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Expressions for forces and torques in molecular simulations using rigid bodies
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Expressions for intermolecular forces and torques, derived from pair potentials between rigid non-spherical units, are presented. The

aim is to give compact and clear expressions, which are easily generalised, and which minimise the risk of error in writing molecular

dynamics simulation programs. It is anticipated that these expressions will be useful in the simulation of liquid crystalline systems, and

in coarse-grained modelling of macromolecules.

Keywords: Molecular simulation; Gay-Berne; coarse graining; anisotropic potentials; angular-dependent potentials; rigid body

potentials.

1 Introduction

This paper is intended to clarify the way in which forces and torques may be computed from an expression

for the pair potential between two, generally nonlinear, molecules. These forces and torques are then

typically incorporated into molecular dynamics simulation programs [1–3]. The particular focus is on pair

potentials which are expressed directly as functions of the molecular centre-centre vector and orientational

variables such as Euler angles, quaternion (Euler) parameters, or rotation matrix elements. Some examples,

based on potentials used in the simulation of liquid crystals and macromolecules, are given, but the

intention is also to provide a formalism that is easily generalised. The more common case of atomic

site-site potentials is not considered here. Several schemes exist for systematically “coarse-graining” such

atomistically-detailed interaction potentials, often by performing simulations over relatively short times

and fitting either coarse-grained pair distribution functions or aggregated forces [4–8], but this is also not

the focus of the present paper. The aim is to streamline, and make more robust, the process of analytically

deriving forces and torques, once the coarse-grained potentials have been determined, and parametrised

∗Corresponding author. E-mail: m.p.allen@warwick.ac.uk

Page 1 of 18

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 16, 2006 13:3 Molecular Physics paper

2 Michael P. Allen and Guido Germano

in a standard way. Even with the help of symbolic algebra packages, performing this task is prone to error

and may result in molecular dynamics code which is inefficient, hard to understand, and difficult to adapt.

By the use of some examples, based on spheroidal geometry, it is shown here that standard vector and

matrix notation helps to simplify the formulae, leading to an improved insight into the machinery of the

potentials as well as giving a more reliable route to the simulation code.

Consider two nonlinear molecules A and B, position vectors rA, rB. Define the intermolecular vector

r = rAB = rA − rB, distance r = |r|, and unit vector r̂ = r/r. Specify the orientations by the orthogonal

rotation matrices â, b̂, which convert from space-fixed (xyz) to molecule-fixed (123) coordinates [9]:

â =


â1

â2

â3

 =


â1x â1y â1z

â2x â2y â2z

â3x â3y â3z

 , b̂ =


b̂1

b̂2

b̂3

 =


b̂1x b̂1y b̂1z

b̂2x b̂2y b̂2z

b̂3x b̂3y b̂3z

 .

The rows of these matrices are the three molecule-fixed orthonormal principal axis vectors âm, b̂m, m =

1, 2, 3. Note that it is possible to write [â]mµ = [âm]µ = âmµ, µ = x, y, z, without ambiguity.

It is assumed that the pair potential may be written as a function U = U(r, â, b̂) and that it is invariant

to a global rotation of the coordinates. Quite generally the force fA on A due to B will be the negative of

the force fB on B due to A, so

fA = −fB ≡ f = −∂U

∂r
.

Depending on the form of the potential it may be possible to evaluate this derivative directly, or it may

be more convenient to separate the components along, and perpendicular to, the line of centres:

f = −∂U

∂r

∂r

∂r
− ∂U

∂r̂
·
(

∂r̂

∂r

)
= −∂U

∂r
r̂ − r−1 ∂U

∂r̂
·
(
1− r̂ ⊗ r̂

)
. (1)

On the right, ⊗ constructs a dyadic matrix from two vectors, and 1 is the unit 3× 3 matrix. The torque

calculation follows Price et al. [10], with minor variations. Consider the negative of the derivative of U

with respect to rotation of molecule A through an angle ψ about any axis represented by a unit vector ψ̂.

By definition, this gives the corresponding component of the torque τA, and the chain rule may be used

to express this in terms of the body-fixed unit vectors

ψ̂ · τA = −∂U

∂ψ
= −

∑
m

∂U

∂âm
· ∂âm

∂ψ
= −

∑
m

∂U

∂âm
· ψ̂ × âm .

