

Accurate Potential Energy Curves for Tl+-Rg (Rg = He-Rn): Spectroscopy and Transport Coefficients

Timothy Wright

▶ To cite this version:

Timothy Wright. Accurate Potential Energy Curves for Tl+-Rg (Rg = He-Rn): Spectroscopy and Transport Coefficients. Molecular Physics, 2007, 104 (20-21), pp.3237-3244. 10.1080/00268970601075246. hal-00513058

HAL Id: hal-00513058 https://hal.science/hal-00513058

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Molecular Physics

Accurate Potential Energy Curves for TI+-Rg (Rg = He-Rn): Spectroscopy and Transport Coefficients

Journal:	Molecular Physics
Manuscript ID:	TMPH-2006-0005.R1
Manuscript Type:	Full Paper
Date Submitted by the Author:	10-Oct-2006
Complete List of Authors:	Wright, Timothy; University of Nottingham, School of Chemistry
Keywords:	potential energy curves, transport coefficients, spectroscopy, complexes

URL: http://mc.manuscriptcentral.com/tandf/tmph

Accurate Potential Energy Curves for Tl⁺–Rg (Rg = He-Rn): Spectroscopy and Transport Coefficients

Benjamin R. Gray^a, Edmond P. F. Lee^b, Ahlam Yousef^c, Shraddha Shrestha^c, Larry A. Viehland^{c 1}, and Timothy G. Wright^{a 2}

^a School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

 ^b School of Chemistry, University of Southampton, Highfield, Southampton, SO17
 1BJ, UK and Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong.

^c Division of Science, Chatham College, Pittsburgh, PA 15232, USA

¹ email: <u>viehland@chatham.edu</u> ² email: Tim.Wright@nottingham.ac.uk

Abstract

High-quality *ab initio* potential energy curves are presented for the TI^+ –Rg series (Rg = He–Rn). Calculations are performed at the CCSD(T) level of theory, employing aug-cc-pV5Z quality basis sets, with "small core" relativistic effective core potentials being used for TI^+ and Kr–Rn. The curves are shown to be in excellent agreement with experimental mobility data for the systems TI^+ – Rg (Rg = He–Xe), and generally excellent agreement is also obtained with longitudinal diffusion data. An exception to the latter is TI^+ in He, which is attributed to the experimental data not being obtained under steady state conditions. We also present spectroscopic information for the titular species, derived from our potential energy curves, and compare the results to previous potentials inferred from the ion transport data.

1. Introduction

This work continues our series of studies focused on the production of accurate atomic ion/rare gas atom interaction potentials. In this paper, as with the others in the series, we employ the potentials to obtain transport coefficients and spectroscopic data and compare these to experiment and theory where data are available. Other papers in this series concern: the 36 alkali metal/Rg systems;^{1, 2, 3, 4} O⁻ with He, Ne and Ar;⁵ S⁻ with He;⁶ Hg⁺ and Cd⁺ with all six Rg;⁷ O⁺ with He;⁸ F⁻ with all of the Rg;⁹ and Br⁻ with all of the Rg.¹⁰. One of us has also looked at ³He⁺ and ⁴He⁺ in their parent gases,¹¹ the Cl⁻/Rg systems¹² and the I/Rg systems.¹³ In this paper we present six new interaction potentials between the group 13 ion, Tl⁺, and the rare gas atoms, Rg. The only previously-reported potentials appear to be the "directly determined" (DD) potentials¹⁴, i.e. those obtained from measurements^{15, 16, 17, 18,19} of the gas-phase ion transport properties by inversion^{20,21}. (Note that the smoothed versions of the original data^{15,16,17} used herein are reported in refs. 18,19.)

The purpose of the present work is to determine *ab initio* potential energy curves for the Tl⁺–Rg systems over wide ranges of the ion-neutral separations. The potentials are employed to calculate spectroscopic constants and gaseous ion transport data. Where available, we compare these to the experimental and theoretical results mentioned above.

2. Calculational Details

The potential energy curves were calculated point by point at the restricted coupled cluster level²², RCCSD(T), with single and double excitations and with the non-iterative correction to triple excitations, using the MOLPRO²³ suite of programs. The full counterpoise (CP) correction was employed at each point to correct for basis set superposition error (BSSE).

The calculations were run with augmented, all-electron quintuple- ζ basis sets (aug-cc-pV5Z) for He, Ne and Ar. We employed the "small-core" effective core potentials ECP10MDF, ECP28MDF and ECP60MDF for Kr, Xe and Rn, respectively; and an ECP60MDF one for Tl⁺. Tl has the electronic configuration, $...5s^25p^65d^{10}6s^26p^1$, and so the ground state is a ¹S state, with $...6s^16p^1$ states lying ~ 50,000 cm higher in energy²⁴, and so not expected to interact with the ground state. There is a complication present in running these calculations, since the ordering of the orbitals changes. The Tl⁺ 5s and 5p orbitals lie above the 1s2s2p orbitals of Ar, and the 1s orbitals are lower

Molecular Physics

than the valence electrons, and are uncorrelated. This places different demands on the thallium basis set, and tight basis functions need to be added in to describe better the correlation of the "outer core" 5*s*5*p* electrons. Thus, for the Tl⁺–Rg complexes involving the lighter three rare gas atoms, the thallium basis set was as follows: the ECP60MDF ECP was employed, with the standard augcc-pV5Z valence basis set, further augmented by tight functions: three *s* functions ($\zeta = 10.0, 4.0$ and 1.6); three sets of *p* functions ($\zeta = 9.375, 3.75$ and 1.5); two *d* functions ($\zeta = 3.125$ and 1.25); two *f* functions ($\zeta = 3.125$ and 1.25); a set of *g* functions ($\zeta = 1.35$); and a set of *h* functions ($\zeta = 1.35$). For the calculations on Tl⁺–Rg complexes involving the three heavier rare gas atoms, the additional *s* and *p* functions were omitted, as were the additional tightest set of *d* and *f* functions. All standard exponents and contractions were taken from the MOLPRO internal library. Once the counterpoisecorrected energy points were obtained, they were used as input to LeRoy's LEVEL²⁵ program, from which we were able to calculate equilibrium nuclear separations, dissociation energies, and rovibrational energy levels.

Transport cross-sections and coefficients were calculated from the interaction potentials as a function of ion-neutral collision energy using the programs QVALUES and GRAMCHAR.^{26,27,28} The accuracies of the calculated mobilities and diffusion coefficients were 0.1% and 1.0%, respectively, unless otherwise noted below.

3. Results

A. Potential Curves

The six potential curves are plotted in Figure 1 and the tabulated values (which extend both to smaller and larger separation) are available from the authors upon request. The only other potential energy curves available, the directly-determined ones, are shown in Figure 2, plotted against the present curves. The differences between the present and the previous results will be discussed briefly in this section, and in more detail after their abilities to reproduce the transport data are discussed in the next section.

The parameters for each of our calculated potentials are given in Table I. They are: the separation, σ , at which the interaction energy is zero (on the repulsive wall); the equilibrium separation, R_e , at which the potential energy reaches its minimum value; and D_e , which is the depth of the potential well. The parameters show monotonic trends down the Rg group, with smooth decreases in σ and R_e and a reasonably smooth decrease in D_e —the non-periodicity of the directly-determined

parameters¹⁴ was attributed to errors in the original transport data.

