26.5	27	1	27	26.5	6630.91368	1.22	7225.94870	0.75	7729.35315	0.09
28	0	28	28.5	28	1	28	28.5	6629.76165 *		7224.69883	0.64	7728.02705	1.39
28	0	28	27.5	28	1	28	27.5	6629.64260	0.94	7224.58502 *		7727.90924	1.60
29	0	29	29.5	29	1	29	29.5	6628.43682	-1.56	7223.27950	-0.35	7726.52301	1.06
29	0	29	28.5	29	1	29	28.5	6628.32452	-0.07	7223.17345	0.89	7726.41219	2.44
30	0	30	30.5	30	1	30	30.5	6627.06894	-0.05	7221.81262	0.52	7724.96970	3.78
30	0	30	29.5	30	1	30	29.5	6626.96057	-0.65	7221.71050*		7724.86114	1.80
31	0	31	31.5	31	1	31	31.5	6625.65181	-1.60	7220.29487*		7723.35859	1.13
31	0	31	30.5	31	1	31	30.5	6625.55137	-0.10	7220.19879*		7723.25890	2.54
32	0	32	32.5	32	1	32	32.5	6624.19165	0.10	7218.72716	-0.91	7721.69687	0.35
32	0	32	31.5	32	1	32	31.5	6624.09585	0.56	7218.63738*		7721.60441	3.64
33	0	33	33.5	33	1	33	33.5	6622.68497	1.64	7217.11116	-0.46	7719.98440	1.39
33	0	33	32.5	33	1	33	32.5	6622.59337	0.73	7217.02621 *		7719.89248	-0.02
34	0	34	34.5	34	1	34	34.5	6621.12926	0.59	7215.44415	-1.27	7718.21910	2.23
34	0	34	33.5	34	1	34	33.5	6621.04597	2.53	7215.36521*		7718.13480	3.29
35	0	35	35.5	35	1	35	35.5	6619.52711	-0.36	7213.72869	-0.72	7716.39791	-0.11
35	0	35	34.5	35	1	35	34.5	6619.44752	-0.11	7213.65452	0.20	7716.32103	3.28
36	0	36	36.5	36	1	36	36.5	6617.87934	-0.32	7211.96266	-0.84	7714.52915	2.76
36	0	36	35.5	36	1	36	35.5	6617.80527	0.14	7211.89406	0.62	7714.45424	3.08
37	0	37	37.5	37	1	37	37.5	6616.18515 *		7210.14759*		7712.60258	0.67
37	0	37	36.5	37	1	37	36.5	6616.11615	0.25	7210.08395	1.40	7712.53385	2.17
38	0	38	38.5	38	1	38	38.5	6614.44195	-1.91	7208.22273	1.20	7710.62574	1.22
38	0	38	37.5	38	1	38	37.5	6614.38118	1.34	7208.28159*		7710.56116	1.90
39	0	39	39.5	39	1	39	39.5	6612.65638	0.68	7206.36525	-0.18	7708.59285	-1.28
39	0	39	38.5	39	1	39	38.5	6612.59726	0.38	7206.31182	1.49	7708.53554	1.71
40	0	40	40.5	40	1	40	40.5	6610.82056	-0.01	7204.39901 *		7706.50695	-3.75
40	0	40	39.5	40	1	40	39.5	6610.76719	0.24	7204.35201	3.16	7706.45431	-1.03
41	0	41	41.5	41	1	41	41.5	6608.93770	-0.71	7202.38225 *		7704.37558	1.43
41	0	41	40.5	41	1	41	40.5	6608.88908	-0.89	7202.33675	-0.27	7704.32375 *	
42	0	42	42.5	42	1	42	42.5	6607.00910*		7200.31504 *		7702.18409	-0.33
42	0	42	41.5	42	1	42	41.5	6606.96559	-0.28	7200.27476*		7702.13795	-1.03
43	0	43	43.5	43	1	43	43.5	6605.03258 *		7198.19776	0.46	7699.94284	1.40
43	0	43	42.5	43	1	43	42.5	6604.99455 *		7198.16038	-1.60	7699.89683	-4.14
44	0	44	44.5	44	1	44	44.5	6603.00950	0.76	7196.02995	1.02	7697.64168	-3.48
44	0	44	43.5	44	1	44	43.5	6602.97631	0.37	7195.99860 *		7697.60663	-3.05
1	1	1	1.5	1	0	1	1.5	6668.51603 *		7264.79237*		7769.34485 *	
1	1	1	0.5	1	0	1	0.5	6666.08331 *		7262.35961 *		7766.83166*	
2	1	2	2.5	2	0	2	2.5	6666.69408 *		7262.96897*		7767.43757*	
2	1	2	1.5	2	0	2	1.5	6665.64722 *		7261.91694 *		7766.39049*	
3	1	3	3.5	3	0	3	3.5	6666.60308 *		7262.86300 *		7767.33339*	
3	1	3	2.5	3	0	3	2.5	6667.20432*		7263.46417 *		7768.00285*	
4	1	4	4.5	4	0	4	4.5	6666.44106*		7262.68851	0.66	7767.15146	0.30
4	1	4	3.5	4	0	4	3.5	6666.93404 *		7263.18072 *		7767.70287*	