The last equation follows from the rotation formula [9] for any vector ∂e/∂ψ = ψ̂× e. Cyclic permutation

of the vectors in the scalar triple product then gives

ψ̂ · τA = −ψ̂ ·
∑
m

âm × ∂U

∂âm
.
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Choosing ψ̂ to be each of the coordinate directions in turn allows the identification of every component of

the torque, and the expression for τB is similar

τA = −
∑
m

âm × ∂U

∂âm
, τB = −

∑
m

b̂m × ∂U

∂b̂m

. (2)

In the succeeding sections, more specific examples of the above formulae will be given for particular choices

of pair potential U .

2 Scalar Product Potentials

A very common case, and a useful preamble for what follows, is when the pair potential between A and B

may be written in the form [10]

U = U(r, â, b̂) = U(r, {âm · r̂}, {b̂n · r̂}, {âm · b̂n}) . (3)

This is a function of the centre-centre separation r, and all possible scalar products of the unit vectors r̂,

âm and b̂n. It is manifestly invariant to a global rotation of coordinates. The force may be written

f = −∂U

∂r
= −∂U

∂r

∂r

∂r
−
∑
m

(
∂U

∂(âm · r̂)
∂(âm · r̂)

∂r
+

∂U

∂(b̂m · r̂)
∂(b̂m · r̂)

∂r

)

= −∂U

∂r
r̂ − r−1

∑
m

(
∂U

∂(âm · r̂)
â⊥m +

∂U

∂(b̂m · r̂)
b̂
⊥
m

)
. (4)

The sum ranges over all the orientation vectors on both molecules, {âm, b̂m}. The notation

v⊥ ≡ v − (v · r̂)r̂ = −r̂ ×
(
r̂ × v

)
is short for the component of a vector v perpendicular to r̂. The derivatives of the potential appearing in

eqn (4) are easily evaluated, assuming that it has the general form of eqn (3). The torque calculation once

more follows Price et al. [10]. The derivative of U with respect to rotation of molecule A through an angle

ψ about an axis ψ̂ takes the form

ψ̂ · τA = −∂U

∂ψ
= −

∑
m

∂U

∂(r̂ · âm)
∂(r̂ · âm)

∂ψ
−
∑
mn

∂U

∂(b̂n · âm)

∂(b̂n · âm)
∂ψ

.

All combinations of unit vectors for which one, âm, rotates with the molecule while the other, r̂ or b̂n,

remains stationary, appear on the right. The rotation formula in this case gives ∂(v̂ ·âm)/∂ψ = v̂ ·ψ̂×âm =
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−ψ̂ · v̂ × âm and once again ψ̂ may be chosen arbitrarily. The explicit result for molecules A and B is

τA =
∑
m

∂U

∂(âm · r̂)
(
r̂ × âm

)
−
∑
mn

∂U

∂(âm · b̂n)

(
âm × b̂n

)
, (5a)

τB =
∑

n

∂U

∂(b̂n · r̂)
(
r̂ × b̂n

)
+
∑
mn

∂U

∂(âm · b̂n)

(
âm × b̂n

)
. (5b)

Note that the combination of eqns (4), (5a) and (5b) gives

τA + τB + r × f = 0 . (6)

This is the expression of local angular momentum conservation, which follows directly from the invariance

of the potential energy, eqn (3), to a rotation of all the vectors r̂, âm and b̂n together.

3 Biaxial Gay-Berne, and Related, Potentials

The original Gay-Berne family of potentials [11–14] was developed for molecules having the symmetry, and

approximate shape, of uniaxial ellipsoids. They have now been generalised to include biaxiality [15–18].

The general form is [17]

UGB = εν1(â, b̂) εµ2 (â, b̂, r̂)Ushape

(
r, σ(r̂, â, b̂)

)
Here the two ε terms represent orientation-dependent strength factors, raised to powers µ, ν which charac-

terise different variants of the model. The last term roughly defines the molecular shape, via an orientation-

dependent distance function σ which will be discussed in more detail below. Ushape typically is based on a

Lennard-Jones 12-6 potential

Ushape(r, σ) = 4ε0

[(σ
r

)12
−
(σ
r

)6
]

(7)

although, as shall be seen, this has been refined somewhat. The Gay-Berne potentials have been extensively

used to model small organic molecules [19–21] and liquid crystalline systems [22,23]; linked Gay-Berne units

may also be used in the coarse-grained modelling of polymer chains including biological macromolecules

[4, 24].