For TI^+ –He, the DD potential encompasses only a fragment of the repulsive wall and the start of the potential well. The DD wall is steeper and the zero energy separation is 0.25 Å shorter than our potential, suggesting that the complete potential would probably be too strongly bound. For TI^+ –Ne, part of the repulsive wall is given by the DD potential as well as the potential well. Again, the wall is steeper and the zero energy value is 0.27 Å shorter than our potential. Here we can also compare the equilibrium separation and the dissociation energy. The potential is too strongly bound, has too short an equilibrium separation, and has too deep a well, compared to the present potential. At around 3.2 Å our potential and the DD potential cross (see Figure 2) and the latter appears to approach the dissociation limit above our curve.

For Tl^+ –Ar, the behaviour is similar to Ne, with shorter zero energy and equilibrium distances, a deeper well, and a steeper repulsive wall. This time, however, the difference in dissociation energy is more pronounced, with the DD potential being almost twice as deep as the present potential, and with a bond length that is 0.7 Å shorter. The trend continues for Tl^+ –Kr where a similarly large dissociation energy results from the DD potential, and a bond length that is 0.5 Å too short.

For Tl^+ -Xe, only a short section of the attractive region of the potential was previously generated to which to compare. The curves appear to be converging asymptotically to large *R*, but again, the trend suggests that the DD potential is too attractive. The results given here for Tl^+ -Rn appear to be the only ones available.

B. Spectroscopic Data

Our calculated spectroscopic parameters are given in Table II. The dissociation energy, D_0 , is given as computed, while the vibrational constants, ω_e and $\omega_e x_e$, have been determined from the energies of the three lowest vibrational levels with rotational quantum number J = 0. The rotational constant, B_0 , and the centrifugal distortion constant, D_{J0} , have been obtained by fitting the energies of the three lowest rotational energy levels for vibrational quantum number v = 0 to the standard energy expression.

There are no experimental results with which to compare our values.

Molecular Physics

C. Transport Data

Gaseous ion mobility and diffusion coefficients serve as good tests of the accuracy of ion-neutral interaction potentials over wide ranges of internuclear separation. This is because the data are often available with fair to high accuracies over wide ranges of the gas temperature, T_0 , and of the ratio, E/n_0 , of the electrostatic field strength to the gas number density in the drift-tube mass spectrometers used for the experiments²⁹.

We have calculated diffusion coefficients and mobilities for thallium cations in the rare gases over wide ranges of E/n_0 and at a variety of T_0 , and we have placed the results in the gaseous ion transport database at Chatham College³⁰. In Fig. 3, we show the calculated mobilities at 300 K as compared to the experimental values, with a corresponding comparison for diffusion coefficients being presented in Figure 4. Statistical comparisons²¹ at 300 K are shown in Tables III and IV, where *N* is the number of experimental values in the indicated range of E/n_0 , "Acc" is the estimated accuracy given by experiment and "Prec" is the precision of our numerical calculations. The statistical quantity δ is small if there is good agreement, with values above 1 or below -1 indicating that the experimental values are significantly above or below the calculated values, respectively. The statistical quantity χ is always positive and should not be much greater that $|\delta|$; larger values indicate either that the data is scattered or that the comparison is significantly dependent upon E/n_0 .

For Tl⁺ in He, the mobility values in Table III indicate that the potential is performing extremely well, as the $|\delta|$ values are almost zero. However the $|\delta|$ value for the products, n_0D_L , of the gas number density and the ion diffusion coefficient parallel to the electrostatic field, given in Table IV, are greater than 1, suggesting disagreement with experiment, as can be seen in Figure 4. It was noted in the original experimental paper¹⁷ that there was disagreement between the n_0D_L values predicted from the mobilities by generalized Einstein relations, despite these relations giving good agreement for Tl⁺ moving in Ne and Ar. It was concluded that the Tl⁺ ions had not reached a steady state in the drift tube filled with He, owing to the mass mismatch, and that this would lead to disagreement with the calculated values, as was observed.

Transport properties calculated from the DD potential for TI^+ –He are in approximately as good agreement with the data as the present potential, even though the potentials themselves differ significantly. We attribute this to the limited range of separations (4.20-5.40 bohr) that significantly influence the transport coefficients over the small range of E/n_0 used in the experiments and the rather smooth behaviour of the potential on this region of the repulsive wall. The DD procedure

Molecular Physics

requires knowledge of the position of the potential minimum, and without such knowledge it can lead to many different potentials that describe the experimental data with about the same accuracy. We conclude that the present potential is accurate based on the good agreement of the present potential with the mobility data, and the recognized weakness of the experimental diffusion values. In addition, the good agreement for the other systems (*vide infra*), using the same methodology, also indicates that this potential is accurate.

For Tl⁺ in Ne, we again observe extremely small values for $|\delta|$ values for the mobilities calculated from the present potential, but this time we also obtain small values for the diffusion coefficients. Thus both sets of data show excellent agreement through all regions of E/n_0 , and this may also be seen in Figures 3 and 4. The good agreement with the diffusion data is in line with the good agreement achieved in ref. 17 between the experimental and generalized Einstein relation values. The values of $|\delta|$ are smaller than those reported in ref. 14 for the DD potential, although those values are also less than 1. The experimental data for this system probes the repulsive wall and only a small portion of the well, *i.e.* separations between 4.6 and 6.8 bohr, so the DD potential directly inferred from these data are expected to have only fair accuracy, as shown in Fig. 2. We conclude that our current potential is accurate.

For TI⁺ in Ar, our potential is in exceptionally good agreement with the mobility results over the whole range of E/n_0 — see Table III and Figure 3. For the diffusion data, the results in Table IV are broken into two groups, between $E/n_0 = 10-150$ Td (1 Td = 10^{-21} Vm²) and $E/n_0 = 150-350$ Td. The lower E/n_0 data shows good agreement between experiment and theory, however for the larger E/n_0 values, the value of $|\delta|$ suggests a significant disagreement between the calculated experimental and calculated data, although the $|\delta|$ value for the whole range is still good. Figure 4 shows this as well, with the calculated diffusion data just coming outside the error bars at high E/n_0 . This is likely a reflection of the known inaccuracies of the Georgia Tech diffusion data at high E/n_0 , owing to an inadequate treatment of the raw arrival time spectra.³¹

Tl⁺ in Kr continues the trend in this present series of potentials by producing excellent agreement between experiment and theory over a very wide range of E/n_0 values, with good agreement seen within each of the ranges as well. The indications are that the potential is consistent with the experimental data over long-, mid- and short-*R* values — see Tables III and IV and Figures 3 and 4. A very similar story holds for Tl⁺ in Xe, and similar conclusions are drawn. There is no experimental data with which to compare Tl⁺ in Rn, but since the methodology is the same, we assume that the potential is of a similar reliability.

4. Conclusions

We have calculated TI^+ –Rg potentials over a wide range of separation, and have found that the potentials are in excellent agreement overall with the available experimental data, well within the 3-4% error bars on the mobility, and also generally within the 12–14% error bars on the diffusion data. The level of theory employed is high, using the RCCSD(T) correlated method and large basis sets, with small-core ECPs for the heavier atoms. We have noted that the 5*s* and 5*p* TI⁺ orbitals lie above the valence orbitals of He, Ne and Ar, but below those of Kr, Xe and Rn. We chose to correlate these for the lighter atoms, and included appropriate basis functions in the basis set to account for this.

