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This paper presents a new dual objective problem of due date setting over a rolling planning horizon in make-to-order manufacturing and proposes a bi-criterion integer programming formulation for its solution. In the proposed model the due date setting decisions are directly linked with available capacity. A simple critical load index is introduced to quickly identify the system bottleneck and the overloaded periods. The problem objective is to select maximal subset of orders that can be completed by customer requested dates and to quote delayed due dates for the remaining acceptable orders to minimize the number of delayed orders or the total number of delayed products as a primary optimality criterion and to minimize total or maximum delay of orders, as a secondary criterion. A weighted-sum program based on scalarization approach is compared with a two-level due date setting formulation based on lexicographic approach. In addition, a mixed integer programming model is provided for scheduling customer orders over a rolling planning horizon to minimize maximum inventory level. Numerical examples modeled after a real-world make-to-order flexible flowshop environment in the electronics industry are provided and, for a comparison, the single-objective solutions that maximize total revenue subject to service level constraints are reported.

Introduction

In make-to-order manufacturing accepting or rejecting customer orders is often combined with due date setting. Accepting of too many orders with customer requested dates may increase demand on capacity over available capacity and as a result may increase lead time and decrease customer service level, i.e., more orders are delivered late after the requested dates. To reduce the number of rejected or delayed orders, a manufacturer should quote due dates for some orders later than the due dates requested by customers. Setting a due date later than the requested date, however, may result in a reduction of revenue, whereas fulfilling the order later than the quoted date may also result in loss of goodwill and sometimes even in contractual penalty costs. On the other hand fulfilling the order earlier then the quoted date may incur finished products inventory holding costs. Thus, the due date quoting problem should account for the three costs (e.g. [START_REF] Hegedus | Due date setting with supply constraints in systems using MRP[END_REF]: cost for quoting a due date later than requested date, cost for fulfilling the order later than the quoted date and finished products inventory costs for fulfilling the order too early.

The order acceptance and due setting decisions can be made in either a real-time mode or a batch mode. For real-time mode, a commitment due date is determined at the time of the customer order arrival. For batch mode, customer orders are collected into a "batch" and subsequently considered together to determine the committed due dates for all orders in the batch. While sometimes an initial due date quoting is made in real time, the batch mode is commonly used in practice, e.g. in the e-business order fulfillment systems, as the actual resource allocation and hard order commitment are carried out, see [START_REF] Chen | Quantity and due date quoting available to promise[END_REF].

The literature on order acceptance and due date setting is limited. An exact method for selecting a subset of orders that maximizes revenues for the static problem in which all order arrivals are known in advance is presented by [START_REF] Slotnick | Selecting jobs for a heavily loaded shop with lateness penalties[END_REF], and [START_REF] Lewis | Multi-period job selection: planning work loads to maximize profit[END_REF] developed a dynamic programming approach for the multi-period case. A mixed integer program for a quantity and due date quoting available to promise is presented by [START_REF] Chen | Quantity and due date quoting available to promise[END_REF]. [START_REF] Hegedus | Due date setting with supply constraints in systems using MRP[END_REF] consider order delay costs that measure the positive difference between the quoted due date and the requested due date of an order.

The order acceptance strategies based on scheduling methods are presented by [START_REF] Wester | Order acceptance strategies in a production-to-order environment with setup times and due dates[END_REF], [START_REF] Akkan | Finite-capacity scheduling-based planning for revenue-based capacity managament[END_REF]. In Wester et.al (1992) the decision whether or not to accept a new order depends on how much order tardiness it will introduce to the system. [START_REF] Akkan | Finite-capacity scheduling-based planning for revenue-based capacity managament[END_REF] suggests to accept a new order if it can be included in the schedule such that it is completed by its due date, and without changing the schedule for already accepted orders. [START_REF] Ebben | Workload based acceptance in job shop environments[END_REF] developed a workload based acceptance strategy in a job shop environment. [START_REF] Corti | A capacity-driven approach to establish reliable due dates in MTO environment[END_REF] propose a model supporting decision makers that have to verify the feasibility of customer requested due dates. It adopts a capacity-driven approach to compare the capacity requested by both potential and already confirmed orders with the actual level of available capacity. Zorzini et al. (2008) investigate current practice supporting capacity and delivery lead-time management in the capital goods sector based on a sample of fifteen Italian manufacturers and propose a model to formalize the decision process for setting due dates in the selected cases. Another approach is order acceptance based on revenue management principles, e.g. [START_REF] Harris | Revenue management approach to demand management and order booking in assemble-to-order manufacturing[END_REF], [START_REF] Bertrand | Customer order lead times for production based on lead times and tardiness costs[END_REF], [START_REF] Geunes | Requirements planning with pricing and order selection flexibility[END_REF].

This paper presents a new dual objective problem of due date setting over a rolling planning horizon in make-to-order manufacturing, and proposes a bi-criterion integer programming formulation for its solution. The problem objective is to select maximal subset of orders that can be completed by customer requested dates and to quote delayed due dates for the remaining acceptable orders to minimize the number of delayed orders or the total number of delayed products as a primary optimality criterion and to minimize total or maximum delay of orders, as a secondary criterion. The delay of order is defined to be the positive difference between the due date committed by the manufacturer and the due date requested by the customer. The two approaches: weighted-sum and lexicographic are proposed and compared to a find optimal solutions for the bi-objective due date setting in make-to-order flexible flowshop environment. Some possible enhancements of the basic models are discussed, in particular, a revenue management approach is proposed to maximize total revenue subject to service level constraints.

