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In this article we discuss the effects of solute-water interactions with a focus on a set of old standing questions:

• How strong is the nonlinear response of water polarisation to charged solute?

• How strong is the asymmetry of the response between cations and anions of similar size?

• What is the role of the finite size of the solute?

• How ’positive’ or ’negative’ hydration manifests itself in the dielectric response?

• Can nonlocal electrostatics, based on the bulk value of solvent dielectric function, be used to describe the electric field of an ion and

its hydration?

• Are experimental data on hydration energies compatible with the hypothesis of over-screening effect in the bulk solvent response?

The answers rest on a crude but analytically viable model of water (modified SPC/E); in no way final, they are intended to provoke

future more sophisticated studies, based on ab initio quantum molecular dynamic simulations and new experiments.

1 Introduction

The studies of ionic solvation (hydration, in particular) have more than a hundred year history and many

achievements [1–3]. Various aspects of solvation have been reviewed in 80s in a comprehensive three

volume collective monograph [4–6] One of the central questions put forward there has been, ’what is the

role of the solvent structure in the solvent response to a charged solute?’. The following two decades

were characterised by intensive development of new methods for the description of the solvent, based on

computer simulations [7–18] and the approximate statistical mechanics of molecular liquids [19–26], as well

as further exploration of the semi-phenomenological approach which describes the solvent via the nonlocal
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dielectric function [27–31]. The latter was a successor of the classical Born and Debye theories (in which

the solvent is described through its macroscopic dielectric constant). But in contrast to those theories,

’nonlocal electrostatics’ does not operate with a dielectric constant, but with nonlocal dielectric function,

which in turn can be expressed through the pair correlation function of bound charge density fluctuations of

the polar liquid or electrolyte in the bulk. For given form-factors of charge distributions inside the solvent

molecule or electrolyte ions, this correlation function is related to the atomic partial structure factors

(static, when fluctuations are classical, i.e. have frequencies smaller than kB/~, or dynamic, otherwise).

For more about these concepts see, e.g., in Ref. [13].

There were two main obstacles against using nonlocal electrostatics:

• The form of the nonlocal dielectric function in polar solvent, water in particular, remained to be a

subject of debates, and depended strongly on the model of the liquid.

• It was not clear how much the presence of the solute perturbs the surrounding liquid, and whether it

was possible at all to incorporate the nonlocal dielectric function of the bulk water into the description

of ionic solvation, as some approximations suggested [29,31].

The ’primary suspects’ for such disturbances were:

• Nonlinear response of the solvent to the field of the ion, known under the notion of dielectric saturation.

• Physical distortion of the short range structure of the solvent by the finite size of the solute.

• Specific solute-solvent interaction, including covalent or hydrogen bonding.

The latter may be present or not, but the first two factors cannot be ignored a priori. The first one is

charge dependent, and is stronger the greater the charge. Although there were some interesting results

showing at which field-strength the dielectric saturation becomes significant [32–35], there was no consensus

about the critical value of charge which sets a boundary between the linear and nonlinear response. As

this should clearly depend on the size of the solute (near small ions the electric field is larger), how

large must the ion charge and ion size be for dielectric saturation to take place? Pioneer simulations by

Geiger [36] illuminated micro-dynamics of water around the ion of variable charge and size, but their effect

on equilibrium structures has not been quantified.

The second factor distorts the structure sterically if the ion does not fit hypothetical ’voids’ in the water

hydrogen bonded network.

These issues are concerned with the Samoilov’s notions of ’positive’ and ’negative’ hydration [1, 37],

and even hydrophobic hydration [38], but the questions that we want to revisit are: ’how these structural

Page 2 of 32

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review O
nly

September 15, 2006 17:15 Molecular Physics solute14092006

3

changes caused by the solute affect the overall solvent dielectric response, hydration energies, the form of

electric field around the solute, etc?’

Although each of these points has been raised in some form before, in this article we wish to analyse them

systematically on the basis of one approach. We will use an integral equation scheme – Reference Interaction

Site Model (RISM) [39], which provides an approximate statistical-mechanical description of the solute-

solvent interactions based on a rigid model of water. Specifically, it will be the MSPC/E model [40], a

slightly modified version of the well-known SPC/E model [41]. Obviously, this water is not ’drinkable’: the

molecular model is not accurate, nor is the integral equation closure exact. But the reason for this exercise

was to get answers to these questions in one calculation within the same model, which would have been

difficult within computationally much more demanding MD simulations. Additional advantages of this

approach are the exact reproducibility of calculations, and the ease with which the values of parameters

and conditions may be changed.

Will the answers that we obtain be true for real water?

We do not expect any conceptual changes from employing other methods of classical statistical me-

chanics, at least as long as the charge distribution in water molecule is described by rigid point charges.

But the analysis, presented in Ref. [42] shows that just smearing of charge distributions between oxygen

and hydrogen in the spirit of the Bader and Jones model [43] changes results a lot! Generally, classical

statistical mechanics models with point charges cannot describe such important effects as: charge transfer

and electronic polarisability. Although, these models simulate hydrogen bonding, but in a very crude fash-

ion. So, real changes can be expected improving on this front. Modern force-fields [44,45] and polarisable

water models [46–48] may be helpful but they ordinary invoke additional empirical parameters, targeted

not to ideally describe water itself, but rather to compare the ’performance’ of this water in different

environments. An example of this is the proton transfer model of Ref. [47], used for the analysis of the

effect of charged pore walls on the proton transfer in polymer electrolyte membranes [49] (for discussion

see Ref. [50]).