The only poor result is that observed for TI^+ in He with respect to the value for the product, n_0D_L , of the gas number density and the ion diffusion coefficient parallel to the electrostatic field, given in Table IV. We have noted, however, that the original experimenters pointed out a disagreement between the data and an approximate theoretical model, and concluded that their experimental data was affected by the failure of the light helium to allow steady state conditions to be reached. In light of this, and the overall good agreement for the other systems, we conclude that the present calculated transport data is more reliable than the experimental data. The only other region of disagreement was with the Ar high E/n_0 data for n_0D_L , and again, it is probably safe to assume that the experimental data is unreliable.

In summary, apparently for the first time, we have presented tested potential energy curves for a cation of a sixth-period element, interacting with each of the Rg atoms, and have shown that these curves are in excellent agreement with the only available experimental data, and are thus accurate descriptions of the Tl^+ –Rg interactions.

Acknowledgements

BRG is grateful for support via a studentship from the EPSRC. The authors are grateful to the EPSRC for the award of computer time at the Rutherford Appleton Laboratories under the auspices of the Computational Chemistry Working Party (CCWP), which enabled these calculations to be performed. The research of LAV was supported by the U. S. National Science Foundation under grant CHE-0414241.

2
2
3
4
5
6
-
1
8
9
40
10
11
12
13
10
14
15
16
17
17
18
19
20
21
21
22
23
21
24
25
26
27
20
20
29
30
31
00
32
33
34
25
30
36
37
38
20
39
40
41
12
42
43
44
45
40
40
47
48
10
43
50
51
52
52
23
54
55
56
50
57
E0

1

Table I. Parameters derived from the present Tl^+ –Rg interaction potentials, compared to those from

ref. 14.	(See text for details.)
----------	-------------------------

Potential	Ref.	<i>σ</i> / Å	R_e / Å	$D_e/ \text{ cm}^{-1}$	
Tl ⁺ –He					
	present	2.85	3.28	119.0	
	KV	2.60	а	а	
Tl ⁺ –Ne					
	present	2.81	3.23	263.1	
	KV	2.54	2.85	372.0	
Tl ⁺ –Ar					
	present	2.85	3.32	919.0	
	KV	2.50	2.64	1600.6	
Tl ⁺ –Kr					
	present	2.89	3.38	1295.3	
	KV	2.54	2.86	2149.3	
Tl ⁺ –Xe					
	present	2.96	3.48	1870.7	
	KV	а	а	а	
Tl^+ – Rn					
	present	2.97	3.50	2262.0	

^a Curve derived in ref. 14, but portion was not wide enough to establish this parameter.

3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22 22	
∠J 24	
Z4	
25	
26	
27	
28	
29	
20	
24	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
47	
48	
49	
50	
51	
52	
53	
53	
54	
55	
56	
57	
58	
59	

60

Table II. Calculated spectroscopic constants in cm ⁻¹	, with numbers in parentheses denoting the
power of ten. (See tex	t for details.)

System	D_0	ω_e	$\omega_e x_e$	B_0	D_{j0}
Tl ⁺ –He	119.0	63.04	8.87	0.365	6.49(-05)
Tl ⁺ –Ne	263.2	49.42	2.68	0.0865	1.22(-06)
Tl ⁺ –Ar	919.1	62.46	1.20	0.0454	1.01(-07)
Tl ⁺ –Kr	1295.3	53.44	0.62	0.0247	2.18(-08)
Tl ⁺ –Xe	1870.7	52.84	0.41	0.0174	7.68(-08)
Tl ⁺ –Rn	2262.0	49.33	0.29	0.0129	3.58(-09)

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
∠∪ 21
∠1 22
22
23 24
2 4 25
20
20
28
20
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

1 2

System	Expt. Data	<i>E/n</i> ⁰ Range	Ν	Acc	Prec	δ	χ
Tl ⁺ –He	Smooth	6.0-60.0	8	4.00	0.02	0.05	0.25
	Raw	6.0-70.0	20	4.00	0.02	0.15	0.22
Tl ⁺ –Ne	Smooth	7.0-100.0	9	4.00	0.02	-0.07	0.18
	Raw	7.0-81.4	40	4.00	0.02	0.09	0.27
Tl ⁺ –Ar	Smooth	10.0-150.0	9	4.00	0.10	0.09	0.19
		150.0-350.0	4	4.00	0.10	0.03	0.08
		10.0-350.0	13			0.07	0.16
	Raw	10.0-150.0	45	4.00	0.10	0.15	0.47
		150.0-369.0	34	4.00	0.10	0.01	0.49
		10.0-369.0	79			0.09	0.48
Tl ⁺ –Kr	Smooth	20.0-80.0	7	3.00	0.02	0.12	0.13
		80.0-700.0	11	3.00	0.10	-0.33	0.40
		20.0-700.0	18			-0.16	0.33
	Raw	20.1-80.0	17	3.00	0.02	0.14	0.33
		80.0-710.1	57	3.00	0.10	-0.27	0.59
		20.1-710.1	74			-0.18	0.54
Tl ⁺ –Xe	Smooth	25.0-120.0	8	3.00	0.10	0.21	0.22
		120.0-350.0	5	3.00	0.50	-0.01	0.16
		25.0-350.0	13			0.13	0.20
	Raw	25.1-120.0	14	3.00	0.10	0.22	0.37
		120.0–352.4	28	3.00	0.50	0.12	0.58
		25.1–352.4	42			0.16	0.52

Table III. Statistical Comparison of Calculated and Experimental Mobility Data at 300 K.^a

^a Calculated mobilities were obtained from the present potential. The smooth experimental data were taken from Ref. 18 and the raw experimental data were obtained from the gaseous ion transport database in Ref. 28.

1 2 3	Table
4	
5	=
6	
7	-
8	-
9	-
10	_
11	_
12 13	
14	
15	
16	
17	
18	
19	
20	-
21	
22 23	
23 24	
25	
26	
27	_
28	_
29	
30	
31	
32 22	
33 34	
35	=
36	
37	^a Calcu
38	
39	electro
40	were t
41	were u
4Z 42	transpo
43 11	-
45	
46	
47	
48	
49	
50	
51	

able IV. Statistical Comparison of Calculated and Experimental Values of *n*₀*D*_L at 300 K.^a

System	Expt. Data	<i>E/n</i> ₀ Range	Ν	Acc	Prec	δ	χ
Tl ⁺ –He	Smooth	6.0-35.0	9	12.0	1.00	1.31	1.66
	Raw	6.0-35.0	15	12.0	1.00	1.45	1.95
Tl ⁺ –Ne	Smooth	7.0–110.0	12	15.0	1.00	0.42	0.58
	Raw	7.0-81.4	71	15.0	1.00	0.29	0.55
Tl ⁺ –Ar	Smooth	7.0–150.0	9	12.0	1.00	0.22	0.59
		150.0-350.0	4	12.0	3.00	1.19	1.19
		7.0-350.0	13			0.52	0.83
	Raw	10.0-150.0	46	12.0	1.00	0.16	0.54
		150.0-250.0	28	12.0	2.00	0.72	0.98
		250.0-369.0	14	12.0	3.00	1.13	1.23
		10.0–369.0	88			0.49	0.84
Tl ⁺ –Kr	Smooth	2.0-90.0	5	13.0	1.00	0.48	0.61
		90.0-800.0	11	13.0	2.00	0.02	0.43
		2.0-800.0	16			0.16	0.50
	Raw	20.1-90.0	21	13.0	1.00	0.39	0.63
		90.0-710.1	53	13.0	2.00	0.23	0.54
		20.1-710.1	74			0.28	0.57
Tl ⁺ –Xe	Smooth	20.0-120.0	6	14.0	1.00	0.35	0.37
		120.0-450.0	7	14.0	5.00	0.14	0.42
		20.0-450.0	13			0.24	0.40
	Raw	25.1-120.0	14	14.0	1.00	0.40	0.88
		120.0-352.4	28	14.0	5.00	-0.05	0.40
		25.1-352.4	42			0.10	0.60
			6				

^a Calculated products of the gas number density and the ion diffusion coefficient along the electrostatic field, n_0D_L , were obtained from the present potential. The smooth experimental data were taken from Ref. 18 and the raw experimental data were obtained from the gaseous ion transport database in Ref. 28.