For illustrative purposes here, attention will focus on the “shape” term above, and the energy-dependent

ε terms will be taken to be constants. (Their contributions to forces and torques may be straightforwardly

included using similar methods). It is therefore assumed that the potential may be written

U = U
(
r, σ(r̂, â, b̂)

)
. (8)

The relation between the Gay-Berne distance function σ and the geometry of ellipsoids has been clarified
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by Perram et al. [25–27]. Define the matrices

A =
∑
m

a2
mâm ⊗ âm =

∑
m

am ⊗ am , B =
∑
m

b2mb̂m ⊗ b̂m =
∑
m

bm ⊗ bm (9)

(but note that our A is A−1 in Ref. [27]). Here the am and bm are semi-axis lengths of the ellipsoidal

particles, and these have been used to define the un-normalised semi-axis vectors am = amâm etc. These

matrices may also be written in terms of the rotation matrices defined earlier [15]

Aµν =
∑
m

a2
mâmµâmν =

∑
mn

amanδmnâmµânν =
∑
mn

[
âT
]
µm
amδmnan

[
â
]
nν
. (10)

Defining the diagonal shape matrix S = diag(a1, a2, a3), and the matrix a whose rows are the un-normalised

semi-axis vectors a = Sâ, i.e. [a]mµ = [am]µ = amµ = amâmµ, gives

A = âTS2â = aTa . (11)

Recall that the rotation matrix is orthogonal, âTâ = ââT = 1, whereas this is not true for a.

The diameter σ is defined through the following equations [15,16,27]

σ = 1/
√
ϕ , (12a)

ϕ = σ−2 = 1
2 r̂ ·

(
A + B

)−1 · r̂ ≡ 1
2 r̂ ·H

−1 · r̂ , (12b)

where H = A + B . (12c)

All of the â and b̂ dependence lies within the matrix inverse H−1 while all the r̂ dependence lies outside it.

It is comparatively easy, though cumbersome, to evaluate the matrix inverse in a suitable form, perform

the scalar products with r̂ explicitly, and use eqns (4), (5) for the forces and torques [15, 16, 28]. The

following alternative approach was suggested by Perram et al. [27], and leads to more compact expressions

based on eqns (1), (2).

3.1 Scaled Potential

First consider the special class of potentials for which [27]

U = U
(
r2/σ2(r̂, â, b̂)

)
= U(Φ) (13)

where Φ = r2ϕ = r2/σ2 = 1
2 r ·

(
A + B

)−1 · r ≡ 1
2 r ·H

−1 · r . (14)

The simple form (7) is an example. This form of potential is simple to implement, but it does have the

disadvantage that the length scale is entirely determined by σ; hence, a Lennard-Jones form will have

an attractive range which is proportional to the repulsive diameter at any given orientation of molecules,

Page 5 of 18

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 16, 2006 13:3 Molecular Physics paper

6 Michael P. Allen and Guido Germano

which may be unphysical. The shifted form of the potential (see sec 3.2) was introduced by Gay and

Berne [14] to address this fault. On the other hand, in certain cases, e.g. for rapidly-varying, completely

repulsive potentials, this may not be so much a problem.

Following [27], define an auxiliary vector κ by solving the equations

H · κ = r ⇔ κ = H−1 · r . (15)

In what follows, there is no need to fully evaluate H−1. In terms of κ

Φ = 1
2r · κ ,

∂Φ
∂r

= H−1 · r = κ .

This last formula gives the interparticle force from

f = −dU
dΦ

∂Φ
∂r

= −dU
dΦ
κ . (16)

To obtain the torque, write

τA = −
∑
m

âm × ∂U

∂âm
= −

∑
m

am × ∂U

∂am
= −dU

dΦ

∑
m

am × ∂Φ
∂am

. (17)

The evaluation of ∂Φ/∂am proceeds as follows.

∂Φ
∂amµ

= 1
2 r ·

∂H−1

∂amµ
· r = −1

2 r ·H
−1 ∂H

∂amµ
H−1 · r = −1

2 κ ·
∂A

∂amµ
· κ .

The definition of A implies ∂A/∂amµ = êµ ⊗ am + am ⊗ êµ, where êµ, µ = x, y, z is the appropriate unit

vector in the space-fixed Cartesian coordinate system. Therefore

∂Φ/∂amµ = −(κ · am)κµ ⇒ ∂Φ/∂am = −(κ · am)κ .

Combining with eqn (17), and applying a similar formula to molecule B, gives the torques

τA =
dU
dΦ

∑
m

(κ · am)(am × κ) =
dU
dΦ

(κ · A× κ) , (18a)

τB =
dU
dΦ

∑
m

(κ · bm)(bm × κ) =
dU
dΦ

(κ · B× κ) . (18b)

These equations are essentially those of Perram et al. [27]. Using eqn (16), it is possible to write them in

the form

τA = −κ · A× f = rCA × f = (rC − rA)× f , (19a)

τB = −κ · B× f = rCB × (−f) = (rC − rB)× (−f) (19b)
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where rC is defined by

rC = rA − A · κ = rA + rCA (20a)

= rB + B · κ = rB + rCB (20b)

(see Appendix A). The physical interpretation of this is that the intermolecular force may be taken to act

at the “contact point” rC , and the torques about the molecular centres are then given by the usual moment

formulae. Conservation of angular momentum follows immediately since τA + τB = (rCA − rCB) × f =

−rAB × f = −r × f .