The major contribution of this paper is that it proposes a simple integer programming approach to the bi-objective due date setting over a rolling planning horizon, in make-to-order environment where the due date setting decisions are directly linked with available capacity.

The proposed model may prove its usefulness as a simple decision support tool for a rough-cut capacity allocation in make-to-order environment. In particular, the proposed lexicographic approach and a two-level decision making hierarchy with very small CPU time required to find optimal solutions is capable of on-line supporting the due date setting decisions in the dynamic make-to-order environment, where new computations are made every time a new order arrives. In addition, a simple critical load index is introduced to quickly identify the system bottleneck and the overloaded periods.

The paper is organized as follows. In the next section description of the due date setting problem over a rolling planning horizon in a make-to-order flexible flowshop environment is provided. The critical load index and some necessary conditions under which all due dates can be met are presented in Section 3, and the proposed integer programming formulations for the weighted-sum and the lexicographic approach are described in Section 4. programming formulation for scheduling customer orders over a rolling planning horizon to minimize maximum earliness of orders with respect to committed due dates is presented in Section 5. Numerical examples modeled after a real-world make-to-order assembly system and some computational results are provided in Section 6. Conclusions are made in the last section.

Problem description

Table 1. Notation

The production system under study is a flexible flowshop that consists of m processing stages in series, where each stage i ∈ I = {1, . . . , m} is made up of m i ≥ 1 identical, parallel machines. In the system various types of products are manufactured according to customer orders, where each product type requires processing in various stages, however some products may bypass some stages. The customer orders are single product type orders.

The order acceptance and due date setting decisions over a rolling planning horizon are assumed to be made periodically upon arrivals of a number of orders in a specific time interval (batching interval), given the set of already accepted orders remaining for processing and the remaining available capacity. The batching interval consists of a fixed number of σ most recent time periods (e.g. days) immediately preceding period t 1 , when the optimization model is about to be executed, i.e. the model is executed every σ time periods at t 1 = 1, 1 + σ, 1 + 2σ, 1 + 3σ, . . .. The problem objective is to plan activities for over a planning horizon, which consists of the ensuing h (h > σ) time periods (e.g. working days) of equal length (e.g. hours or minutes). Denote by T = {t 1 , . . . , t 1 + h -1} the set of planning periods covered in each iteration.

Let J be the set of newly-arrived customer orders collected over a batching interval, and J -the subset of previously-accepted orders remaining for processing, to be completed by

t 1 + h -1.
(Notice that all previously-rejected orders are not considered any more.) Each order j ∈ J (or j ∈ J ) is described by a triple (a j , d j (or dj ), s j (or sj )), where a j is the order ready date (e.g. the earliest release period or the earliest period of material availability), d j is the customer requested due date (e.g. customer required shipping date), dj ≤ t 1 + h -1 is the due date of order j ∈ J committed by the manufacturer, s j is the size of order (required quantity of ordered product type), and sj is the remaining order size.

Let p ij ≥ 0 be the processing time in stage i of each product in order j, and let q ij = p ij s j (or qij = p ij sj ) be the total processing time required to complete order j ∈ J (or j ∈ J) in stage i. Denote by c it the total processing time available in period t on each machine in stage i. The amount c it takes into account the flowshop configuration of the production system and the production/transfer lot sizes. For each machine in stage i, c it must take into account the time required for processing a single production lot at all upstream 1, . . . , i -1 and downstream i+1, . . . , m stages during the same planning period. As a result the available capacity c it is smaller than simply the available machine hours in period t; c it can be bounded as follows (see, Sawik 2007a):

c i ≤ c it ≤ c i , (1) 
where

c i = L -max j∈J ( l∈I:l<i b j p lj ) -max j∈J ( l∈I:l>i b j p lj ), c i = L -min j∈J ( l∈I:l<i b j p lj ) -min j∈J ( l∈I:l>i b j p lj ).
L is the length of each planning period (e.g. working hours per day) and b j is the production/transfer lot size for order j (i.e., order quantity s j is split across multiple lots of size b j ).

When executing the model over time, after each batch execution, the remaining available capacity is converted to fixed input for the next model run (see, (2)). The due date setting decisions are made for a set J of newly-arrived customer orders collected over a batching interval, given the remaining available capacity. The problem objective is to select maximal subset of orders j ∈ J that can be completed by customer requested due dates and to quote delayed due dates for the remaining acceptable orders to minimize the number of delayed orders or delayed products as a primary optimality criterion and to minimize their total or maximum delay, as a secondary criterion.

The two approaches are proposed. A monolithic approach, based on the weighted-sum model where the order acceptance and the due dates setting are determined simultaneously, and a hierarchical approach based on the lexicographic model, where first the maximal subset of acceptable customer orders is selected and then delayed due dates are determined for unrejected, acceptable orders to minimize their total or maximum delay.

Critical load index

In this section a simple critical load index is introduced and some necessary conditions are derived for all customer orders to be accepted and for all requested due dates to be met.
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( j∈J:t≤a j ≤d j ≤d q ij C i (t, d) ) ≤ 1; d ∈ T, i ∈ I (3)
where Ψ i (d) is the cumulative capacity ratio for due date d with respect to processing stage i. If all customer orders were continuously allocated among the consecutive time periods so that all periods could be filled exactly to their capacities, the necessary condition (3) could become sufficient for all orders to be completed by their due dates. Denote by Ψ(d) the cumulative capacity ratio for due date d

If Ψ i (d) ≤ 1,
Ψ(d) = max i∈I Ψ i (d); d ∈ T. (4) 
The ratio Ψ(d), d ∈ T can be used as a simple critical load index to identify the bottleneck stages and the overloaded periods.