Figure Captions

Figure 1

Calculated potential energy curves for the Tl^+ -Rg complexes at the RCCSD(T) level of theory. Basis sets are of approximate aug-cc-pV5Z quality — see text for details.

Figure 2

Comparison between the calculated potential energy curves of the present work (solid lines) and the directly-determined potentials of ref. 14 (dotted lines).

Figure 3

Comparison between the experimental (solid line, points and error bars) and calculated (dotted line) mobilities for the Tl⁺–Rg species (Rg = He–Xe). The differences between the two sets of values are barely discernible — see text for discussion. K_0 in cm² V⁻¹ s⁻¹ and E/n_0 in Td.

Figure 4

Comparison between the experimental (solid line, points and error bars) and calculated (dotted line) n_0D_L values for the Tl⁺–Rg species (Rg = He–Xe) — see text for discussion. n_0D_L in 10¹⁸ cm⁻¹ s⁻¹ and E/n_0 in Td.

FIGURE 1

Figure 1, Gray et al.

Gray et al. Figure 2.

Figure 3 Gray et al.

Figure 4

Figure 4 Gray et al.

Molecular Physics

References

- 1 J. Lozeille, E. Winata, L. A. Viehland, P. Soldán, E. P. F. Lee, and T. G. Wright, Phys. Chem. Chem. Phys., 4, 3601 (2002).
- 2 J. Lozeille, E. Winata, L. A. Viehland, P. Soldán, E. P. F. Lee and T. G. Wright, J. Chem. Phys., 119, 3729 (2003).
- 3 L. A. Viehland, J. Lozeille, P. Soldán, E. P. F. Lee, and T. G. Wright, J. Chem. Phys., **121**, 341 (2004).
- 4 H. L. Hickling, L. A. Viehland, D. T. Shepherd, P. Soldán, E. P. F. Lee, and T. G. Wright, Phys. Chem. Chem. Phys., 6, 4233 (2004).
- 5 L. A. Viehland, R. Webb, E. P. F. Lee, and T. G. Wright, J. Chem. Phys., 122, 114302 (2005).
- 6 T. G. Wright and L. A. Viehland, Chem. Phys. Lett., **420**, 24 (2006).
- 7 E. Qing, L. A. Viehland, E. P. F. Lee, and T. G. Wright, J. Chem. Phys. 124, 044316 (2006).
- 8 D. M. Danailov, R. Brothers, L. A. Viehland, R. Johnsen, T. G. Wright, and E. P. F. Lee, J. Chem. Phys. (In press).
- 9 B. R. Gray, T. G. Wright, E. L. Wood, L. A. Viehland, PCCP (Submitted)
- 10 A. A. Buchachenko, J. Kłos, M. M. Szczęśniak, G. Chałasiński, B. R. Gray, T. G. Wright, E. L. Wood, L. A. Viehland, and E. Qing, J. Chem. Phys. **125** 064305 (2006).
- 11 M. S. Lee, A. S. Dickinson, and L. A. Viehland, J. Phys. B. 33, 5121 (2000).
- 12 A. A. Buchachenko, R. V. Krems, M. M. Szczęśniak, Y.-D. Xiao, L. A. Viehland, and G. Chałasiński, J. Chem. Phys. **114**, 9919 (2001).
- 13 A. A. Buchachenko, T. V. Tscherbul, J. Kłos, M. M. Szczęśniak, G. Chałasiński, R. Webb, and L. A. Viehland, J. Chem. Phys. **122**, 194311 (2005).
- 14 C.C. Kirkpatrick and L. A. Viehland, Chem. Phys., 120, 235 (1988).
- 15 M. S. Byers, M. G. Thackston, R. D. Chelf, F. B. Holleman, J. R. Twist, G. W. Neeley, E. W. McDaniel, J. Chem. Phys. **78**, 2796 (1983).
- 16 M. G. Thackston, M. S. Byers, F. B. Holleman, R. D. Chelf, J. R. Twist, and E. W. McDaniel, J. Chem. Phys., **78**, 4781 (1983).
- 17 R. D. Chelf, F. B. Holleman, M. G.Thackston, and E. W McDaniel, J. Chem. Phys. 88, 4551 (1988).
- 18 Mobility data for TI⁺ in He, Ne and Ar are taken from H. W. Ellis, M. G. Thackston, E. W. McDaniel and E. A. Mason, Atomic and Nucl. Data Tables, **31**, 113 (1984), where the data is referenced as F.B.Holleman, M.S. Byers, M.G. Thackston and E. W. McDaniel, to be published, but it does not seem to have been.

- ¹⁹ L. A. Viehland and E. A. Mason, Atomic and Nucl. Data Tables, **60**, 37 (1995).
- 20 L. A. Viehland, Chem. Phys., 78, 279 (1983).
- 21 L. A. Viehland, Chem. Phys., 85, 291 (1984).
- 22 K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett., 157, 479 (1989); R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, *ibid.*, 165, 513 (1989).
- 23 MOLPRO is a package or ab initio programs written by H.-J. Werner, P.J. Knowles, with contributions from J. Almlöf, R.D, Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schuetz, H. Stoll, T. Thorsteinsson, D. L. Cooper. The CCSD treatment is described in: C. Hampel, K. Peterson, and H. J. Werner, Chem. Phys. Lett., 190, 1 (1992).
- ²⁴ S. Johansson, G. Kalus, T. Brage, D. S. Leckrone, and G. M. Wahlgren, Astrophys. J. 462, 943 (1996).
- 25 R. J. LeRoy, Level 7.2 A computer program for solving the radial Schrödinger equation for bound and quasibound levels, and calculating various values and matrix elements. University of Waterloo Chemical Physics Research Program Report CP-555R, 2000.
- 26 L. A. Viehland, Chem. Phys., 70, 149 (1982).
- 27 L. A. Viehland, Chem. Phys., **179**, 71 (1994).
- 28 L. A. Viehland, Comp. Phys. Commun., 142, 7 (2001).
- 29 E. A. Mason, E. W. McDaniel, *The Mobility and Diffusion of Ions in Gases* (Wiley, New York, 1988).

30 To access this database you must telnet to the computer named sassafrass.chatham.edu and logon as gastrans. The required password will be provided upon request by email to viehland@sassafrass.chatham.edu.