Future ab initio quantum-mechanical MD simulations will be the best fit to answer this question. With

modern terascale computers and state-of-the-art numerical methods [51], such simulations will soon become

a reality. The questions and answers presented in this Article could provoke and help to focus these future

studies. Its second goal is to get a flavour of several qualitative effects that come out from the model.

Throughout the paper we will compare ’our answers’ with those obtained in the literature for similar

models.
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2 Theoretical methods.

Recent theoretical and computational developments have made it possible to describe different solvation

phenomena with good accuracy. The most popular (and the most accurate) methods of classical statistical

mechanics are the methods of direct simulation of solute-solvent systems such as Monte-Carlo and Molecu-

lar Dynamics. Due to the progress in computer science and numerical methods of quantum mechanics, the

first principle molecular simulations of solvation effects seem to be also possible. Such simulation methods

are very useful for understanding fundamental properties of solute-solvent interactions, but they require

huge computational resources. Even in the case of ’unlimited’ access to modern supercomputers and use

of advanced numerical methods [51] the ab initio simulations are still limited by the size of the simulation

ensemble (. 1000 atoms) and simulation time (. 1000 ps) [52–54]. With such limitations it is difficult to

evaluate macroscopic parameters, such as the dielectric susceptibility.

An alternative to Molecular Mechanic simulations is the integral equations (IE) theory [55–57]. Although

approximate, the results have been shown to be meaningful for pure liquids and different solutions [21,

23, 24, 58–64]. Despite the apparent limitations, IE theory has a number of advantages over molecular

simulation: for small solutes it is much faster than any MD or MC simulation, the solutions are free of

statistical noise and the thermodynamic limit is by definition attained, thus avoiding numerical artifacts

due to the finite-size simulation cell. In this way, phenomena related to large correlation lengths become

accessible. Another advantage of IE theories is that the free energy and chemical potential in the case

of the hypernetted chain (HNC) approximation [65] or its analogues [66, 67] are directly related to the

correlation functions. It has been shown that IE-HNC theory is able to describe different properties of

polar fluids with a reasonable degree of accuracy [19–21].

At present there are several approaches based on integral equations. The molecular Ornstein-Zernike

(MOZ) theory is the method to calculate three dimensional (3D) solvation structure in molecular liquids.

The MOZ theory treats the orientation dependence of intermolecular interactions through the rotational

invariant expansions of interaction potentials and correlation functions [68].

Another approach is the RISM formalism. This model was first developed by Chandler and Andersen

[39] and then modified by different authors to describe properties of complex solute-solvent systems (ex-

RISM or XRISM) [20,21]. The theory is based on calculations of radial distribution functions (RDF) via

the site-site Ornstein-Zernike (SSOZ) integral equation. This model provides detailed information about

solute-solvent interactions in terms of statistically averaged site-site distribution functions. The theory has

been successfully applied to calculate the structural and thermodynamic properties of various chemical

Page 4 of 32

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review O
nly

September 15, 2006 17:15 Molecular Physics solute14092006

5

and biological systems [55, 57]. In Ref. [20] the HNC closure was employed to consider the nonlinear

response of solvent. One of the drawbacks of this approach is the fact, that the numerical procedure can

become divergent in the case of strong solute-solvent interactions. Kovalenko and Hirata [66,67] proposed

a partial linearisation of the HNC closure (PLHNC) to eliminate this artifact. In the both RISM-HNC

and RISM-PLHNC approaches the solvation free energy can be expressed as a function of the RDFs and

the direct correlation functions (see more details below in the subsections (2.3) and (2.4)). It was shown

that the RISM-HNC(PLHNC) approximation provides an appropriate description of liquids containing

polar solutes [19–21]. However, this model strongly overestimates the energy of hydrogen bonding. As a

consequence, this method provides poor predictions for the thermodynamics of hydrophobic solvation. To

improve the theory, an orientational average of the Boltzmann factor for a repulsive core potential of the

whole solvent molecule has been incorporated in the 3D RISM/HNC closure [69]. Kovalenko and Hirata

extended this repulsive bridge correction (RBC) to the ’one dimensional’ (1D) RISM approach [66, 67].

In this study we use the 1D RISM/PLHNC model improved by the RBC for the case of hydrated ionic

species [70]. We employ this model to calculate thermodynamic and structural properties of hydrated

model solutes.

We use below the Lue and Blankshtein version of SPC/E model of water [41] referred to as the modified

SPC/E model (MSPC/E) [40, 71]. The modification includes a weak Lennard-Jones potential between

the water oxygens and hydrogens, totally neglected in the original SPC/E model. The SPC/E water

itself is common because in spite of its simplicity it reproduces the most significant features of water at

room temperature such as the internal energy, pressure, and RDFs [41]. For calculation of water radial

correlation functions we used a reformulation of RISM with dielectric corrections [22, 72, 73] to provide

accurate screening of the long-range interactions. The details of these methods and parameters of the

model are described in the Appendix.

For the purposes of this study it was sufficient to consider a system composed of a single monatomic

(spherically symmetric) solute with radius a in aqueous solvent.

2.1 Linear Response Formalism

The classical form of the fluctuation-dissipation theorem (FDT) connects the longitudinal component of

the wave vector dependent static dielectric tensor with the structural properties of the bulk medium in
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the following way [8]:

ǫ(k) =

[

1 −
4πS(k)

kBT

]

, (1)

where S(k) = 〈ρkρ−k〉/k
2 is the charge density structure factor (ρ

k
is the Fourier transform of the bound

charge density).