It is illuminating to consider the case of identical uniaxial particles. Suppose the orientation of both

particles is defined by unit vectors â3, b̂3 along the 3-direction, and that the semiaxes are given by

a1 = b1 = a2 = b2 = `⊥, a3 = b3 = `‖. Then, the orthonormality relation
∑

m âm ⊗ âm = 1 allows the

orientation matrices to be written in terms of â3 and b̂3 alone:

A = `2⊥1 +
(
`2‖ − `2⊥

)
â3 ⊗ â3 , B = `2⊥1 +

(
`2‖ − `2⊥

)
b̂3 ⊗ b̂3 ,

H = A + B = 2`2⊥1 +
(
`2‖ − `2⊥

)(
â3 ⊗ â3 + b̂3 ⊗ b̂3

)
.

Inverting such a matrix is a standard exercise. One route is to observe that the orthonormal eigenvectors

and eigenvalues are [16]

ê± =
â3 ± b̂3√

2(1± â3 · b̂3)
, λ± = (`2‖ + `2⊥)± (`2‖ − `2⊥)â3 · b̂3 ,

ê0 = ê+ × ê− , λ0 = 2`2⊥ .

Then both H and its inverse may be expressed as sums:

H =
∑
m

λmêm ⊗ êm = λ01 + (λ+ − λ0)ê+ ⊗ ê+ + (λ− − λ0)ê− ⊗ ê− ,

H−1 =
∑
m

λ−1
m êm ⊗ êm = λ−1

0 1 +
(
λ−1

+ − λ−1
0

)
ê+ ⊗ ê+ +

(
λ−1
− − λ−1

0

)
ê− ⊗ ê− ,

where the orthonormality property
∑

m êm ⊗ êm = 1 has been used.

It is convenient to define the elongation parameter χ = (`2‖−`
2
⊥)/(`2‖+`2⊥), so that 1−χ = 2`2⊥/(`

2
‖+`2⊥);

also scalar products of the relevant unit vectors: ca = â3 · r̂, cb = b̂3 · r̂, cab = â3 · b̂3; and to set χc = χcab.
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Then

H−1 =
1

2`2⊥

{
1− χ

1− χ2
c

[
â3 ⊗ â3 + b̂3 ⊗ b̂3 − χc(â3 ⊗ b̂3 + b̂3 ⊗ â3)

]}

=
1

2`2⊥

{
1− χ

2

[
(â3 + b̂3)⊗ (â3 + b̂3)

1 + χc
+

(â3 − b̂3)⊗ (â3 − b̂3)
1− χc

]}
,

which gives the standard form [12] for identical uniaxial particles

σ−2 = 1
2 r̂ ·H

−1 · r̂ = σ−2
0

{
1− χ

2

[
(ca + cb)2

1 + χc
+

(ca − cb)2

1− χc

]}
,

with a width parameter σ0 = 2`⊥. The auxiliary vector is

κ = H−1 · r =
r

2`2⊥

{
r̂ − χ

1− χ2
c

[
(ca − χccb)â3 + (cb − χcca)b̂3

]}
.

The position vector of the “contact point” rC may be written

rC = 1
2(rA + rB)− 1

2r
χ

1− χ2
c

[
(ca − χccb)â3 − (cb − χcca)b̂3

]
.

Having chosen the form of U(Φ), these last two equations make it easy to calculate forces and torques

through eqns (16) and (19).

3.2 Shifted Potential

The shape-dependent part of the Gay-Berne potential [14] does not have the simple form of eqn (13), but

uses the more general eqn (8), with the definition of σ given in eqn (12b). This means that the potential

is not a function of the single variable Φ = r2/σ2, but instead depends on both r and σ (or ϕ = σ−2)

separately, typically through the shifted form

% =
r − σ + σmin

σmin
, (21)

where σmin is a constant. Define as before κ = H−1 · r, ϕ = 1
2 r̂ ·H

−1 · r̂ = 1
2r

−1r̂ · κ, so

∂ϕ

∂r̂
= H−1 · r̂ = r−1κ .