³¹ T. H. Lovaas, H. R. Skullerud, O.-H. Kristensen, and D. Lihjell, J. Phys. D 20, 1465 (1990).

Accurate Potential Energy Curves for Tl⁺–Rg (Rg = He-Rn): Spectroscopy and Transport Coefficients

Benjamin R. Gray^a, Edmond P. F. Lee^b, Ahlam Yousef^c, Shraddha Shrestha^c, Larry A. Viehland^{c 1}, and Timothy G. Wright^{a 2}

^a School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

 ^b School of Chemistry, University of Southampton, Highfield, Southampton, SO17
 1BJ, UK and Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong.

^c Division of Science, Chatham College, Pittsburgh, PA 15232, USA

¹ email: <u>viehland@chatham.edu</u> ² email: Tim.Wright@nottingham.ac.uk

Abstract

High-quality *ab initio* potential energy curves are presented for the TI^+-Rg series (Rg = He-Rn). Calculations are performed at the CCSD(T) level of theory, employing aug-cc-pV5Z quality basis sets, with "small core" relativistic effective core potentials being used for TI^+ and Kr–Rn. The curves are shown to be in excellent agreement with experimental mobility data for the systems TI^+-Rg (Rg = He-Xe), and generally excellent agreement is also obtained with longitudinal diffusion data. An exception to the latter is TI^+ in He, which is attributed to the experimental data not being obtained under steady state conditions. We also present spectroscopic information for the titular species, derived from our potential energy curves, and compare the results to previous potentials inferred from the ion transport data.

1. Introduction

This work continues our series of studies focused on the production of accurate atomic ion/rare gas atom interaction potentials. In this paper, as with the others in the series, we employ the potentials to obtain transport coefficients and spectroscopic data and compare these to experiment and theory where data are available. Other papers in this series concern: the 36 alkali metal/Rg systems;^{1, 2, 3, 4} O⁻ with He, Ne and Ar;⁵ S⁻ with He;⁶ Hg⁺ and Cd⁺ with all six Rg;⁷ O⁺ with He;⁸ F⁻ with all of the Rg;⁹ and Br⁻ with all of the Rg.¹⁰. One of us has also looked at ³He⁺ and ⁴He⁺ in their parent gases,¹¹ the Cl⁻/Rg systems¹² and the Γ/Rg systems.¹³ In this paper we present six new interaction potentials between the group 13 ion, Tl⁺, and the rare gas atoms, Rg. The only previously-reported potentials appear to be the "directly determined" (DD) potentials¹⁴, i.e. those obtained from measurements^{15, 16, 17, 18,19} of the gas-phase ion transport properties by inversion^{20,21}. (Note that the smoothed versions of the original data^{15,16,17} used herein are reported in refs. 18,19.)

The purpose of the present work is to determine *ab initio* potential energy curves for the TI^+ –Rg systems over wide ranges of the ion-neutral separations. The potentials are employed to calculate spectroscopic constants and gaseous ion transport data. Where available, we compare these to the experimental and theoretical results mentioned above.

2. Calculational Details

The potential energy curves were calculated point by point at the restricted coupled cluster level²², RCCSD(T), with single and double excitations and with the non-iterative correction to triple excitations, using the MOLPRO²³ suite of programs. The full counterpoise (CP) correction was employed at each point to correct for basis set superposition error (BSSE).

The calculations were run with augmented, all-electron quintuple- ζ basis sets (aug-cc-pV5Z) for He, Ne and Ar. We employed the "small-core" effective core potentials ECP10MDF, ECP28MDF and ECP60MDF for Kr, Xe and Rn, respectively; and an ECP60MDF one for T1⁺. Tl has the electronic configuration, $...5s^25p^65d^{10}6s^26p^1$, and so the ground state is a ¹S state, with $...6s^16p^1$ states lying ~ 50,000 cm⁻¹ higher in energy²⁴, and so not expected to interact with the ground state. Since there is no orbital angular momentum, then first-order spin-orbit coupling is not an issue here; in addition, the nearest J = 0 levels for Xe are over 76, 000 cm⁻¹ higher in energy, and even higher for the other lighter Rg atoms — even for Rn, it is unlikely there are complications arising from

Molecular Physics

spin-orbit coupling. There is, however, another complication present in running these calculations, since the ordering of the orbitals changes. The $Tl^+ 5s$ and 5p orbitals lie above the 1s2s2p orbitals of Ar, and the 1s orbitals of Ne and He, and are correlated; but for the heavier rare gas atoms, the TI^+ 5s and 5p orbitals are lower than the valence electrons, and are uncorrelated. This places different demands on the thallium basis set, and tight basis functions need to be added in to describe better the correlation of the "outer core" 5s5p electrons. Thus, for the Tl⁺–Rg complexes involving the lighter three rare gas atoms, the thallium basis set was as follows: the ECP60MDF ECP was employed, with the standard aug-cc-pV5Z valence basis set, further augmented by tight functions: three s functions ($\zeta = 10.0$, 4.0 and 1.6); three sets of p functions ($\zeta = 9.375$, 3.75 and 1.5); two d functions ($\zeta = 3.125$ and 1.25); two f functions ($\zeta = 3.125$ and 1.25); a set of g functions ($\zeta = 1.35$); and a set of h functions ($\zeta = 1.35$). For the calculations on Tl⁺–Rg complexes involving the three heavier rare gas atoms, the additional s and p functions were omitted, as were the additional tightest set of d and f functions. As a check on the role of the 5s5p electrons of Tl^+ , we correlated these in the case of Tl^+ -Ar, with an appropriate basis set, and found that R_e was essentially unchanged to 0.01 Å, and D_e got larger by $< 12 \text{ cm}^{-1}$ when the 5s5p were correlated (amounting to an error of 1.3 %). We conclude that the non-correlation of the 5s5p electrons for the heavier species is unlikely to have an important effect on the potential energy curves. All standard exponents and contractions were taken from the MOLPRO internal library. Once the counterpoise-corrected energy points were obtained, they were used as input to LeRoy's LEVEL²⁵ program, from which we were able to calculate equilibrium nuclear separations, dissociation energies, and rovibrational energy levels.

Transport cross-sections and coefficients were calculated from the interaction potentials as a function of ion-neutral collision energy using the programs QVALUES and GRAMCHAR.^{26,27,28} The accuracies of the calculated mobilities and diffusion coefficients were 0.1% and 1.0%, respectively, unless otherwise noted below.

3. Results

A. Potential Curves

The six potential curves are plotted in Figure 1 and the tabulated values (which extend both to smaller and larger separation) are available from the authors upon request. The only other potential energy curves available, the directly-determined ones, are shown in Figure 2, plotted against the present curves. The differences between the present and the previous results will be discussed briefly in this section, and in more detail after their abilities to reproduce the transport data are

discussed in the next section.

The parameters for each of our calculated potentials are given in Table I. They are: the separation, σ , at which the interaction energy is zero (on the repulsive wall); the equilibrium separation, R_e , at which the potential energy reaches its minimum value; and D_e , which is the depth of the potential well. The parameters show monotonic trends down the Rg group, with smooth decreases in σ and R_e and a reasonably smooth decrease in D_e —the non-periodicity of the directly-determined parameters¹⁴ was attributed to errors in the original transport data.