Page 19 of 27

Molecular Physics

30	1	30	29.5	30	0	30	29.5	6643.18287	0.18	7237.93264	-1.22	7741.10172	0.51
31	1	31	31.5	31	0	31	31.5	6641.50202	0.11	7236.15145	-0.49	7739.22228 *	
31	1	31	30.5	31	0	31	30.5	6641.58772	0.32	7236.23572	-0.97	7739.30934	-3.57
32	1	32	32.5	32	0	32	32.5	6639.85673	-0.32	7234.40171	-0.24	7737.37673	-1.83
32	1	32	31.5	32	0	32	31.5	6639.94105	-0.86	7234.48544	-0.60	7737.46910	0.92
33	1	33	33.5	33	0	33	33.5	6638.16240	0.60	7232.59979	1.53	7735.47722	-0.98
33	1	33	32.5	33	0	33	32.5	6638.24693	0.63	7232.68186	-0.12	7735.56578	-1.35
34	1	34	34.5	34	0	34	34.5	6636.41598	-0.29	7230.74102*		7733.51970	-1.61
34	1	34	33.5	34	0	34	33.5	6636.50162	0.93	7230.82394	-0.68	7733.60953	-0.30
35	1	35	35.5	35	0	35	35.5	6634.62056*		7228.83034	0.04	7731.50760	-0.40
35	1	35	34.5	35	0	35	34.5	6634.70615	0.99	7228.91344	-0.62	7731.59499	-1.43
36	1	36	36.5	36	0	36	36.5	6632.77480 *		7226.86622*		7729.43710	-1.31
36	1	36	35.5	36	0	36	35.5	6632.86020	0.37	7226.95128	0.89	7729.52665	-0.35
37	1	37	37.5	37	0	37	37.5	6630.87939	0.32	7224.84889*		7727.31265 *	
37	1	37	36.5	37	0	37	36.5	6630.96457	-0.23	7224.93372*		7727.40075	-0.94
38	1	38	38.5	38	0	38	38.5	6628.93204	-1.46	7222.77842 *		7725.13085 *	
38	1	38	37.5	38	0	38	37.5	6629.01881	-1.36	7222.86504	0.88	7725.21946	-1.14
39	1	39	39.5	39	0	39	39.5	6626.93821 *		7220.65491	-0.01	7722.89421	1.08
39	1	39	38.5	39	0	39	38.5	6627.02605 *		7220.74182 *		7722.98208	-1.80
40	1	40	40.5	40	0	40	40.5	6624.89331 *		7218.47766	-0.84	7720.60012	0.48
40	1	40	39.5	40	0	40	39.5	6624.98330	0.74	7218.56679*		7720.68955	-2.08
41	1	41	41.5	41	0	41	41.5	6622.80073	1.83	7216.24867	-0.61	7718.25141	0.91
41	1	41	40.5	41	0	41	40.5	6622.88979*		7216.33888	-0.32	7718.34513	1.13
42	1	42	42.5	42	0	42	42.5	6620.65503	-0.09	7213.96713	-0.23	7715.84651	0.65
42	1	42	41.5	42	0	42	41.5	6620.74788 *		7214.05914*		7715.94110*	
43	1	43	43.5	43	0	43	43.5	6618.46138	-0.69	7211.63088	-1.99	7713.38559	-0.27
43	1	43	42.5	43	0	43	42.5	6618.55694*		7211.72726	0.52	7713.48611	3.01
44	1	44	44.5	44	0	44	44.5	6616.21987*		7209.24592 *		7710.87063 *	
44	1	44	43.5	44	0	44	43.5	6616.31577	-1.29	7209.34209*		7710.97012*	