S(k) may be found from the partial density structure factors gij(k) = 〈ni,knj,k〉/N of the charged sites

i and j (oxygen and hydrogen for water) which may be obtained either from scaterring experiments or

some theoretical calculations. If we separate the intramolecular (m) and intermolecular (d) contributions

to S(k) = Sm(k) + Sd(k) we may write for bulk water:

Sm(k) =
2nz2e2

k2

[

3 + fHH(k)
sin(kdHH)

kdHH
− 4fOH(k)

sin(kdOH

kdOH

]

; (2)

Sd(k) =
4nz2e2

k2
[gOO(k) + gHH(k) − 2gOH(k)] (3)

=
4nz2e2

k2

∫ ∞

0
4πr2 sin(kr)

kr
[gOO(r) + gHH(r) − 2gOH(r)] dr, (4)

where n is molecular number density of the fluid; z, the valence; e, the electron charge, gij are the site-site

pair density correlation functions, and dij , the mean intramolecular distances. The fij are distribution

functions which characterise the equilibrium fluctuations of the site-site distances from their mean values,

thereby including atomic form factors. For rigid molecules with point charges on the sites, fij(k) = 1. This

is the case for the MSPC/E water model which we are using in this work.

Within the framework of linear nonlocal electrostatics and the so-called immersed charge approximation

(in which the ion is represented by a charge distribution which does not structurally perturb but only

polarises the surrounding solvent), the form of electrostatic potential around the ion with a spherical

charge distribution ρ(r) is completely determined by the properties of ǫ(k) [4, 30, 74] and by the Fourier

transform of the ion charge density:

ρ(k) =

∫ ∞

0
4π

sin(kr)

(kr)
ρ(r)r2dr. (5)
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The expression for the potential reads

Φnonlocal(r) =
2

π

∫ ∞

0

ρ(k)

ǫ(k)

sin(kr)

(kr)
dk. (6)

The most common approximations for the ion charge density is the Born Sphere model (BS) [4], for

which

ρBS(k) = q
sin(ka)

ka
. (7)

For the Smeared Born Sphere model (SBS) [30]:

ρSBS(k) =
q

1 + (ξ/a)2(2 − e−a/ξ)

(

sin(ka)

ka

1

1 + ξ2k2
+

ξ2

a2

(

2cos(ka) − e−a/ξ
)

(1 + ξ2k2)2

)

. (8)

The BS model assumes that the charge is uniformly distributed over a sphere of radius a (the ion radius).

In the SBS model, the charge density has a maximum at the radial distance a from the centre of the sphere;

from this distance it decreases exponentially (both outside and inside the sphere) with decay length ξ. In

the limit of ξ → 0, the SBS model reduces to the BS model.

With the use of the immerse charge approximation, the free energy of ion hydration ∆G is calculated

via equation [30]:

∆G =
1

π

∫ ∞

0
ρ(k)2 [1 −

1

ǫ(k)
]dk. (9)

For the Born Sphere model of an ion it is known as the Dogonadze-Kornyshev equation [27] which describes

well the hydration energies of alkali and halide ions under the assumption of Lorentzian behaviour of the

dielectric function [29]. But it had difficulties to reconcile the presence of the overscreening peak in [1− 1
ǫ(k) ]

that can be, however, relaxed by introduction of the SBS model [30].

2.2 Electrostatic Potential around a spherical solute in molecular liquid

A spherically symmetric monatomic solute immersed in a molecular solvent creates electrostatic potential

which can be represented as a sum of two terms: Φ(r) = Φc(r)+Φ∗(r). Here Φc(r) is the Coulomb potential

in vacuum Φc(r) = qI/r (qI is the electrostatic charge of the solute) and Φ∗(r) is an induced electrostatic
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potential due to the polarisation response of solvent molecules to the presence of the solute. Φ∗(r) can be

written in terms of the spherically symmetric ion-solvent RDFs gIs as [24]:

Φ∗(r) = 4πρv

[

1

r

∑

s

qs

∫ r

0
gIs(r

′)r′2dr′ +
∑

s

qs

∫ ∞

r
gIs(r

′)r′dr′

]

, (10)

where ρv is the density of the solvent and qs is the charge of a solvent site s. We used this formula in all

our calculations of Φ(r).

Generally, since all our examples will refer only to spherically symmetric solutes and, thereby, to spher-

ically symmetric solvent polarisation and perturbations of the solvent structure around the solute, we will

be able to reduce the problem to the radial parts of the corresponding correlation functions. This would

not be the case if we had tried to establish how the presence of the solute perturbs the pattern of the

binary correlation functions near the solvent. The latter would have been the most direct and unambigu-

ous information about the solute effect on the solvent structure. Unfortunately, this is difficult to achieve

within the present method of analysis, and we leave this challenging task for the future studies.

2.3 RISM Integral Equation Theory for Molecular Liquids

The main elements of this theory have been well described in the literature (see e.g. Ref. [57]). However,

for the sake of completeness, we briefly outline them. The RISM integral equation theory, as developed by

Chandler and Andersen [39], consists of integral equations with two different kinds of unknown functions,

the total correlation functions, h(r) = g(r) − 1, and the direct correlation functions, c(r), where r is the

distance variable and g(r) is the density correlation function.

Let us determine the convolution product x(r) ∗ y(r) of two functions x(r) and y(r) as:

x(r) ∗ y(r) =

∫

x(|r − r′|)y(r′)dr′. (11)

In the following we assume all the correlation functions are spherically symmetric, and depend only on the

distance from the centre of the corresponding site r = |r|.