For TI^+ -He, the DD potential encompasses only a fragment of the repulsive wall and the start of the potential well. The DD wall is steeper and the zero energy separation is 0.25 Å shorter than our potential, suggesting that the complete potential would probably be too strongly bound. For TI^+ -Ne, part of the repulsive wall is given by the DD potential as well as the potential well. Again, the wall is steeper and the zero energy value is 0.27 Å shorter than our potential. Here we can also compare the equilibrium separation and the dissociation energy. The potential is too strongly bound, has too short an equilibrium separation, and has too deep a well, compared to the present potential. At around 3.2 Å our potential and the DD potential cross (see Figure 2) and the latter appears to approach the dissociation limit above our curve.

For TI^+ –Ar, the behaviour is similar to Ne, with shorter zero energy and equilibrium distances, a deeper well, and a steeper repulsive wall. This time, however, the difference in dissociation energy is more pronounced, with the DD potential being almost twice as deep as the present potential, and with a bond length that is 0.7 Å shorter. The trend continues for TI^+ –Kr where a similarly large dissociation energy results from the DD potential, and a bond length that is 0.5 Å too short.

For TI^+ –Xe, only a short section of the attractive region of the potential was previously generated to which to compare. The curves appear to be converging asymptotically to large *R*, but again, the trend suggests that the DD potential is too attractive. The results given here for TI^+ –Rn appear to be the only ones available.

B. Spectroscopic Data

Our calculated spectroscopic parameters are given in Table II. The dissociation energy, D_0 , is given

Molecular Physics

as computed, while the vibrational constants, ω_e and $\omega_e x_e$, have been determined from the energies of the three lowest vibrational levels with rotational quantum number J = 0. The rotational constant, B_0 , and the centrifugal distortion constant, D_{J0} , have been obtained by fitting the energies of the three lowest rotational energy levels for vibrational quantum number v = 0 to the standard energy expression.

There are no experimental results with which to compare our values.

C. Transport Data

Gaseous ion mobility and diffusion coefficients serve as good tests of the accuracy of ion-neutral interaction potentials over wide ranges of internuclear separation. This is because the data are often available with fair to high accuracies over wide ranges of the gas temperature, T_0 , and of the ratio, E/n_0 , of the electrostatic field strength to the gas number density in the drift-tube mass spectrometers used for the experiments²⁹.

We have calculated diffusion coefficients and mobilities for thallium cations in the rare gases over wide ranges of E/n_0 and at a variety of T_0 , and we have placed the results in the gaseous ion transport database at Chatham College³⁰. In Fig. 3, we show the calculated mobilities at 300 K as compared to the experimental values, with a corresponding comparison for diffusion coefficients being presented in Figure 4. Statistical comparisons²¹ at 300 K are shown in Tables III and IV, where *N* is the number of experimental values in the indicated range of E/n_0 , "Acc" is the estimated accuracy given by experiment and "Prec" is the precision of our numerical calculations. The statistical quantity δ is small if there is good agreement, with values above 1 or below -1 indicating that the experimental values are significantly above or below the calculated values, respectively. The statistical quantity χ is always positive and should not be much greater that $|\delta|$; larger values indicate either that the data is scattered or that the comparison is significantly dependent upon E/n_0 .

For Tl⁺ in He, the mobility values in Table III indicate that the potential is performing extremely well, as the $|\delta|$ values are almost zero. However the $|\delta|$ value for the products, n_0D_L , of the gas number density and the ion diffusion coefficient parallel to the electrostatic field, given in Table IV, are greater than 1, suggesting disagreement with experiment, as can be seen in Figure 4. It was noted in the original experimental paper¹⁷ that there was disagreement between the n_0D_L values predicted from the mobilities by generalized Einstein relations, despite these relations giving good agreement for Tl⁺ moving in Ne and Ar. It was concluded that the Tl⁺ ions had not reached a steady state in the drift tube filled with He, owing to the mass mismatch, and that this would lead to disagreement with the calculated values, as was observed.

 Transport properties calculated from the DD potential for TI^+ –He are in approximately as good agreement with the data as the present potential, even though the potentials themselves differ significantly. We attribute this to the limited range of separations (4.20-5.40 bohr) that significantly influence the transport coefficients over the small range of E/n_0 used in the experiments and the rather smooth behaviour of the potential on this region of the repulsive wall. The DD procedure requires knowledge of the position of the potential minimum, and without such knowledge it can lead to many different potentials that describe the experimental data with about the same accuracy. We conclude that the present potential is accurate based on the good agreement of the present potential with the mobility data, and the recognized weakness of the experimental diffusion values. In addition, the good agreement for the other systems (*vide infra*), using the same methodology, also indicates that this potential is accurate.

For Tl⁺ in Ne, we again observe extremely small values for $|\delta|$ values for the mobilities calculated from the present potential, but this time we also obtain small values for the diffusion coefficients. Thus both sets of data show excellent agreement through all regions of E/n_0 , and this may also be seen in Figures 3 and 4. The good agreement with the diffusion data is in line with the good agreement achieved in ref. 17 between the experimental and generalized Einstein relation values. The values of $|\delta|$ are smaller than those reported in ref. 14 for the DD potential, although those values are also less than 1. The experimental data for this system probes the repulsive wall and only a small portion of the well, *i.e.* separations between 4.6 and 6.8 bohr, so the DD potential directly inferred from these data are expected to have only fair accuracy, as shown in Fig. 2. We conclude that our current potential is accurate.

For TI⁺ in Ar, our potential is in exceptionally good agreement with the mobility results over the whole range of E/n_0 — see Table III and Figure 3. For the diffusion data, the results in Table IV are broken into two groups, between $E/n_0 = 10-150$ Td (1 Td $= 10^{-21}$ Vm²) and $E/n_0 = 150-350$ Td. The lower E/n_0 data shows good agreement between experiment and theory, however for the larger E/n_0 values, the value of $|\delta|$ suggests a significant disagreement between the calculated experimental and calculated data, although the $|\delta|$ value for the whole range is still good. Figure 4 shows this as well, with the calculated diffusion data just coming outside the error bars at high E/n_0 . This is likely a reflection of the known inaccuracies of the Georgia Tech diffusion data at high E/n_0 , owing to an inadequate treatment of the raw arrival time spectra.³¹

Page 25 of 37

Molecular Physics

 TI^+ in Kr continues the trend in this present series of potentials by producing excellent agreement between experiment and theory over a very wide range of E/n_0 values, with good agreement seen within each of the ranges as well. The indications are that the potential is consistent with the experimental data over long-, mid- and short-*R* values — see Tables III and IV and Figures 3 and 4. A very similar story holds for TI^+ in Xe, and similar conclusions are drawn. There is no experimental data with which to compare TI^+ in Rn, but since the methodology is the same, we assume that the potential is of a similar reliability.

4. Conclusions

We have calculated TI^+ –Rg potentials over a wide range of separation, and have found that the potentials are in excellent agreement overall with the available experimental data, well within the 3-4% error bars on the mobility, and also generally within the 12–14% error bars on the diffusion data. The level of theory employed is high, using the RCCSD(T) correlated method and large basis sets, with small-core ECPs for the heavier atoms. We have noted that the 5*s* and 5*p* TI⁺ orbitals lie above the valence orbitals of He, Ne and Ar, but below those of Kr, Xe and Rn. We chose to correlate these for the lighter atoms, and included appropriate basis functions in the basis set to account for this.