Notice that if all customer orders are ready at the beginning of planning horizon, (a j = t 1 ∀j ∈ J), then Ψ(t 1 + h -1) is the cumulative capacity ratio for the entire horizon, i.e., the total capacity ratio. A necessary condition to have a feasible production schedule with all customer orders completed during the planning horizon is that the total capacity ratio is not greater than one

max i∈I j∈J q ij C i (t 1 , t 1 + h -1) ≤ 1 (5)
The basic due date setting problem presented in the next section is applied for orders with requested due dates such that condition (3) is not satisfied. In this case the proposed model determines new, delayed due dates to satisfy (3) and, in addition, to reach some optimality criteria. If, however, condition (3) holds for all customer requested due dates, then the due dates can be met and the due date setting problem becomes trivial and need not to be considered. In this section integer programming formulations are proposed for the bi-objecive due date setting over a rolling planning horizon (Fig. 1). The two sets of the integer programs are proposed: a weighted-sum program DDS, based on scalarization approach, and a hierarchy of two programs OA and DD, based on lexicographic approach.

Bi-objective due date setting

The primary objective of the due date setting problem is to maximize the customer service level, that is to minimize the number of delayed orders O sum , i.e., the orders for which the committed due dates are later than the customer requested dates. Minimization of the number of delayed orders may often lead to a large number of delayed products since a high customer service level can be achieved by setting later due dates for a small number of large size customer orders. Therefore, an alternative primary objective is to minimize the number of delayed products P sum .

Similarly, the two alternative secondary objective functions are considered: minimum of the total delay Q sum of all orders or minimum of the maximum delay Q max among all orders, where the order delay is defined as the positive difference between the committed and the requested due date. While minimization of Q sum aims at reducing the total delay of all postponed customer orders, minimization of Q max gives preference to reduction of the maximum delay with respect to requested due date of each individual order.

The orders that cannot be accepted in periods t 1 through t 1 + h -1 due to insufficient capacity and hence should be rejected are assigned at a significant penalty to a dummy

planning period h * = t 1 + h with infinite capacity. Let T * = T {t 1 + h} = {t 1 , . . . , t 1 + h - 1, t 1
+ h} be the enlarged set of planning periods with a dummy period h * = t 1 + h included.

The following two basic decision variables are introduced in the proposed integer programming models (for notation used, see Table 1).

• Order acceptance variable: x j = 1, if order j is accepted with its requested due date or 

x j = 0 if
y jt = 1, if order j is assigned delayed due date t (d j < t < h * ),
or is rejected (t = h * ); otherwise y jt = 0. Now, the primary and the secondary objective functions f 1 and f 2 can be expressed as below.

f 1 ∈ {O sum , P sum } (6) f 2 ∈ {Q sum , Q max } (7) 
where

O sum = j∈J (1 -x j -y jh * ) (8) 
P sum = j∈J s j (1 -x j -y jh * ) (9) Q sum = j∈J,t∈T :t>d j (t -d j )y jt (10) Q max = max j∈J,t∈T :t>d j (t -d j )y jt (11)
Model DDS: Due date setting to minimize weighted sum of delayed orders or delayed products and total or maximum delay Minimize

λ 0 j∈J y jh * + λ 1 f 1 + λ 2 f 2 (12)
where

λ 0 ≫ λ 1 ≥ λ 2 subject to
1. Order acceptance or due date setting constraints:

-each customer order is either accepted with its requested due date, is assigned a delayed due date or is rejected,

x j + t∈T * :t>d j y jt = 1; j ∈ J (13)

Capacity constraints:

-for any period t ≤ d, the cumulative demand on capacity in stage i of all orders accepted with requested (or delayed) due dates not greater than d and ready dates (or requested due dates, respectively) not less than t must not exceed the cumulative capacity available in this stage in periods t through d j∈J: t≤a j ≤d j ≤d

q ij x j + j∈J τ ∈T : t≤d j <τ ≤d q ij y jτ ≤ C i (t, d); d, t ∈ T, i ∈ I : t ≤ d (14) 8 F o r P e e r R e v i e w O n l y 3. Maximum delay constraints (if f 2 = Q max ):
-for each delayed order j with adjusted due date t > d j , its delay (td j ) cannot exceed the maximum delay Q max ,

(t -d j )y jt ≤ Q max ; j ∈ J, t ∈ T : t > d j (15) Q max ≥ 0 (16)
4. Integrality conditions

x j ∈ {0, 1}; j ∈ J (17)
y jt ∈ {0, 1}; j ∈ J, t ∈ T * : t > d j . ( 18 
)
In the objective function ( 12), λ 1 ≥ λ 2 as the primary objective of DDS is to minimize the number of delayed orders f 1 = O sum (8) or alternatively to minimize total number of delayed products f 1 = P sum (9), delivered after the customer requested dates. The objective function is additionally penalized with λ 0 ≫ λ 1 for each rejected order.