This gives the interparticle force

f = −∂U

∂r
r̂ − r−1 ∂U

∂ϕ

∂ϕ

∂r̂
·
(
1− r̂ ⊗ r̂

)
= −∂U

∂r
r̂ − r−2 ∂U

∂ϕ

[
κ− (κ · r̂)r̂

]
. (22)

The torque derivation proceeds exactly as before, and the results are

τA = r−2 ∂U

∂ϕ
(κ · A× κ) , τB = r−2 ∂U

∂ϕ
(κ · B× κ) . (23)
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Identifying part of the force fκ = −r−2(∂U/∂ϕ)κ these equations may be written

τA = −κ · A× fκ = rCA × fκ , τB = −κ · B× fκ = rCB × (−fκ) , (24)

where rC is given by eqn (20) as before. Angular momentum conservation follows directly, since f − fκ is

parallel to r̂, so r × f = r × fκ.

As an example, consider the repulsive potential

U =

4ε0
(
%−12 − %−6

)
+ ε0 , %6 < 2

0 , %6 > 2
(25)

with % given by eqn (21) and σ given by eqn (12b). It is sensible to set σmin to be the minimum value of

σ over all relative orientations. The potential then takes a constant value U = +ε0 when r → σ, for any

orientation, and diverges as r → σ− σmin. For example, for the identical uniaxial particles of the previous

section, σmin = σ0 = 2`⊥ for the prolate case `‖ > `⊥, corresponding to side-by-side arrangements of the

particles; but σmin = 2`‖ for oblate, disk-like, shapes, corresponding to the face-to-face orientation [29].

In the general case, eqn (12b) shows that if the minimum particle dimensions are amin = min(a1, a2, a3),

bmin = min(b1, b2, b3), then

σ2
min = 2Hmin = 2(a2

min + b2min) .

The geometrically correct value for spheroids would be σmin = amin + bmin but this distance function does

not faithfully represent the geometry of spheroids [27]. Then

−∂U

∂ϕ
= −∂U

∂%

∂%

∂σ

dσ
dϕ

= 24ε0
(
2%−13 − %−7

)
σ3/2σmin .

Also

−∂U

∂r
= −∂U

∂%

∂%

∂r
= 24ε0

(
2%−13 − %−7

)
/σmin .

From these two expressions, together with eqns (22)–(24), the forces and torques may be easily calculated.

The above equations generalise simply to the case of the full Gay-Berne potential, where the orientation-

dependent energy functions ε1 and ε2 are included [17]. When the Lennard-Jones form (25) is not truncated,

the limiting long-range form is proportional to r−6, as might be expected. However, a well-known criticism

of the potential is that the full orientation-dependence is preserved at long range, whereas the van der

Waals attractions in real molecules become isotropic at long range. It should be noted that Everaers and

Ejtehadi [30] have derived a coarse-grained biaxial potential, called the RE-squared model, using Hamaker

theory from colloid science. The result has features in common with the biaxial Gay-Berne potential, but

also has the correct long-distance form. Babadi et al. [31] have shown how to parametrise the RE-squared
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model using atomistic representations of small molecules. Forces and torques may be derived from this

potential in a way analogous to that described above.

4 Gaussian Potential

Some years ago, Smith and Singer [32] proposed an extension of the approach of Berne and Pechukas [12],

which they incorporated into the CCP5 Library program mdzoid. Each molecule is represented by a

normalised Gaussian distribution of particle density, centred at rA and rB, characterised by matrices A

and B:

ρA(r) =
1√

8π3|A|
exp
[
−1

2(r − rA) · A−1 · (r − rA)
]
, (26a)

ρB(r) =
1√

8π3|B|
exp
[
−1

2(r − rB) · B−1 · (r − rB)
]
, (26b)

where | · · · | is the determinant of a matrix. The interaction between volume elements dra, drb at ra and

rb, respectively, is represented as a Gaussian function of their separation

u(ra − rb)dradrb = C`−3 exp
(
−1

2 |ra − rb|2 /`2
)

dradrb , (27)

characterised by a range parameter ` and a strength parameter C (with units of energy multiplied by

volume). (More generally, Smith and Singer [32] suggested fitting a desired atom-atom potential with a

sum of such Gaussians, with positive or negative coefficients). The potential energy between molecules A

and B is obtained by integrating u(ra−rb) over the density distributions ρA(ra) and ρB(rb); the integrals

may be performed analytically (see Appendix B) and the result is, with r = rAB,

U = C|H|−1/2 exp(−Φ) , (28a)

with H = `21 + A + B , (28b)

and Φ = 1
2r ·

(
`21 + A + B

)−1 · r = 1
2r ·H

−1 · r . (28c)

In the limit ` → 0, H and Φ reduce to the definitions (12c), (14) seen before. This potential belongs

to the class of “core-softened” potentials, which have recently attracted attention in condensed matter

physics. The interaction between polymer coils at low concentration, for instance, is well represented by a

(spherically symmetric) Gaussian potential [33].