a The observed wavenumber of the lines in cm^{-1}
b The value of the $(\mathrm{obs}-\mathrm{calc}) \times 10^{3}$ in units of cm^{-1}. An asterisk indicates the line was given zero weight in the fit due to overlap or other perturbation and the quoted value is the calculated wavenumber.

Table 4
Molecular constants for the 000 and 001 levels of the $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}$ and $\tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$ states of HS_{2} (in MHz) except where indicated.

Parameter	$\tilde{A}^{2} \mathrm{~A}^{\prime}$		$\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$	
	000	001	000	001
v_{0} / cm^{-1}	7254.035347(19) ${ }^{\text {a }}$	7758.569314(26)	0	6657.75539(44)
A	289615.1(74)	289500.8(37)	296978.9619(74)	296726.8(21)
B	7198.30(30)	7152.4363(56)	7996.36601(78)	7946.856(82)
C	7011.40(27)	6968.080(35)	7776.73845 (80)	7727.770(71)
$\Delta_{N} \times 10^{3}$	6.182(82)	5.909(17)	5.88717(17)	5.875(22)
$\Delta_{N K}$	0.2244(97)		0.2338296 (85)	0.2272(26)
Δ_{K}	17.90(27)	18.36(29)	24.3299(11)	23.861(60)
$\delta_{N} \times 10^{3}$	0.20(10)	0.48(18)	$0.155935(51)$	0.172(27)
δ_{K}			0.13091 (37)	
$\Phi_{N K} \times 10^{6}$			$0.2479(74)$	
$\Phi_{K N} \times 10^{3}$			0.03595(28)	
$\Phi_{K} \times 10^{3}$			$8.32{ }^{\text {b }}$	
$\varepsilon_{a a}$	62440(72)	65120(429)	-45926.778(13)	-47556(18)
$\varepsilon_{b b}$	61.7(67)	67.7(12)	-424.287(13)	-420.2(18)
$\varepsilon_{c c}$	-271.5(61)	-265.41(92)	10.096(13)	8.8(14)
$\frac{1}{2}\left\|\varepsilon_{a b}+\varepsilon_{b a}\right\|$			235.416(74)	$235.416^{\text {c }}$
Δ_{K}^{S}	-450(31)	-452(29)	6.7205(22)	7.12(71)
$\Delta_{N K}^{S}+\Delta_{K N}^{S}$		-60(3)	-0.202128	0.15(13)
$\Delta_{N K}^{S} \times 10^{3}$			-9.528(66)	
$\Delta_{N}^{S} \times 10^{3}$			0.1787(33)	
δ_{K}^{S}			$0.0976(67)$	
$\delta_{N}^{S} \times 10^{3}$			6.18(23)	
Φ_{K}^{S}			-1.94(20)	

a Numbers in parentheses are the standard deviations of the parameters in units of the last quoted decimal place.
b Constrained at the value from [8].
c Constrained at the value from the ground state.

Table 5
Vibrational spacings and vibrational dependence of the rotational constants. All parameters in MHz except where indicated.