Model DDS for due date setting determines feasible due dates using the capacity constraint ( 14), which is based on condition (3) for the feasibility of customer requested due dates. ( 13) and ( 14) ensure that each accepted order j ∈ J (such that y jh * = 0) is completed on or before its requested due date d j (if x j = 1) or on its delayed due date t > d j (if x j = 0 and y jt = 1). If condition (3) holds for all customer requested due dates, then the due date setting problem DDS becomes trivial and the objective function ( 12) takes on zero value, since x j = 1 ∀j ∈ J and y jt = 0 ∀j ∈ J, t ∈ T * . Otherwise, delayed due dates are determined for some customer orders.

The solution to the integer program DDS determines the maximal subset {j ∈ J :

x j = 1}
of customer orders accepted with the customer requested due dates d j and the subsets of remaining orders: {j ∈ J : x j = 0, y jh * = 0} -delayed orders and {j ∈ J : x j = 0, y jh * = 1} -rejected orders.

Denote by D j , the requested or delayed due date for each newly-arrived and accepted order j ∈ J, or committed due date for each previously-accepted order j ∈ J remaining for processing, i.e., 

D j =          d j if j ∈ J : x j = 1 t∈T :t>d j ty jt if j ∈ J : x j = 0, y jh * = 0 dj if j ∈ J ( 

Lexicographic approach

Since λ 1 ≥ λ 2 in the objective function ( 12), a lexicographic approach can also be applied to solve the bi-objective integer program DDS. Then DDS can be replaced by the following two integer programs OA and DD to be solved sequentially (see, Fig. 2).

Figure 2. A two-level order acceptance and due date setting.

Model OA: Order acceptance to minimize number of delayed /rejected orders or delayed/rejected products Minimize

f 1 (20)
subject to

Capacity constraints:

-for any period t ≤ d, the cumulative demand on capacity in stage i of all accepted orders with due dates not greater than d and ready dates not less than t must not exceed the cumulative capacity available in this stage in periods t through d j∈J: t≤a j ≤d j ≤d

q ij x j ≤ C i (t, d); d, t ∈ T, i ∈ I : t ≤ d (21)

Integrality conditions: (17)

The solution to OA determines the minimal subset J0 = {j ∈ J : x j = 0} of delayed or rejected orders. New, delayed due dates for acceptable orders are determined using the integer program presented below.

Model DD: Due date setting for delayed orders to minimize total or maximum delay Minimize

f 2 + h j∈J0 y j,h * (22) 
subject to

Due date assignment constraints:

-each order is either assigned a due date later than its requested due date or is rejected, 

t∈T * :t>d j y jt = 1; j ∈ J0 ( 
q ij y jτ ≤ C i (t, d) - j∈J\J0: t≤a j ≤d j ≤d q ij ; d, t ∈ T, i ∈ I : t ≤ d (24) 
3. Maximum delay constraints (if 16)

f 2 = Q max ): (15), (
4. Integrality conditions: (18).

The objective function ( 22) is penalized with h periods of delay for each rejected order.

Notice, that if multiple optima (alternative minimal sets J0 of delayed and rejected orders)

exist for the top level problem OA, then the base level problem DD (where a single set J0 is applied only) may produce weakly non-dominated solutions with f 2 greater than those obtained by parameterizing on λ the weighted-sum program DDS. On the other hand, it is well known, that the non-dominated solution set of a multi-objective integer program such as DDS cannot be fully determined even if the complete parameterization on λ is attempted, e.g. [START_REF] Steuer | Multiple Criteria Optimization: Theory, Computation and Application[END_REF].

In order to eliminate the weakly non-dominated solutions, the secondary objective function f 2 should be minimized over the solutions that minimize the primary objective function f 1 .

Then, the constraint set of the base level problem DD should be replaced by the constraints of DDS with additional upper bound f 1 ≤ f * 1 on the corresponding primary objective function (8) or ( 9), where f * 1 is the optimal solution value to the top level problem OA.

Model enhancements

The models presented in this section can be modified or enhanced to consider additional features of the due date setting problem that can be met in practice. A few possible extensions of the models are proposed below.

1. Modified objective functions.

• Maximization of total revenue.

The sales departments often apply revenue management principles for order selec- 

where r j = r j,d j and r jt is per unit revenue for order j accepted with customer requested due date d j and for order j with delayed due date t > d j , respectively.

For rejected orders r * j is per unit loss of revenue. Most often customer value short lead times (due dates) over long lead times. Setting delayed due dates results in reduction of revenue. The revenue declines with an increase in the delay of committed due dates with respect to requested due dates, i.e., r jt > r j,t+1 , t ∈ T, t ≥ d j .

We assume that setting delayed due date results in reduction of revenue proportional to the delay, e.g. [START_REF] Bertrand | Customer order lead times for production based on lead times and tardiness costs[END_REF]. Per unit revenue r jt decreases by some percent for each day of delay (td j ) of delivery with respect to customer requested date d j , for example

r jt = r j (1 -α j (t -d j )); t ≥ d j ,
where 0 < α j < 1 is the rate of daily loss of revenue for order j.

In addition, a fixed loss β j r j (0 < β j < 1) of revenue may be applied for each delayed product in order j, i.e.

r jt = r j (1 -β j -α j (t -d j )); t > d j .
2. Minimum service level required.