The forces are derived exactly as for the scaled potential, sec. 3.1:

f = −∂U

∂Φ
∂Φ
∂r

= −∂U

∂Φ
H−1 · r = UH−1 · r = Uκ , (29)

with κ = H−1 · r as before. The torques have contributions from the dependence of U on both Φ and |H|.
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The Φ contributions are given by

τΦ
A = −κ · A× f = qA × f ,

τΦ
B = −κ · B× f = qB × (−f) ,

which are eqns (19), with rCA → qA = −A · κ, rCB → qB = B · κ. The reason for the change in notation

is that these equations do not define a contact point rC as before in eqns (20), because the new definition

of H gives

r + qA − qB = `2κ , (30)

rather than zero. Using the expression 1
2 |H|

−1(∂|H|/∂am) = H−1 ·am (see appendix B), the |H|-dependent

terms in τA give

− ∂U

∂|H|
∑
m

am × ∂|H|
∂am

= 1
2 |H|

−1U
∑
m

am × ∂|H|
∂am

= U
∑
m

am ×H−1 · am . (31)

With the use of the Levi-Civita tensor ε the final results may be expressed

τA = U
∑
m

am ×H−1 · am + qA × f = Uε : H−1A + qA × f , (32a)

τB = U
∑
m

bm ×H−1 · bm − qB × f = Uε : H−1B + qB × (−f) . (32b)

Smith and Singer [32] obtained the same result, by a different method and written in a different form (see

Appendix B). Once more, angular momentum conservation follows straightforwardly:

τA + τB + r × f = Uε : H−1
(
A + B

)
+ (r + qA − qB)× f

= Uε :
(
1− `2H−1

)
+ `2κ× f ,

using eqn (30). The tensor 1 − `2H−1 is symmetric, so the double contraction with ε gives zero, and

f = Uκ, so the last cross product also gives zero.

5 Ellipsoid Contact Potential

As mentioned in section 3.2, the distance function appearing in the Gay-Berne and related potentials does

not correctly represent the geometry of ellipsoidal particles. Formulae reflecting the true ellipsoid geometry

were set out by Perram et al. [27]. The distance function takes the more general form

ϕ = σ−2 = αβ r̂ ·
(
αA + βB

)−1 · r̂ ≡ αβ r̂ · G−1 · r̂ , (33)
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where α+ β = 1. The matrix

G = αA + βB (34)

plays a similar role to H in the previous sections; the case α = β = 1
2 corresponds to the standard Gay-

Berne, or Gaussian overlap, definition of diameter seen earlier, and in this case G = 1
2H. The ‘true’ ellipsoid

geometry corresponds to the case where α = (1− β) has been chosen to maximise ϕ, i.e. minimise σ. This

procedure is carried out numerically in the simulation.

The “scaled potential” analogous to eqn (13)

U = U
(
r2/σ2(r̂, â, b̂)

)
= U(Φ) ,

where Φ = r2ϕ = r2/σ2 = αβ r ·
(
αA + βB

)−1 · r ≡ αβ r · G−1 · r , (35)

is termed an ellipsoid contact potential [27]. The forces and torques are derived in a manner analogous to

that of Section 3.1. Define an auxiliary vector k by solving the equations

G · k = r ⇔ k = G−1 · r . (36)

In terms of k

Φ = αβr · k , (37)

∂Φ
∂r

= 2αβG−1 · r = 2αβk . (38)

This last formula will give the interparticle force from

f = −dU
dΦ

∂Φ
∂r

= −dU
dΦ

2αβk . (39)

The derivation of torques follows the pattern of previous sections. The results are

τA =
dU
dΦ

2α2β
∑
m

(k · am)(am × k) =
dU
dΦ

2α2β(k · A× k) , (40a)

τB =
dU
dΦ

2αβ2
∑
m

(k · bm)(bm × k) =
dU
dΦ

2αβ2(k · B× k) . (40b)

Once again these may be written

τA = −αk · A× f = rCA × f , (41a)

τB = −βk · B× f = rCB × (−f) , (41b)
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where rC is now defined by

rC = rA − αA · k = rB + βB · k (42)

(see Appendix A). Conservation of angular momentum follows immediately. One final point [27]: the

above derivatives take no account of the variation of α, β as the particles are moved; but these extra terms

vanish because the relevant functions have been minimised/maximised with respect to variations of these

parameters.