Let us also introduce an intramolecular correlation function:

ωij = δijδ(r) + ̟ij(r), (12)
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where δ is the Kronecker symbol, function ̟ij(r) describes the position of sites i and j within a single

molecule. For a rigid molecule it is given by

̟ij =
(1 − δij) δ(r − Lij)

(4πL2
ij)

, (13)

where the Lij is the distance between the sites i and j.

The extended RISM integral equations (XRISM) for a system that consists of a molecular solvent and

a solute at infinite dilution could be written as [57]:

hvv
αβ(r) =

∑

γ,ζ

ωv
αγ(r) ∗ cvv

γζ(r) ∗ (ωv
ζβ(r) + ρvh

vv
ζβ(r)), (14)

and

huv
sα(r) =

∑

s′,γ

ωu
ss′(r) ∗ cuv

s′γ(r) ∗ (ωv
γα(r) + ρvh

vv
γα(r)), (15)

where ρv is the average solvent density, the superscripts v and u correspond to the solvent and the solute,

Latin symbols denote the solute sites and Greek symbols denote the solvent sites.

To find a solution of the Eqns. (14) and (15) one has to complete them by a closure relation which

connects h − and c − functions with the same combination of ’v’ and ’u’ indices in a local way as [57]:

hij(r) = exp(−βuij(r) + hij(r) − cij(r) + Bij(r)) − 1. (16)

Here, Bij(r) is a bridge function, uij(r) is a spherically symmetric pair potential between interaction sites

i and j, symbol β denotes the inverse temperature: β = (kBT )−1, where kB is the Boltzmann constant

and T is the absolute temperature. The case B(r) ≡ 0 corresponds to the the Hypernetted Chain closure

(HNC) closure. The Partially Linearised Hypernetted Chain closure [66,67] linearises the exponent in (16)

for the case of B(r) ≡ 0 depending on the sign of the function Ξij(r) = −βuij(r) + hij(r) − cij(r):

cij(r) =























exp(Ξij(r)) − hij(r) + cij(r) − 1 Ξij(r) < 0

−βuij(r) Ξij(r) > 0

(17)
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In this model the site-site interaction potential uij(r) consists of a short-ranged potential u∗
ij(r) and a long

range Coulomb potential uc
ij(r) = qiqi/rij , where qi and qi are the partial charges of the ininteractionites

i and j. In this work we use standard Lennard–Jones (LJ) short range potential:

u∗
ij(r) = 4ηij([

σij

r
]12 − [

σij

r
]6). (18)

The site-site LJ parameters σij and ηij are determined according to the standard Lorentz-Berthelot com-

bining rule: [56]:

σij =
1

2
(σi + σj) , ηij = (ηiηj)

1

2 . (19)

Such details of the RISM technique as dielectric corrections and numerical treatment of the long-range

electrostatic interactions are described in the Appendix.

2.4 RISM Solvation Free Energy and Repulsive Bridge Correction

Within the scope of RISM-HNC theory the thermodynamic functions of solvation can be described in terms

of the correlation functions given above. The excess RISM-HNC chemical potential −β∆µHNC (solvation

free energy) of a monatomic ion (I) at infinite dilution has the form [75]:

−β∆µHNC = 4πρv

∑

α

∫ ∞

0

{

1

2
hIα(r)2 − cIα(r) −

1

2
hIα(r)cIα(r)

}

r2dr, (20)

where α refers to the interaction sites of solvent molecules. The PLHNC gives similar expression for

chemical potential [67]:

−β∆µPLHNC = 4πρv

∑

α

∫ ∞

0

{

1

2
hIα(r)2Θ(−hIα(r)) − cIα(r) −

1

2
hIα(r)cIα(r)

}

r2dr, (21)

where Θ(x) is the Heaviside step function.

In the RISM model we can express the total energy of ion-solvent interactions HI via the ion-solvent

radial correlations functions as:

HI = 4πρv

∑

α

∫ ∞

0
[1 + hIα(r)]uIα(r)r2dr. (22)
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Therefore, in the case of non-zero bridge function B(r) (see Eq. (16)), one can use more general Kirkwood

formula [76] to calculate the hydration free energy:

∆µ =

∫ 1

0

〈

∂HI(r, λ)

∂λ

〉

λ

dλ = 4πρv

∑

Iα

∫ 1

0
dλ

∫ ∞

0
[1 + hIα(r, λ)]

〈

∂uIα(r, λ)

∂λ

〉

λ

r2dr. (23)

where λ is a coupling parameter which is determined on the interval 0 (unhydrated ion) to 1 (fully hydrated

ion). This relation requires calculation of ion-solvent correlation functions hIα(r, λ) at different values of λ.

There is a common practice to use two different coupling parameters λnel and λel for separate calculations of

the nonpolar ∆µnel and the electrostatic ∆µel free energy contributions, respectively [77]. If the interaction

potential uIα has the form (18) the ’nonpolar’ λnel is considered as a scaling factor of the LJ radius σIj ,

i.e. σIj(λnel) = λnelσIα. Similarly, the coupling parameter λel is considered as a scaling factor of the solute

charge, qI(λel) = λelqI . Therefore, we may express ∆µ as:

∆µ = ∆µnel + ∆µel, ∆µel =

∫ 1

0

〈

∂Hel
I (λel)

∂λ

〉

λel

dλel, (24)

where Hel
I is the electrostatic part of the total energy HI :

Hel
I (λel) = 4πρv

∑

α

∫ ∞

0
[1 + hIα(r)]

λelqIqα

r
r2dr. (25)

In the case of water solvent the derivation
〈

∂Hel

I
(λel)

∂λ

〉

λel

can be expressed via the total solute-oxygen (hIO)

and solute-hydrogen (hIH) correlation functions

〈

∂Hel
I (λel)

∂λ

〉

λel

= 4πρvqI

∫ ∞

0
[2qHhIH(r, λel) − qOhIO(r, λel)]rdr, (26)

where ρv is the averaged water density, while qH and qO are the hydrogen and oxygen partial charges of

the water molecule.