The only poor result is that observed for TI^+ in He with respect to the value for the product, n_0D_L , of the gas number density and the ion diffusion coefficient parallel to the electrostatic field, given in Table IV. We have noted, however, that the original experimenters pointed out a disagreement between the data and an approximate theoretical model, and concluded that their experimental data was affected by the failure of the light helium to allow steady state conditions to be reached. In light of this, and the overall good agreement for the other systems, we conclude that the present calculated transport data is more reliable than the experimental data. The only other region of disagreement was with the Ar high E/n_0 data for n_0D_L , and again, it is probably safe to assume that the experimental data is unreliable.

In summary, apparently for the first time, we have presented tested potential energy curves for a cation of a sixth-period element, interacting with each of the Rg atoms, and have shown that these curves are in excellent agreement with the only available experimental data, and are thus accurate descriptions of the Tl^+ –Rg interactions.

Acknowledgements

BRG is grateful for support via a studentship from the EPSRC. The authors are grateful to the EPSRC for the award of computer time at the Rutherford Appleton Laboratories under the auspices of the Computational Chemistry Working Party (CCWP), which enabled these calculations to be performed. The research of LAV was supported by the U.S. National Science Foundation under grant CHE-0414241.

Table I. Parameters	derived from the present	Tl ⁺ –Rg interaction	potentials,	compared to	the KV
results from ref. 14.	(See text for details.)				

Potential	Ref.	σ / Å ^a	R_e / Å	D_e / cm ⁻¹
Tl ⁺ –He				
	present	2.85	3.28	119.0
	KV	2.60	b	b
Tl ⁺ –Ne				
	present	2.81	3.23	263.1
	KV	2.54	2.85	372.0
Tl ⁺ –Ar				
	present	2.85	3.32	919.0
	KV	2.50	2.64	1600.6
Tl^+-Kr				
	present	2.89	3.38	1295.3
	KV	2.54	2.86	2149.3
Tl ⁺ –Xe				
	present	2.96	3.48	1870.7
	KV	b	b	b
Tl^+ –Rn				
	present	2.97	3.50	2262.0

^a σ is the distance at which the potential energy curve has a value of zero.

^b Curve derived in ref. 14, but portion was not wide enough to establish this parameter.

1
2
3
4
5
0
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
10
49 50
50
51
52
53
54
55
56
57
58
50
· 14

Table II. Calculated spectroscopic constants in cm ⁻¹ , with numbers in parentheses denoting the
power of ten. (See text for details.)

System	D_0	ω_e	$\omega_e x_e$	B_0	D_{j0}
Tl ⁺ –He	119.0	63.04	8.87	0.365	6.49(-05)
Tl ⁺ –Ne	263.2	49.42	2.68	0.0865	1.22(-06)
Tl ⁺ –Ar	919.1	62.46	1.20	0.0454	1.01(-07)
Tl ⁺ –Kr	1295.3	53.44	0.62	0.0247	2.18(-08)
Tl ⁺ –Xe	1870.7	52.84	0.41	0.0174	7.68(-08)
Tl ⁺ –Rn	2262.0	49.33	0.29	0.0129	3.58(-09)

URL: http://mc.manuscriptcentral.com/tandf/tmph

N

8

20

9

40

9

4

13

45

34

79

7

11

18

17

57

74

8

5

13

14

28

42

Acc

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

Prec

0.02

0.02

0.02

0.02

0.10

0.10

0.10

0.10

0.02

0.10

0.02

0.10

0.10

0.50

0.10

0.50

2		
3	Table III Statistical	Comparison (
4		companison (
5		
6	~	Expt
7	System	Data
8	$T1^+$ Ha	Smooth
9	П-не	Sillootti
10		Kaw
10	TI'–Ne	Smooth
12		Raw
14	Tl ⁺ –Ar	Smooth
14		
16		
17		Dow
18		Kaw
19		
20		
21	Tl ⁺ –Kr	Smooth
22		
23		
24		Raw
25		1 cu vi
26		
27		0 1
28	11 –Xe	Smooth
29		
30		
31		Raw
ఎ∠ ఎఎ		
20 24		
34 35		
36		1.4.*
37	^a Calculated mobiliti	es were obtai
38	were taken from Ref	18 and the r
39	were taken nom ker	. To and the h
40	transport database in	Ref. 28. The
41	1	
42	value close to zero re	epresenting go
43		
44		
45		

Table III. Statistical Comparison of Calculate	d and Experimental	Mobility Data at 300 K. ^a
--	--------------------	--------------------------------------

 E/n_0 Range

6.0-60.0

6.0 - 70.0

7.0-100.0

7.0-81.4

10.0-150.0

150.0-350.0

10.0-350.0

10.0-150.0

150.0-369.0

10.0-369.0

20.0-80.0

80.0-700.0

20.0-700.0

20.1 - 80.0

80.0-710.1

20.1-710.1

25.0-120.0

120.0-350.0

25.0-350.0

25.1 - 120.0

120.0-352.4

25.1-352.4

^a Calculated mobilities were obtained from the present potential. The smooth experimental data were taken from Ref. 18 and the raw experimental data were obtained from the gaseous ion transport database in Ref. 28. The statistical quantities δ and χ are described in the text, with a δ value close to zero representing good agreement between the theoretical and experimental data.

 δ

0.05

0.15

-0.07

0.09

0.09

0.03

0.07

0.15

0.01

0.09

0.12

-0.33

-0.16

0.14

-0.27

-0.18

0.21

-0.01

0.13

0.22

0.12

0.16

 $\frac{\chi}{0.25}$

0.22

0.18

0.27

0.19

0.08

0.16

0.47

0.49

0.48

0.13

0.40

0.33

0.33

0.59

0.54

0.22

0.16

0.20

0.37

0.58

0.52

System	Expt. Data	E/n_0 Range	N	Acc	Prec	δ	χ
Tl ⁺ –He	Smooth	6.0-35.0	9	12.0	1.00	1.31	1.66
	Raw	6.0-35.0	15	12.0	1.00	1.45	1.95
Tl ⁺ –Ne	Smooth	7.0-110.0	12	15.0	1.00	0.42	0.58
	Raw	7.0-81.4	71	15.0	1.00	0.29	0.55
Tl ⁺ –Ar	Smooth	7.0-150.0	9	12.0	1.00	0.22	0.59
		150.0-350.0	4	12.0	3.00	1.19	1.19
		7.0-350.0	13			0.52	0.83
	Raw	10.0-150.0	46	12.0	1.00	0.16	0.54
		150.0-250.0	28	12.0	2.00	0.72	0.98
		250.0-369.0	14	12.0	3.00	1.13	1.23
		10.0–369.0	88			0.49	0.84
Tl ⁺ –Kr	Smooth	2.0-90.0	5	13.0	1.00	0.48	0.61
		90.0-800.0	11	13.0	2.00	0.02	0.43
		2.0-800.0	16			0.16	0.50
	Raw	20.1-90.0	21	13.0	1.00	0.39	0.63
		90.0-710.1	53	13.0	2.00	0.23	0.54
		20.1-710.1	74			0.28	0.57
Tl ⁺ –Xe	Smooth	20.0-120.0	6	14.0	1.00	0.35	0.37
		120.0-450.0	7	14.0	5.00	0.14	0.42
		20.0-450.0	13			0.24	0.40
	Raw	25.1-120.0	14	14.0	1.00	0.40	0.88
		120.0-352.4	28	14.0	5.00	-0.05	0.40
		25.1-352.4	42			0.10	0.60

^a Calculated products of the gas number density and the ion diffusion coefficient along the electrostatic field, n_0D_L , were obtained from the present potential. The smooth experimental data were taken from Ref. 18 and the raw experimental data were obtained from the gaseous ion transport database in Ref. 28. The statistical quantities δ and χ are described in the text, with a δ value close to zero representing good agreement between the theoretical and experimental data.