The corresponding formulae for more general (for example, shifted) potentials based on true ellipsoid

geometry are

ϕ = αβr̂ · G−1 · r̂ = αβr−1r̂ · k , (43)

∂ϕ

∂r̂
= 2αβG−1 · r̂ = 2αβr−1k . (44)

The forces and torques are

f = −∂U

∂r
r̂ − ∂U

∂ϕ
r−1 ∂ϕ

∂r̂
·
(
1− r̂ ⊗ r̂

)
= −∂U

∂r
r̂ − ∂U

∂ϕ

2αβ
r2
(
k − (k · r̂)r̂

)
, (45a)

τA =
∂U

∂ϕ

2α2β

r2

∑
m

(k · am)(am × k) =
∂U

∂ϕ

2α2β

r2
(k · A× k) , (45b)

τB =
∂U

∂ϕ

2αβ2

r2

∑
m

(k · bm)(bm × k) =
∂U

∂ϕ

2αβ2

r2
(k · B× k) . (45c)

Identifying part of the force fk = −(∂U/∂ϕ)(2αβ/r2)k the torques become

τA = −αk · A× fk = rCA × fk , (46a)

τB = −βk · B× fk = rCB × (−fk) , (46b)

and, since f − fk is parallel to r̂, angular momentum conservation follows as before.

A modification of the ellipsoid contact potential, based on the surface-surface distance calculated along

a vector parallel to the line of centres, has recently been proposed [34]. Analytical formulae for the forces

and torques are given in that paper.

6 Conclusions

In the preceding sections it has been shown how compact expressions for forces and torques may be derived

for pairwise intermolecular potentials which are written as functions of the molecular orientation matrices

and the centre-centre vector. Illustrations have been given for various members of the “extended Gay-Berne
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family”; in particular, for the Gaussian potential of Smith and Singer [32], much simpler expressions for

the torques may be obtained in this way.

The above expressions for forces and torques may be used in molecular dynamics simulations, as well

as hybrid Monte Carlo simulations or other applications. They may be straightforwardly combined with

symplectic and reversible integration algorithms based either on quaternion parameter representations of

the rigid-body orientations, or on the rotation matrix itself [35–37].

Appendix A: The Contact Function

This appendix recalls the relations leading to the definition of the “contact point” of eqn (42), and the link

with the Berne-Pechukas distance parameter. The following function has a unique minimum as r varies

for fixed α and β = 1− α [25, 26]:

Ψ(r;α, β) = β(r − rA) · A−1 · (r − rA) + α(r − rB) · B−1 · (r − rB) . (A1)

The location of this minimum, r = rC , satisfies

1
2

∂Ψ
∂r

∣∣∣∣
r=rC

= βA−1 · (rC − rA) + αB−1 · (rC − rB) = 0 . (A2)

The definition G · k = rAB = r, eqn (36), with G = αA + βB, eqn (34), leads to an expression for rC

r = G · k = αA · k + βB · k = (rA − rC) + (rC − rB) ,

where rC = rA − αA · k = rB + βB · k ,

which satisfies eqn (A2). The value at the minimum is

Ψ|r=rC
= β(rC − rA) · (−αk) + α(rC − rB) · (βk)

= αβr · k = αβr · G−1 · r ≡ Φ ,

as defined in eqn (37). Having identified rC and Φ, the function Ψ may be re-written

Ψ(r;α, β) = (r − rC) ·
(
βA−1 + αB−1

)
· (r − rC) + Φ , (A3)

as may be checked by expanding and comparing coefficients.

The corresponding equations for the case α = β = 1
2 are conveniently written with the definitions
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H · κ = rAB = r, eqn (15), H = A + B, eqn (12c),

Ψ(r) = 1
2(r − rA) · A−1 · (r − rA) + 1

2(r − rB) · B−1 · (r − rB) , (A4)

r = H · κ = A · κ+ B · κ = (rA − rC) + (rC − rB) , (A5)

rC = rA − A · κ = rB + B · κ , (A6)

Ψ|r=rC
= 1

2r · κ = 1
2r ·H

−1 · r ≡ Φ , (A7)

Ψ(r) = 1
2(r − rC) ·

(
A−1 + B−1

)
· (r − rC) + Φ . (A8)

The generalised Berne-Pechukas overlap function is computed in terms of the two-centre Gaussian overlap

integral

I =
∫

dr ρA(r − rA)ρB(r − rB)

=
1

8π3
√
|A||B|

∫
dr exp

(
−Ψ(r)

)
=

exp(−Φ)√
8π3
√
|A + B|

, (A9)

where the densities ρA, ρB, are defined in eqns (26) and the function Ψ(r) is defined in eqn (A4). The last

step is carried out either by using Fourier transforms [15] or by re-writing Ψ(r) in the form of eqn (A8)

and shifting origin to rC [27]; Φ is defined in eqn (A7). In practice, the Gaussian form of eqn (A9) is not

commonly used as a potential in simulations; instead, the function Φ is extracted from it, used to define

a range parameter σ, through ϕ = Φ/r2 and σ = 1/
√
ϕ, eqns (12) of the text; and this range parameter

is used in a variety of potentials.