To achieve better accuracy in prediction of the nonpolar part of solvation free energy ∆µnel than it is

provided by the HNC/PLHNC theory, we use the recently developed repulsive bridge correction (RBC)

technique for 1D RISM [70, 78]. In this case the bridge function has non-zero value which is determined
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by this relation:

exp[−Bij(r)] =
∏

l 6=j

ωil(r) ∗ exp[−4βηlj(
σlj

r
)12]. (27)

The authors of Ref. [69] proposed such form of the bridge function for the three-dimensional (3D) orien-

tational reduction of the MOZ equation for a one-component molecular liquid. Kovalenko and Hirata [78]

proposed to take the repulsive core as a sum of the LJ terms, since the orientational average of the po-

tential provides a soft repulsion extending beyond the LJ repulsive core throughout the first hydration

shell and provides the correct dependence of the hydration chemical potential on the solute size [78]. An

analogous empirical bridge corrections were used in work [77] in the 3D RISM calculations of hydration of

organic molecules and in [70], where the solvation free energy of ionic species was calculated by a hybrid

’one-dimensional’ (1D) RISM/QM scheme.

Instead of direct integration of the Eq.(23) by λnel, we calculate the nonelectrostatic contribution ∆µnel

by the perturbation scheme proposed in [78]:

β∆µnel = β∆µPLHNC
nel + 4πρv

∑

Iα

∫ ∞

0
[1 + hPLHNC

Iα (r)][exp[−BIα(r)] − 1]r2dr, (28)

where the correlation functions are taken with PLHNC closure (17), and ∆µPLHNC
nel is calculated by (21).

The results of several previous studies [70,78,79] have shown, that such calculations are essentially simpler

and faster than the complete thermodynamic integration (23) but provide reasonable accuracy for the

nonpolar contribution ∆µnel in hydration of hydrophobic and ionic solutes [70,78,79].

3 Results and Discussion

3.1 Nonlocal dielectric response of bulk water

The atom-atom total correlation functions {hOO, hOH , hHH} of bulk MSPC/E water were found nu-

merically by an iterative RISM technique with use of recently developed fast wavelet-based algorithms

[80–82]. These data are calculated for ambient conditions: temperature T = 298 K and density of water

ρ = 0.997 g/cm3. To find the values of correlation functions in the real space we used a uniform mesh

with 4096 knot points and step size δR = 0.0278 Å. High accuracy is vital in the case of highly charged

solutes to avoid numerical artifacts. Therefore, we run the iteration procedure until the mean Euclidian
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distance between two adjacent iterations is less than 10−12. The data obtained allowed us to calculate

intermolecular {gOO, gOH , gHH} and intramolecular correlation functions and hence the charge density

structure factor S(k) (via Eqs. (2)-(4)) of the bulk water and the corresponding longitudinal dielectric

susceptibility χ(k) :

χ(k) = 1 −
1

ǫ(k)
=

4π

kBT
S(k), (29)

which is χ(k) is a smooth function in contrast to the ǫ(k) which may have discontinuities [8]. The results

for χ(k) are displayed in Fig. 1. For the sake of comparison we put there also χ(k) obtained from the

Molecular Dynamics simulations of bulk SPC/E water (see details of the simulations in the Appendix).

Shapes of these functions look very similar to each other. The position of the main ’overscreening’ peak

at k ≈ 3Å−1 is very close to what has been found in another MD simulations [8, 13, 83], and theoretical

models of water [23], but as well as in Ref. [23, 83], the height of the peak is two times larger than it

was found for the flexible BJH water model [84] that takes into account the internal degrees of freedom

of water molecules (where the highest point is about 25) [8, 13]. Likewise, the Lorenzian behaviour at

small k [8, 13, 85] is also missing, as clearly seen in the inset which shows the monotonic growth of χ(k)

from k = 0. Since, the sign of the derivative at k ≈ 0 is known to be super-sensitive to the inaccuracy

of calculation [86], the reliability of this conclusion even for the studied model is not warranted. This is

the reason why we do not show in the inset the results obtained by the MD simulations - even with 1716

water molecules in the box, the accuracy at low k is poor.

3.2 Gibbs free energies of hydration

Using the RISM-RBC technique and employing Eqns. (24) and (28), we calculated the free energy of

hydration of a spherical ion, ∆G, versus its radius a. For ion LJ parameters we used σI = a and ηI ==

6.41 · 10−3 eV (0.25 kBT, T = 298 K). We took LJ parameters of the water sites from the MSPC/E

set of parameters of Ref. [71]. Then we calculated ion-hydrogen and ion-oxygen LJ interaction potentials

following the Lorentz-Berthelot combining rules (19). To find the electrostatic part of free energy we used

11 values of λel.

Fig. 2 shows RISM-RBC (solid line) and MD (dashed line) [18] values of ∆G for neutral spheres. Qual-

itatively, these results are in line with experimental data of analogous hydrophobic solutes: Ne (0.12 eV )

and Ar (0.09 eV ) [87]. Shapes of these curves are qualitatively similar, but the integral equations give
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higher values of ∆G for neutral spheres than MD calculations, presumably, because of the differences in

the shape of effective potentials between the solute and water sites.