If minimization of the number of delayed orders is replaced by another objective function, e.g. maximization of total revenue (25), then the following constraint should be added to the modified model to maintain required service level γ, 0 < γ ≤ 1, where γ is the fraction of non delayed customer orders. Some customers specify requested due date that cannot be delayed. Let JN ⊂ J be the subset of customer orders with nonnegotiable due dates. A feasible solution must satisfy the following constraints Customer specifies a delivery time window, e.g., acceptable latest delay of shipping date δ jmax , j ∈ J. Then, the integer programs must include the following constraints

x j = 1; j ∈ JN ( 
ty jt ≤ d j + δ jmax ; j ∈ J, d j < t ≤ d jmax (28) 
5. Rush orders.

For urgent orders a high priority π j > 1 can be introduced in the objective function, e.g.,

λ 0 j∈J π j y jh * + λ 1 j∈J π j (1 -x j -y jh * ) + λ 2 j∈J,t∈T :t>d j π j (t -d j )y jt ( 29 
)
where λ 0 ≫ λ 1 ≥ λ 2 , and π j = 1 for regular orders.

6. Real-time mode.

The proposed integer programs can be applied in real-time mode upon arrival of each new order, given the set of already accepted orders waiting for processing and the remaining available capacity. In particular, the lexicographic approach that does not require as much computation time as the weighted-sum approach (see Section 6) is capable of quoting due date in real-time mode for each new order.

Scheduling customer orders

Model DDS (or a hierarchy of models OA and DD) is executed over a rolling planning horizon every σ time periods (the length of batching interval) to quote due dates for all newly-arrived orders j ∈ J collected over the most recent batching interval, given the previously-accepted orders j ∈ J remaining for processing. When simulating the execution of model DDS over time, the set j ∈ J of previously-accepted orders remaining for processing must be determined for each model run, which requires detailed scheduling of customer orders to be performed over a rolling planning horizon, e.g. [START_REF] Smutnicki | Scheduling with high variety of customized compound products[END_REF].

In this section the mixed integer program SCO is presented for a non-delayed scheduling of customer orders over a rolling planning horizon. The scheduling objective is to find an assignment of orders to periods over the horizon such that each order is assigned not later than its committed due date and the maximum earliness with respect to the due date among all orders is minimized.

The following two types of customer orders are considered: 1. Small-size, indivisible orders, where each order can be fully processed in a single time period. The small size orders are referred to as single-period orders.

2. Large-size, divisible orders, where each order cannot be completed in one period and must be split into single-period portions to be processed in a subset of consecutive time periods. The large size orders are referred to as multi-period orders.

In practice, two types of customer orders are simultaneously scheduled. Denote by J1 ⊆ J, and J2 ⊆ J, respectively the subset of newly-arrived indivisible and divisible orders, respectively, where J1 J2 = J, and J1 J2 = ∅.

The basic decision variable for scheduling customer orders is order assignment variable z jt , where z jt = 1, if customer order j is assigned to planning period t; otherwise z jt = 0.

In addition, order allocation variable w jt is required to schedule multi-period orders, where w jt ∈ [0, 1] denotes a fraction of a multi-period order j assigned to period t.

Let J = J1 J2 ′ J 2 ′′ be the set of previously-accepted orders, where J1, J2 ′ and J 2 ′′ is the subset of previously-accepted single-period orders waiting for processing, the subset of previously-accepted multi-period orders waiting for processing and the subset of previouslyaccepted and uncompleted multi-period orders remaining for completion, respectively.

It is assumed that the allocation over time of uncompleted multi-period orders j ∈ J 2 ′′ (i.e., such that 0 < t<t1 w jt < 1) remains unchanged, that is,

w jt = wjt , z jt = zjt ; j ∈ J 2 ′′ , t < t 1 + h,
where wjt and zjt are the assignments and the allocation of uncompleted multi-period orders determined at the previous run of the scheduling model. -each multi-period order waiting for processing is assigned to a subset of consecutive planning periods not later than its due date,

Model

z j⌊(τ 1 +τ 2 )/2⌋ ≥ z jτ 1 + z jτ 2 -1; j ∈ J2 J2 ′ , τ 1 , τ 2 ∈ T : a j ≤ τ 1 < τ 2 ≤ D j (32)
2. Order allocation constraints -each order waiting for processing must be completed not later than its due date, t∈T :a j ≤t≤D j

w jt = 1; j ∈ J J1 J2 ′ (33) 
-each single-period order is completed in a single period,

z jt = w jt ; j ∈ J1 J1, t ∈ T : a j ≤ t ≤ D j (34) 
-each multi-period order waiting for processing is allocated among all the periods that are selected for its assignment,

w jt ≤ z jt ; j ∈ J2 J2 ′ , t ∈ T : a j ≤ t ≤ D j (35)

Capacity constraints

-in every period the demand on capacity at each assembly stage cannot be greater than the capacity available in this period, j∈J J p ij s j w jt ≤ m i c it ; i ∈ I, t ∈ T (36)

Maximum earliness constraints

-for each early order j assigned to period t < D j , its earliness (D jt) cannot exceed the maximum earliness E max to be minimized,

(D j -t)z jt ≤ E max ; j ∈ J J1 J2 ′ , t ∈ T : a j ≤ t ≤ D j (37)