Appendix B: The Gaussian Potential

The Gaussian potential of Smith and Singer [32] is computed in terms of the double integral

U =
∫∫

dradrb ρA(ra − rA)ρB(rb − rB)u(ra − rb) ,

where u(ra − rb) is defined by eqn (27). The two integrals are carried out successively: each has the same

two-centre form as eqn (A9), so they are straightforward. The result is

U = C|H|−1/2 exp
(
−1

2r ·H
−1 · r

)
, where r = rA − rB and H = `21 + A + B ,

and this is eqn (28) of the main text. Smith and Singer derived an expression for the torque arising from

the Gaussian potential, from first principles, treating u(ra − rb) as a site-site potential and integrating
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rab × fab over the density distributions. In the notation of sec 4, their result for the torque on A is

τA = −
(
`21 + B

)−1 ∗
(
qA ⊗ r + qA ⊗ qA + A− AH−1A

)
U

= −
(
H− A

)−1 ∗
[
qA ⊗ (1− AH−1) · r + (1− AH−1)A

]
U , (B1)

where the definition qA = −A ·κ = −AH−1 ·r is used to simplify. Smith and Singer define the operation ∗

to give a vector from two matrices (A ∗ B)k = εijkAilBjl (note the conventional summation over all three

repeated indices i, j and l). This may be recognised as a double contraction of the Levi-Civita tensor ε

with a matrix product:

A ∗ B = −ε : ABT = ε : BAT .

Using this, and noting that

(H− A)−1(1− AH−1) = (H− A)−1(H− A)H−1 = H−1 ,

eqn (B1) simplifies considerably:

τA = ε :
(
H−1 · r ⊗ qA + H−1A

)
U = ε :

(
κ⊗ qA + H−1A

)
U

=
(
qA × κ+ ε : H−1A

)
U .

This is eqn (32a) of the main text.

In the derivation of eqn (31), it is necessary to obtain the derivative of |H| with respect to a component

of one of the rotation matrices. Use

|H|′ =

∣∣∣∣∣∣∣∣∣
H ′

xx H
′
xy H

′
xz

Hyx Hyy Hyz

Hzx Hzy Hzz

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
Hxx Hxy Hxz

H ′
yx H

′
yy H

′
yz

Hzx Hzy Hzz

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
Hxx Hxy Hxz

Hyx Hyy Hyz

H ′
zx H

′
zy H

′
zz

∣∣∣∣∣∣∣∣∣ .
Here, Hµν = `2δµν +

∑
m amµamν +

∑
n bnµbnν , so ∂Hµν/∂amx = δµxamν + δνxamµ. Hence

∂|H|
∂amx

=

∣∣∣∣∣∣∣∣∣
2amx amy amz

Hyx Hyy Hyz

Hzx Hzy Hzz

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
Hxx Hxy Hxz

amy 0 0

Hzx Hzy Hzz

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
Hxx Hxy Hxz

Hyx Hyy Hyz

amz 0 0

∣∣∣∣∣∣∣∣∣
= 2amx

∣∣∣∣∣∣Hyy Hyz

Hzy Hzz

∣∣∣∣∣∣− 2amy

∣∣∣∣∣∣Hxy Hxz

Hzy Hzz

∣∣∣∣∣∣+ 2amz

∣∣∣∣∣∣Hxy Hxz

Hyy Hyz

∣∣∣∣∣∣ ,
using the fact that H is symmetric. Moreover, each (signed) 2 × 2 determinant here is an element of the

(signed) cofactor matrix, the transpose of which is H−1 multiplied by |H|. This allows the desired derivative
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to be written

∂|H|
∂amx

= 2|H|
(
amx

[
H−1

]
xx

+ amy

[
H−1

]
yx

+ amz

[
H−1

]
zx

)
.

Collecting together results for all the components gives

1
2
|H|−1 ∂|H|

∂am
= am ·H−1 = H−1 · am .

This is used in the derivation of eqn (31).
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