The RISM-RBC results for charged spheres are shown on the top of Fig. 3. For comparison we also

placed there the results obtained with the classical Born model [88]: ∆GBorn = q2

2a

(

1 − 1
ǫ

)

.

On the bottom of Fig. 3 we show analogous results for the nonlocal theory calculations via the Dogonadze-

Kornyshev equation (9) (as discussed in the linear response section of the Computational Methods) with

the RISM values of the longitudinal bulk dielectric susceptibility χ(k). Correspondence to alkali–halide

ions is marked by Gourary and Adrian radii [89]. In both figures we also show experimental data for alkali

cations and halide anions taken from different sources [90–92].

Integral equation calculations just as analogous MD calculations in Ref. [12] give substantially different

hydration energies for cations and anions of similar radii - the anions are stronger hydrated. The differ-

ence was often attributed to a kind of anion hydrogen bonding with water molecules, but the differences

found in RISM-RBC model are larger than the experimental results. This is not unexpected, because this

model slightly overestimates the first proton radial distribution peak near the negative ion, relative to the

experimental values [78]. Although the data summarised by Salomon [90] are friendlier to the RISM-RBC

results, the scale of separation of anion and cation contributions to salt hydration energies that he used is

not ‘indisputable’.

The nonlocal electrostatic calculation with the Born Sphere model, which ignores any smearing of

solute charge and distortion of solvent structure by the solute, gives a huge overscreening contribution

to the hydration energies. This is substantially diminished by using Smearing Born Sphere model with a

smearing parameter ξ = 0.4 Å. But RISM-RBC does it better than BS not only because it involves a direct

contribution of short range repulsion of the immersed sphere (c.f. the Fig. 2) that reduces the hydration

energy, but also because the distortions of water structure by the presence of the immersed sphere and

its charge seemingly suppress the resonance dielectric response of the solvent. At the same time, the SBS

model with an appropriate smearing parameter ξ can also give satisfactory results for solvation free energy

for reasonable ionic radii (a > 1.00 Å). These results are in line with the conclusions of Refs. [63, 70, 93]

that hydration free energy of medium size ionic solutes are mainly determined by the structural properties

of bulk water and the geometry of solutes. Formally, the results of QM/MM calculations in Ref. [70] failed

for ion radii smaller than 1 Å.

By its nature, neither Born nor its nonlocal electrostatic modification can distinguish the difference

between the cations and anions of the similar size, unless we fiddle with the value of parameter λ.
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3.3 Uncharged soft hydrophobic sphere

The first feature to study here was the electric field around an uncharged hydrophobic sphere immersed

in water. The values of these fields calculated within the MSPC/E water model are given in Fig. 4 for a

set of sphere radii: 0.5, 1.0, 2.0 and 5.0 Å. The distances are measured from the surface of the sphere. It is

remarkable that an inert neutral sphere creates a short range electric field around itself. This conclusion

is in good correspondence with the results obtained by others with the use of different computational

techniques. For instance, Refs [9, 12, 15, 18, 94, 95], although not having displayed distributions of electric

potential, have shown nonuniform bound-charge density profiles around inert neutral spheres; nonzero

fields were found in recent MD simulations, performed for a similar kind of water model [96], as well as in

Ref. [97].

This effect is due to a distortion of the structure of water near the ion and consequent preferential

orientation of water molecules near the surface of the sphere. Their orientation affects polarisation of

water further away from the sphere at distances of short range order in the liquid. Specifically, for all radii

of the spheres studied the presence of the sphere orients water molecules almost parallel to the surface (as

can be seen from the water oxygen and hydrogen density profiles on the inset to Fig. 4 but with protons

slightly closer to the surface, which creates an excess of the positive charge near the sphere. Large spheres

cause smaller fields, since their role in the preferential orientation of water is smaller.

The corrugation of potential is a consequence of the decaying density oscillations around the sphere. On

the inset to the Fig. 4 we show the density profiles for oxygen and hydrogen atoms around the neutral

solutes of two sizes, with sphere radii a = 1.0 Å and a = 5.0 Å. We compared these results with those

obtained in Ref. [18] from Molecular Dynamics simulations for the same sphere sizes (dashed lines). The

shapes of these density profiles are similar but for large spheres our model gives less structured water

around the solute than the results of Ref. [18] – the oxygen peaks are sufficiently smaller.

3.4 Nonlinear dielectric response of water to the field of ions

Using RISM technique we calculated the screening factor F (r) = ǫ rΦ(r)/q for a cation and anion of radius

a = 1.63 Å (which corresponds to the Gourary–Adrian radius of Cl− or Rb+). We varied charges formally

between 0.25e to 3.00e, positive and negative-wise. The results are shown in Fig. 5 as contour maps on

the distance/charge plain. The distances were measured from the ion surfaces.

In the linear response regime the profile of F (r) must not depend upon the value of the charge. On

the contrary, in Fig. 5 we see a substantial effect of the absolute value of charge on F (r). This suggests
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a ’specific’ electrostriction: strong draw of water protons towards the anion and their repulsion from the

cation. The effect is asymmetric. Protons and the whole water molecules shift strongly towards the anion

at larger charges, whereas a cation cannot draw the oxygens of the first hydration shell considerably closer

than where they are in the ’linear response’ case. This is seen in the ion-oxygen and ion-hydrogen RDF

maps shown in the same figure.

A more detailed comparison of the electrostatic field near anions and cations with different radii is shown

in Figs. 6 and 7. We see an essential ion size effect here. Namely, the hydration of a small anion (Fig. 6)

triggers strong overscreening in the first hydration shell caused by crowding of hydrogen near the surface

of the anion. The overscreening weakens with the increase of the radius of anion (Fig. 7).