Fixed allocation constraints

-the allocation of each uncompleted multi-period order remains unchanged,

w jt = wjt ; j ∈ J 2 ′′ , t ∈ T (38) z jt = zjt ; j ∈ J 2 ′′ , t ∈ T (39)
7. Nonnegativity and integrality conditions If single-and two-period orders are considered only, then (31) can be replaced by the following constraints to guarantee that each order is assigned to at most two consecutive periods,

w jt ∈ [0, 1]; j ∈ J J, t ∈ T : a j ≤ t ≤ D j (40) z jt ∈ {0, 1}; j ∈ J J, t ∈ T : a j ≤ t ≤ D j (41) E max ≥ 0, integer. (42 
z jt + z jt+1 ≤ 2; j ∈ J2 J2 ′ , t ∈ T : a j ≤ t < D j (43) z jt + z jt ′ ≤ 1; j ∈ J2 J2 ′ , t ∈ T, t ′ ∈ T : a j ≤ t < D j -1, t ′ ≥ t + 2 (44)
The objective (30) minimizes the maximum earliness E max (36) among all customer orders or equivalently the maximum difference between order due date and its assignment period such that no tardiness of the customer orders with respect to committed due dates is ensured. The resulting assignment period can be considered to be the latest period of delivery the required parts such that no tardiness of orders is ensured. If for some customer orders the required parts were delivered later than E max periods ahead of the due date, i.e., later than in period max{t 1 , D j -E max } the limited order earliness due to the later parts availability could restrict a reallocation of the orders to the earlier periods with surplus of capacity. In a consequence, tardy orders or even infeasible schedules could occur, with some customer orders unscheduled during the planning horizon.

An implicit objective of SCO is to minimize the maximum level of total input inventory of parts waiting for assembly and the finished products waiting for delivery to the customers, see Sawik (2007b). To minimize the maximum level of total input and output inventory, the ready date a j of each customer order j ∈ J J for each run of model DDS can be replaced by the the latest delivery date of the required parts, i.e.,

a j = max{t 1 , D j -E max } ( 45 
)
Model SCO is executed over a rolling planning horizon every σ time periods. The solution to the mixed integer program SCO determines the assignment of customer orders to planning periods t ∈ [t 1 , t 1 + h) over the current planning horizon and by this the production schedule for customer orders assigned to periods in the next batching interval [t 1 , t 1 +σ-1]. As a result, the solution to SCO determines the set J = {j : z jt = 1, t 1 + σ ≤ t < t 1 + h} of customer orders assigned to periods [t 1 + σ, t 1 + h), i.e., the set of orders remaining for processing over the next planning horizon and hence required for the next run of model DDS, see Fig. 1.

Scheduling single-period orders

The mixed integer program SCO for assignment of single-and multi-period orders can be simplified when only single-period orders are considered. Then, the order allocation variables 

Computational examples

In this section some computational examples are presented to illustrate possible applications of the proposed approach. The examples are modeled after a real world distribution center for high-tech products, where finished products are assembled for shipping to customers.

The distribution center is a flexible flowshop made up of six processing stages with parallel machines. The customer orders require processing in at most four stages: 1, 2, 3 or 4 or 5, and 6. All customer orders are single-period and single-product type orders.

A brief description of the production system, production process, products and the customer orders is given below.

Production system

• six processing stages: 10 parallel machines in each stage i = 1, 2; 20 parallel machines in each stage i = 3, 4, 5; and 10 parallel machines in stage i = 6.

Products

• 10 product types of three product groups, each to be processed on a separate group of machines (in stage 3 or 4 or 5), 5. The length of batching interval: σ = 5 days.

6. Planning horizon: h = 20 days.

In the computational experiments the models DDS and SCO1 were executed three times over a rolling planning horizon to quote due dates for orders collected over the three batching intervals:

• In period t 1 = 1, the due dates ranging from period 1 to period 20 are quoted for 641 customer orders collected over the first batching interval, before period 1.

• In period t 1 = 6, the due dates ranging from period 6 to period 25 are quoted for 75 customer orders collected over the second batching interval [1,5].

• In period t 1 = 11, the due dates ranging from period 11 to period 30 are quoted for 92 customer orders collected over the third batching interval [6,10].

The total of 808 orders are considered over the entire planning horizon [1,30], each ranging from 5 to 9700 products of a single type. The total demand for all products is 551965. For the input data the necessary condition (5) to have a feasible schedule with all orders completed during the planning horizon is satisfied, and hence no order needs to be rejected. Furthermore, the input data indicates that stage 2 has significant over capacity and stage 3, 4 and 5 are bottlenecks.

Each run of the models DDS and SCO1 assigns orders to planning periods over a 20 time-period horizon, which corresponds to the assumption that resource availability is fixed for 20 planning periods in the future. These resources can be reassigned in subsequent runs, i.e. for a σ = 5 days long batching interval, the first and the second runs overlap in 15 time periods and some order assignments set in the first run can be changed in the second run (subject to the constraint that committed order due dates remain unchanged.)

Table 2. Computational results: model DDS Table 3. Computational results: model SCO1 Table 4. Computational results: ex-post solutions

In the computational experiments a single solution to DDS is sought for the weights λ 1 ≥ λ 2 , selected as nonnegative integers. The main purpose of using such weights is to obtain the integer-valued objective function ( 11), which leads to the reduced CPU time required to find proven optimal solution of DDS.

The characteristics of integer program DDS for various objective functions and for the subsequent batching and planning intervals are summarized in Table 2. The size of the integer program is represented by the total number of variables, Var., number of binary variables, Bin., and number of constraints, Cons. Table 2 presents solution values O sum or P sum of the primary objective function f 1 , respectively with λ 1 = 10 or λ 1 = 1 in ( 12), and Q sum or Q max of the secondary objective function f 2 with λ 2 = 1 in (12). Finally, the last column shows CPU time in seconds required to prove optimality of the solution. In addition, the last part of Table 2 presents solution results with maximum revenue R sum (25). All solution values are presented along with the corresponding counter values of the complementary objective functions (in parenthesis).