	$\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime}$	$\tilde{\mathrm{X}}^{2} \mathrm{~A}^{\prime \prime}$
$\Delta G\left(v_{3}=1-0\right) / \mathrm{cm}^{-1}$	$504.533914(44)^{\mathrm{a}}$	$596.27996(44)$
$\Delta G\left(v_{3}=1-0\right) / \mathrm{cm}^{-1}[18]$	501	592
α_{A}	$368.8(50)$	
α_{B}	$45.85(60)$	$252.1(21)$
α_{C}	$43.98(61)$	$49.505(83)$
		$48.969(72)$
$A_{00 e}$	$289672 .(32)$	$297105.0(11)$
$B_{00 e}$	$7221.23(60)$	$8021.112(42)$
$C_{00 e}$	$7033.39(58)$	$7801.223(37)$

[^1]

Figure 1

Figure 2

Figure 4

References

	Strausz, R. J. Donovan and M. De Sorgo, Berichte der Bunsen-Gesellschaft,
253-6 (1968)	
	R. K. Gosavi, M. Desorgo, H. E. Gunning and O. P. Strausz, Chemical Physics
Letters, 21, 318-321 (1973)	
4 A. B. Sannigrahi, S. D. Peyerimhoff and R. J. Buenker, Chemical Physics Letters, 46, 415-421 (1977)	
5 K. H. Becker, E. H. Fink, P. Langen and U. Schurath, Journal of Chemical Physics, 60, 4623-4625 (1974)	
```6 U. Schurath, M. Weber and K. H. Becker, Journal of Chemical Physics, 67, 110 (1977)```	
$\begin{aligned} & 7 \\ & (1985) \end{aligned}$	
8 S. Yamamoto and S. Saito, Canadian Journal of Physics, 72, 954-962 (1994)	
(1992)	
10 S. H. Ashworth, K. M. Evenson and J. M. Brown, Journal of Molecular Spectroscopy 172, 282-295 (1995)	
11 M. Tanimoto, T. Klaus, H. S. P. Muller and G. Winnewisser, Journal of Molecular Spectroscopy, 199, 73-80 (2000)	
12 I. R. Slagle, R. E. Graham and D. Gutman, International Journal of Chemical	
Kinetics, 8, 451-458 (1976)	
13 S. Glavas and S. Toby, Journal of Physical Chemistry, 79, 779-782 (1975)	
14 B. K. Decker, N. G. Adams and L. M. Babcock, International Journal of Mass	
Spectrometry, 187, 727-743 (1999)	
15 E. Isoniemi, L. Khriachtchev, M. Pettersson and M. Räsänen, Chemical Physics	
Letters, 311, 47-54 (1999)	
16 A. Hinchliffe, Journal of Molecular Structure, 66, 235-242 (1980)	
17 Q. Zhuo, D. J. Clouthier and J. D. Goddard, Journal of Chemical P 2931 (1994)	
18 P. A. Denis, Chemical Physics Letters, 422, 434-438 (2006)	
19 C. Aiot and J. Vergès, Canadian Journal of Physics, 59, 1391-1398 (1981)	
20 . H. Fink and D. A. Ramsay, Journal of Molecular Spectroscopy, 185, 304-324	
21 I. Osmann, P. R. Bunker, P. Jensen, R. J. Buenker, J. P. Gu and G. Hirsch, Journal of	
Mc -p. ir Spectroscopy, 197, 262-274 (1999)	
$22 \equiv$ i. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and	
Spertrr of Polyatomic Molecules, Krieger Publ. Co., Malabar, FL (1991) p. 206	
23 M. Brown and T. J. Sears, Journal of Molecular Spectroscopy, 75, (1979)	
24 . J. , Computer Physics Communications, 34, 123-133 (1984)	
	M $=$ ling, Journal of Molecular Spectroscopy, 6, 550-553 (1961)
	K. G. Watson, Journal of Chemical Physics, 46, 1935-1949 (1967)

## Comment [SHA33]: Numbering

changed
Comment [SHA34]: Numbering
changed
Comment [SHA35]: Numbering
changed
Comment [SHA36]: Numbering
changed
Comment [SHA37]: Citation added.
Comment [SHA38]: Numbering changed
Comment [SHA39]: Citation added
Comment [SHA40]: Citation added.
Comment [SHA41]: Citation added.
Comment [SHA42]: Numbering
changed
Comment [SHA43]: Numbering
changed
Comment [SHA44]: Numbering changed


[^0]:    ${ }^{\text {a }}$ More theoretical data are found in Refs. [16-18] and [15].

[^1]:    a Uncertainty given in units of last quoted decimal place.