The deficiency of the linear-response nonlocal electrostatic theory is demonstrated in Fig. 8 for monova-

lent cations and anions for two ionic radii: 1.0 Å and 2.0 Å. In this figure we compare the screening factors

F (r) obtained with direct RISM calculations and the nonlocal theory with RISM bulk susceptibility and

Smeared Born Spheres model for the ion charge density (8) with decay parameter ξ = 0 Å (dashed),

ξ = 0.2 Å(dotted) and ξ = 0.2 Å (dash–dotted). The direct RISM results show a discrepancy with the

linear response theory, particularly visible in the case of ξ = 0 Å (which corresponds to the Born sphere

model, see (7)) and less pronounced for ξ = 0.4 Å. Note that in the case of anions there is no qualita-

tive difference in the character of the screening factors of the linear and ’nonlinear’ theories, whereas for

cations the screening factors oscillate in counter-phase. Presumably, this is due to the impeded ability of

the solvent to ’overscreen’ the charge of cation because of the limited ability of oxygen atoms to approach

the ion core.

4 Conclusions

Lessons from this study are as follows:

(i) The overscreening effect, if present in water, is usually substantially damped by the ion-induced per-

turbation of water structure in the vicinity of the ion. A conjecture in the past, this has now been

demonstrated by model calculations.

(ii) A huge overscreening resonance in the bulk response function does not prevent reproduction of the

observed free energies of hydration. Smeared by the distortions of water structure caused by the presence

of the ion, this effect is furthermore partially compensated by the short range van der Waals repulsion.

(iii) The electric field of an ion causes nonlinearity of water polarisation response. The effect manifests itself

differently at different distances, and is stronger for anions than for cations of comparable size.
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(iv) Due to all these effects of perturbation of the structure of water by the ion, the linear response theory

may not be a good approximation, less for calculation of hydration free energies, and more for the

electric field distribution around the ion.

(v) The distribution of electric potential at distances of short-range structure of water, predicted by the

molecular theory, lies far from those given by the macroscopic Coulomb’s law. Furthermore, even a

neutral hydrophobic sphere can be a source of electric field in water, which, however, vanishes beyond

short range structure scales.

These conclusions are sound, but they rest on an approximate statistical-mechanical description of a

crude model of water (rigid site-site interaction model). It is not clear, for instance, where the true border

for emergence of nonlinear effects lies: rigid vs soft models of water must not necessarily give the same

answer. All in all, these conclusions must be double-checked with better models, taking into account

a realistic charge distribution inside each water molecule. Future ab initio quantum molecular dynamic

simulations may have their final say.
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Appendix A:

A.1 Modified SPC/E water model

In the SPC/E water model [41], the water molecules are assumed to be rigid with a fixed angle θ = 109.47◦

between the two OH bonds. The intramolecular OH bond has the length rOH = 1.0 Å. The non-bonded

interactions between two water molecules are given by the sum of the site-site interaction potentials, uij :

uij(r) =
qiqj

r
+

C12
ij

r12
−

C6
ij

r6
, (A1)

where i and j represent O and H atoms. In the original SPC/E model C6
OH = C12

OH = 0, therefore, there

are only attractive electrostatic interactions between H and O atoms. Nevertheless, this model works

very well for molecular simulations – hydrogen and oxygen atoms do not ’overlap’ because of the strong

repulsion between the oxygen atoms and rigid bonds in the SPC/E model. However, with such form of uOH ,

numerical solutions of Eqns. (14) and (15) can become divergent [40, 71]. To eliminate this artifact, Lue

and Blankshtein [40, 71] slightly modified the SPC parameters assuming a week Lennard-Jones repulsive

potential between the water oxygens and hydrogens. We use here the MSPC/E parameters from their

work [40]: C12
OH = 34.69 eV · Å12, C6

OH = 0. Other parameters were the same as in the original SPC/E

model [41].

A.2 RISM with dielectric corrections.

For calculation of water RDFs we used a reformulation of the RISM theory with dielectric corrections

[22,72,73]. In this method, the Coulomb part of the solvent-solvent interaction potential qiqj/rij is rescaled

as Aqiqj/rij to provide accurate screening of the long-range interactions. The renormalisation factor A is

determined by the phenomenological dielectric constant ǫ and the averaged molecular dipole moment of

water 〈d2
v〉 as:

A =
1 + ǫ (3y − 1)

3y (ǫ − 1)
; y =

4πβρv〈d
2
v〉

9
, (A2)

where ρv is the average solvent density. For the rigid water model used here, 〈d2
v〉 = d2

v. This, rather

simple, approach makes use of the known asymptotic form of the correlation functions but, in general,

more sophisticated techniques can be applied [98].
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A.3 Treatment of the long-range solute-solvent interaction potential

The long-range character of the Coulomb potential causes some numerical artifacts in the treatment of of

electrostatic solute-solvent interactions. It is a common practice in numerical implementations of Integral

Equations Theory to separate the direct correlation functions cij on short range cSR
ij and long range fij(r)

parts in the following way [57,99]:

cSR
ij (r) = cij(r) + fij(r), (A3)

fij(r) = −βqiqj erf (α r)/r, (A4)

where qi and qj are the site charges, erf is the error function, and α is an appropriately chosen constant

(α = 1 Å−1 in our calculations). The final results are independent from α, it influences only on the

convergence of the algorithm. The function fij(r) has an analytical representation in Fourier space which

vanishes as k approaches zero:

fij(k) = −4πβqiqj exp
[

−k2/(4α2)
]

)/k2. (A5)

This fact makes it possible to treat separately the short-range and long-range parts of the electrostatic

potential in the real (short-range part) and reciprocal (long-range part) spaces with use of the Fast Fourier

Transform.