Figure Captions

Figure 1

Calculated potential energy curves for the Tl^+ -Rg complexes at the RCCSD(T) level of theory. Basis sets are of approximate aug-cc-pV5Z quality — see text for details.

Figure 2

Comparison between the calculated potential energy curves of the present work (solid lines) and the directly-determined potentials of ref. 14 (dotted lines).

Figure 3

Comparison between the experimental (solid line, points and error bars) and calculated (dotted line) mobilities for the Tl⁺–Rg species (Rg = He–Xe). The differences between the two sets of values are barely discernible — see text for discussion. K_0 in cm² V⁻¹ s⁻¹ and E/n_0 in Td.

Figure 4

Comparison between the experimental (solid line, points and error bars) and calculated (dotted line) n_0D_L values for the Tl⁺–Rg species (Rg = He–Xe) — see text for discussion. n_0D_L in 10¹⁸ cm⁻¹ s⁻¹ and E/n_0 in Td.

FIGURE 1

Figure 1, Gray et al.

Gray et al. Figure 2.

Figure 3

1 2

3 4 5

20 He 10 [¶] Ne 5 3 [⊈] Ar ∙ ∙ Kr Ţ Xe 1 0.5 5 10 20 50 100 250 500 E/n_0

Figure 3 Gray et al.

Figure 4

Figure 4 Gray et al.

References

- 1 J. Lozeille, E. Winata, L. A. Viehland, P. Soldán, E. P. F. Lee, and T. G. Wright, Phys. Chem. Chem. Phys., 4, 3601 (2002).
- J. Lozeille, E. Winata, L. A. Viehland, P. Soldán, E. P. F. Lee and T. G. Wright, J. Chem. Phys., 119, 3729 (2003).
- 3 L. A. Viehland, J. Lozeille, P. Soldán, E. P. F. Lee, and T. G. Wright, J. Chem. Phys., **121**, 341 (2004).
- 4 H. L. Hickling, L. A. Viehland, D. T. Shepherd, P. Soldán, E. P. F. Lee, and T. G. Wright, Phys. Chem. Chem. Phys., 6, 4233 (2004).
- 5 L. A. Viehland, R. Webb, E. P. F. Lee, and T. G. Wright, J. Chem. Phys., 122, 114302 (2005).
- 6 T. G. Wright and L. A. Viehland, Chem. Phys. Lett., **420**, 24 (2006).
- 7 E. Qing, L. A. Viehland, E. P. F. Lee, and T. G. Wright, J. Chem. Phys. 124, 044316 (2006).
- 8 D. M. Danailov, R. Brothers, L. A. Viehland, R. Johnsen, T. G. Wright, and E. P. F. Lee, J. Chem. Phys. (In press).
- 9 B. R. Gray, T. G. Wright, E. L. Wood, L. A. Viehland, PCCP (Submitted)
- 10 A. A. Buchachenko, J. Kłos, M. M. Szczęśniak, G. Chałasiński, B. R. Gray, T. G. Wright, E. L. Wood, L. A. Viehland, and E. Qing, J. Chem. Phys. **125** 064305 (2006).
- 11 M. S. Lee, A. S. Dickinson, and L. A. Viehland, J. Phys. B. 33, 5121 (2000).
- 12 A. A. Buchachenko, R. V. Krems, M. M. Szczęśniak, Y.-D. Xiao, L. A. Viehland, and G. Chałasiński, J. Chem. Phys. **114**, 9919 (2001).
- 13 A. A. Buchachenko, T. V. Tscherbul, J. Kłos, M. M. Szczęśniak, G. Chałasiński, R. Webb, and L. A. Viehland, J. Chem. Phys. 122, 194311 (2005).
- 14 C.C. Kirkpatrick and L. A. Viehland, Chem. Phys., 120, 235 (1988).
- 15 M. S. Byers, M. G. Thackston, R. D. Chelf, F. B. Holleman, J. R. Twist, G. W. Neeley, E. W. McDaniel, J. Chem. Phys. 78, 2796 (1983).
- 16 M. G. Thackston, M. S. Byers, F. B. Holleman, R. D. Chelf, J. R. Twist, and E. W. McDaniel, J. Chem. Phys., 78, 4781 (1983).
- 17 R. D. Chelf, F. B. Holleman, M. G.Thackston, and E. W McDaniel, J. Chem. Phys. 88, 4551 (1988).
- 18 Mobility data for TI⁺ in He, Ne and Ar are taken from H. W. Ellis, M. G. Thackston, E. W.
 McDaniel and E. A. Mason, Atomic and Nucl. Data Tables, **31**, 113 (1984), where the data is referenced as F.B.Holleman, M.S. Byers, M.G. Thackston and E. W. McDaniel, to be published, but it does not seem to have been.

Molecular Physics

2
3
4
5
6
7
Ω
0
9
10
11
12
13
1/
14
10
16
17
18
19
20
21
21
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
20
39
40
41
42
43
44
15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
50
50
59
60

¹⁹ L. A. Viehland and E. A. Mason, Atomic and Nucl. Data Tables, **60**, 37 (1995).

- 20 L. A. Viehland, Chem. Phys., 78, 279 (1983).
- 21 L. A. Viehland, Chem. Phys., 85, 291 (1984).
- 22 K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett., 157, 479 (1989); R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, *ibid.*, 165, 513 (1989).
- 23 MOLPRO is a package or ab initio programs written by H.-J. Werner, P.J. Knowles, with contributions from J. Almlöf, R.D, Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schuetz, H. Stoll, T. Thorsteinsson, D. L. Cooper. The CCSD treatment is described in: C. Hampel, K. Peterson, and H. J. Werner, Chem. Phys. Lett., 190, 1 (1992).
- ²⁴ S. Johansson, G. Kalus, T. Brage, D. S. Leckrone, and G. M. Wahlgren, Astrophys. J. 462, 943 (1996).
- 25 R. J. LeRoy, Level 7.2 A computer program for solving the radial Schrödinger equation for bound and quasibound levels, and calculating various values and matrix elements. University of Waterloo Chemical Physics Research Program Report CP-555R, 2000.
- 26 L. A. Viehland, Chem. Phys., 70, 149 (1982).
- 27 L. A. Viehland, Chem. Phys., 179, 71 (1994).
- 28 L. A. Viehland, Comp. Phys. Commun., 142, 7 (2001).
- 29 E. A. Mason, E. W. McDaniel, *The Mobility and Diffusion of Ions in Gases* (Wiley, New York, 1988).

30 To access this database you must telnet to the computer named sassafrass.chatham.edu and logon as gastrans. The required password will be provided upon request by email to viehland@sassafrass.chatham.edu.

³¹ T. H. Lovaas, H. R. Skullerud, O.-H. Kristensen, and D. Lihjell, J. Phys. D 20, 1465 (1990).