Table 2 indicates that optimal values for the primary objective functions O sum or P sum are identical for different secondary objective functions Q sum and Q max of the corresponding solutions. In order to reach feasibility, the surplus of demand exceeding available capacity in the beginning periods has been reallocated to later periods with excess of capacity in a similar way for both the secondary criteria. However, the overall solution for the secondary

objective function f 2 = Q sum outperforms that obtained for f 2 = Q max ; f 2 = Q sum leads to
less delayed products, a higher revenue, and a better complementary value of Q max , than the

complementary value of Q sum for f 2 = Q max .
Furthermore, Table 2 demonstrates that for the customer orders collected in the second the solution results are summarized in Table 3. For all objective functions of DDS, model SCO1 yields identical maximum earliness E max = 2, E max = 0 and E max = 0 for subsequent planning horizons, respectively [1,20], [6,25] and [11,30]. The results indicate that for the example considered, all customer orders in the second and the third rolling planning horizon can be completed on due dates (requested or committed).

Notice, that in the computational experiments the number of customer orders collected before period t = 1 is much greater than those collected over the subsequent batching intervals.

As a result, the integer programs DDS and SCO1 for the the first interval [1,20] of the rolling planning horizon have the greatest size.

Demand patterns and the aggregated production schedule over a rolling planning horizon for various objective functions are shown in Fig. 345. Notice similar adjusted demand patterns for min(P sum + Q sum ) (Fig. 4) and for max R sum (Fig. 5). For a comparison, Table 4 presents ex-post solution results for various objective functions, obtained when the demand is known ahead of time for the entire monthly horizon. In particular, Table 4 presents ex-post solutions for the objective of maximizing total revenue (25) subject to service level constraints (26). The resulting demand patterns are shown in Fig. 6. The comparison of the ex-post solutions (Table 4) with the corresponding results on the rolling horizon basis (Table 2) demonstrates that both the total number of delayed orders and the total number of delayed products are smaller for the ex-post solutions. The more demand-pattern information is offered, i.e. the longer is the batching interval, the better solution results are obtained. the number of delayed products leads to smaller values of Ψ at the beginning of the horizon for the adjusted demand, where Ψ > 1 for the original demand. In contrast, the objective of maximizing total revenue leads to more smoothed utilization of the capacity over the horizon. The adjusted demand patterns and the corresponding solution values demonstrate that for a higher service level, more demand is reallocated to later periods, however the number of delayed orders is reduced, which indicates that mainly large customer orders are selected for reallocation to achieve the required service level. The results indicate that the higher service level required, the smaller total number of delayed orders and the greater total number of delayed products.

Table 4 also compares the weighted-sum and the lexicographic approach for the bi-objective problem formulations. The table indicates that CPU times are much smaller for the lexicographic approach. In the example presented in Table 4, the optimal value O sum = 8 or P sum = 39795 for the primary objective function is identical for the two approaches, whereas the secondary objective functions Q sum , Q max are slightly greater for the lexicographic approach, since the optimal value of the primary objective can be achieved for alternative subsets of delayed orders.

Finally, the following simple example illustrates an attempt to find a subset of nondominated solutions to the bi-objective due date setting problem for the entire planning horizon. In the example (1λ 1 )Q max : O sum = 11, Q max = 15 for all λ 1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

f 1 = O sum , f 2 ∈ {Q sum , Q max },
Let us note, however, that the non-dominated solution set of the bi-objective due date setting problem cannot be fully determined even by complete parameterizing on λ the weightedsum program DDS. To compute unsupported non-dominated solutions, some upper bounds on the objective function values should be added to DDS, e.g. [START_REF] Alves | A review of interactive methods for multiobjective integer and mixed-integer programming[END_REF].

Conclusion

The simple integer programming approach proposed in this paper is capable of setting due dates in make-to-order environment, either in a batch mode, where customer orders are collected over a specified time interval or in a real-time mode, where a commitment due date is determined at the time of the customer order arrival. While the real-time mode is preferable by the customer, the batch mode offers the manufacturer more demand-pattern information, and the longer is the batching interval, the larger is the set of orders to optimize over. On the other hand, the computational effort required in real-time mode, where only a few newlyarrived orders are considered at a time is much less than that for the batch mode, where a set of customer orders should be considered simultaneously. The proposed approach is deterministic in nature, however, its usage on the rolling horizon basis, allows for reactive decisions to be made in response to various disruptions in a supply chain.

Limited computational experiments indicate that the weighted-sum approach may outperform the lexicographic approach if multiple optima exist with the same value of the primary objective function, i.e., if alternative minimal subsets of delayed and rejected orders exist. In this case, a smaller total or maximum delay may sometimes be achieved for the weighted-sum approach. The lexicographic approach, however, requires the much smaller CPU time to find the optimal solutions and hence seems to be more suitable for setting optimal due date for each newly-arrived order in a real-time mode. In particular, when the customer expects an immediate confirmation of the order acceptance (or rejection), where otherwise the potential customer can be lost, e.g. in e-Business. The small computational effort required for the proposed model and its quite general setting may prove its usefulness as a simple decision support tool for a rough-cut capacity allocation in the other make-to-order environments, The capacity evaluation at the customer enquiry stage is a critical issue in make to order manufacturing and has a large impact on customer service and reliability of order fulfillment.
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The introduced critical load index can be applied to quickly identify the system bottleneck and the overloaded periods. In contrast to the order acceptance models based on scheduling with due date objectives, where the computational effort required can be prohibitive.