A.4 Procedure for MD Simulations

In this work we used the Gromacs MD software package [100,101]. For simulations of the bulk water solution

we used 1716 SPC/E water molecules in an octahedral box with periodic boundary conditions. Electrostatic

interactions were treated with use of the Particle Mesh Ewald (PME) summation technique [7]. The first

step in the computational procedure was minimisation of the potential energy of the system by using

a version of the steepest descent algorithm [100, 101]. Then we performed an equilibration run for one

nanosecond with NVT conditions to equilibrate solvent molecules in the box. Afterwards we performed

another 5.0 ns run for the following equilibration of the system with NPT ensemble where the pressure

and the temperature were maintained at 1.0 atmosphere and 300.0 K by coupling the system to a heat

bath via the Berendsen thermostat [102]. Such long preliminary simulations provided a good equilibration

of the system. Then we performed a production run for 5.0 ns to collect the data. We collected the data
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each 1.0 ps. For integration of the Newton’s equations of motion we used the velocity Verlet algorithm

with a timestep of 2.0 fs For preprocessing and analysis of the MD data we used the GROMACS analysis

tool [100, 101]. For further preprocessing of the obtained arrays of parameters we used the OCTAVE

software [103].
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Figure Captions

Figure 1. Longitudinal dielectric susceptibility χ(k) for the bulk MSPC/E water calculated with DRISM

method (solid line) and for the bulk SPC/E water calculated with MD simulations (dashed line with

circles). The graph reveals an exaggerated main ’overscreening’-resonance, exaggerated in the rigid site-site

interaction molecule model, and the absence of Lorentzian decrease at small k (possibly also a consequence

of this model).

Figure 2. Free energy of a neutral sphere, ∆G, versus sphere radius, a. This figure shows RISM values

of ∆G (solid line) and analogous data (dashed line) from MD simulations [18].

Figure 3. Free energy of single ion hydration, ∆G, versus ion radius, a. The positions of the alkali-halide

ions are marked by the corresponding Gourary and Adrian radii [89,92,104]. Symbols show experimental

data for alkali cations and halide anions taken from different sources: ◦ [Salomon [90]], △ [Randles [91]],

and � [Fawcett [92]]. Empty and filled symbols correspond to the cations and anions, respectively.

top) Solid line - RISM theory for cations; Dashed line - RISM theory for anions; Dash-dotted line – the

classical Born’s model [88];

bottom) The nonlocal theory data on ∆G with Smeared Born Sphere model of ion (8)- calculation via the

Dogonadze-Kornyshev equation (9) with the RISM values of the longitudinal bulk dielectric susceptibility

χ(k) (Fig. 1); Different lines correspond to different values of decay parameter ξ: dash–dotted line – ξ = 0 Å

(Born Sphere, see (7)) dashed and solid lines correspond to ξ = 0.2 Å and ξ = 0.4 Å, respectively.

Figure 4. Electrostatic potential around an uncharged soft hydrophobic sphere immersed in MSPC/E

water, shown for different radii of the sphere, as indicated. Somewhat closer position to the sphere of the

water protons in the first hydration shell is sufficient to provide substantial nonzero fields that will decay

at the scales of the short range order in water, the effect smaller for smaller spheres. The inset shows

RISM values (solid line) of water oxygen (top) and hydrogen (bottom) density profiles around the spheres

of two different sizes: a = 1.0 Å and a = 5.0 Å together with analogous data from MD simulations (dashed

line) [18]

Figure 5. Nonlinear dielectric response of water to the field of ions - RISM calculations. Contour maps

for (a) the screening factor F (r) = ǫrΦ(r)/q ,which should not depend on the charge if the linear response
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was valid; (b) ion-oxygen RDF; and (c) ion-hydrogen RDF, calculated for a cation and anion (of radius

a = 1.63 Å) - shown on the charge (q) - distance from the ion plane. The nonlinear effect is manifested in

the change of the colourng of the vertical axis. The arrows show the regions of screening factors approaching

the limit of macroscopic dielectric Response F (r) ≈ 1. All data are represented as functions of the distance

from the surface of the sphere, r − a

Figure 6. Visualisation of the (a) electrostatic potential, (b) screening factor and (c) ion-hydrogen

(dashed line) and ion-oxygen (solid line) RDF, created by a singly charge anion/ cation (of radii a = 1.0 Å

) as functions of the distance from the surface of the sphere, r − a: RISM results.

Figure 7. The same as Fig. 5 for a = 2.0 Å.

Figure 8. The discrepancy between the nonlocal linear response theory operating with the RISM bulk

response function, and the direct RISM theory for singly charge cations (left) and anions (right). We use

here two different radii of the sphere: a = 1.0 Å (top) and a = 2.0 Å (bottom). Different lines correspond to

different values of decay parameter ξ: dashed line – ξ = 0 Å (Born Sphere, see (7)) dotted and dash–dotted

lines correspond to ξ = 0.2 Å and ξ = 0.4 Å, respectively. Solid lines correspond to the direct IE results.
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0.8 1 1.2 1.4 1.6 1.8 2 2.2
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0
 Li+  Na+  K+  Rb+  Cs+

 F−  Cl−  Br−  I−

ξ=0 

ξ=0.2 

ξ=0.4 

∆
G

/e
V

a/Å
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