The model proposed directly links customer orders with available capacity, whereas the other resources are assumed to be non-binding, in particular material availability is not considered. The integer programming formulations can be enhanced to account also for a limited material availability. Then, additional material availability constraints should be added to the model. However, an important issue that remains for further investigation is how to best coordinate the due date setting decisions and the subsequent order scheduling subject to material availability to arrive at a feasible schedule with all accepted orders completed by the committed due dates.

In practice, a customer request for quotation may consist of the required quantities of several product types and the requested delivery dates. Then, a typical response to such a customer request should contain the quantity to be fulfilled, the date of delivery and the price based on revenue management principles which may involve penalties associated to deviations from the customer requested quantities and dates. The approach proposed in this paper can be enhanced to handle multiple product orders. The pricing decisions, however, should be based on both tactical factors such as estimated costs, as well as strategic factors, such as the value of a long-term relationship with a customer and the rejection costs. Despite its importance, the price optimization issue in due date setting is underexposed in the literature. New Orders: {j ∈ J : a j , d j , s j } Remaining Orders: {j ∈ J : ãj , dj , sj } -Accepted Orders: {j ∈ J : x j = 1} Delayed or Rejected Orders: {j ∈ J : x j = 0} Due Dates: d j , if j ∈ J : x j = 1 t∈T :t>d j ty jt , if j ∈ J : x j = 0, y jh * = 0 dj , if j ∈ J p ij = processing time in stage i of each product in order j q ij = p ij s j -total processing time required to complete order j in stage i σ = length of batching interval J = set of newly-arrived customer orders collected over a batching interval J = set of previously-accepted customer orders, remaining for processing

F

Decision variables

x j = 1, if order j is accepted with customer requested due date; x j = 0 if order j needs to be delayed or rejected (order acceptance variable) y jt = 1, if order j is assigned delayed due date t, (d j < t < h * ) or is rejected (t = h * ); otherwise y jt = 0 (due date setting variable) z jt = 1, if customer order j is assigned to planning period t; otherwise z jt = 0 (order assignment variable)

w jt ∈ [0, 1] = fraction of multi-period order j assigned to period t (multi-period order allocation variable) 

E max = maximum
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 1 Figure 1. Due date setting and scheduling of customer orders over a rolling planning horizon.
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  Let C i (t, d) be the remaining cumulative capacity available in stage i in periods t through d, after deducting the capacity reserved for orders j ∈ J that were previously committed in earlier model runs but whose production has not yet been completed, i.e.,

	C i (t, d) = m i	c iτ -	qij ; d, t ∈ T : t ≤ d.	(2)
	τ ∈T : t≤τ ≤d	j∈ J:t≤ dj ≤d		
	A necessary condition to meet all customer requested due dates is that for each processing
	stage i, each due date d ≤ t 1 + h -1 and each interval [t, d], t ∈ T : t ≤ d ending with d, the
	demand on capacity does not exceed the available capacity, i.e., (Sawik 2007a)	
	o r Ψ i (d) = max t∈T :t≤d			
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  then for any period t ≤ d the cumulative demand on capacity in stage i of all the orders with due dates not greater than d and ready dates not less than t (numerator

	in (3)) does not exceed the cumulative capacity available in this stage in periods t through d
	(denominator in (3)).
	When Ψ i (d) > 1, then at least one order to be processed at stage i, with requested due
	date not later than d must be delayed or rejected (if d = t 1 + h -1) to meet available capacity
	constraints.

  order j needs to be delayed or rejected,
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• Due date setting variable:

  -for any period t ≤ d, the cumulative demand on capacity in stage i of all accepted orders with requested due dates not greater than d and ready dates not less than t, and of all delayed orders with adjusted due dates not greater than d and requested due dates not less than t must not exceed the cumulative capacity available in this stage in periods t through d

	2. Capacity constraints:
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j∈J0 τ ∈T : t≤d j <τ ≤d

  jt are not required any more and model SCO for single-period orders can be rewritten as below. ij s j z jt ≤ m i c it ; i ∈ I, t ∈ T
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Table 1 .

 1 Notation Input Parameters a j , s j = ready date, size of order j c it = processing time available in period t on each machine in stage i C i (t, d) = cumulative capacity available in stage i in periods t through d d j , ( dj ) = customer requested (manufacturer quoted) due date for order j ∈

	Indices

Table 2 .

 2 earlinessO sum , P sum = total number of delayed orders, delayed products, respectively Q max , Q sum = maximum delay, total delay, respectively Computational results: model DDS jt s j y jt -total revenue (r j = 1 and r jt = 0.80 -0.02(t -d j ); t > d j , j ∈ J )

	R sum	= total revenue

j∈J

(1 -x j ) -total number of delayed orders Psum = j∈J s j (1 -x j ) -total number of delayed products Qsum = j∈J,t∈T :t>d j (t -d j )y jt -total delay Qmax = max j∈J,t∈T :t>d j (t -d j )y jt -maximum delay Rsum = j∈J r j s j x j + j∈J,t∈T :t>d j r

Table 3 .

 3 Computational results: model SCO1

Table 4 .

 4 Computational results: ex-post solutions
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