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Introduction

Breakeven analysis, or often referred to as cost-volume-profit analysis, can illustrate a great number of business decisions. In general the breakeven analysis can be used in three different manners. It can be used in decisions which concern new products by contributing in the definition of the sales level of this new product that is indicated for the realization of profit. It can also be used as a tool for the research of sequences of an increase in the products volume. Finally it can be used in modernization and automatization programs, with the aid of which the company will continuously replace variable costs with fixed ones.

Traditional breakeven analysis obeys to some limiting assumptions [START_REF] Chan | Incremental cost-volume-profit analysis[END_REF], Gonzales (2001), [START_REF] Jaedecke | Cost-volume-profit analysis under conditions of Uncertainty[END_REF]. Some of the most important are the following: It assumes that the total cost can be analyzed in fixed and variable cost. The fixed cost remains the same during the analysis. The variable cost changes proportionally to the volume. The price of the product remains the same during the analysis. The profits and the costs can both be analyzed in relation with the volume. But are always all of these assumptions effective? Let us consider a company which wants to choose between products A and B. Each of them can be produced in the currents plants and demands an increase in the fixed cost of the company of 600.000USD. The contribution margin is 4USD. According to this data the breakeven point for both products is 150.000 units. So the company cannot decide which of these two products to choose. In other words the traditional breakeven analysis gives the company the capability to compute the breakeven point of each product, but it cannot discriminate between the two products. This weakness is due to the fact that the 2 traditional breakeven analysis assumes cost (fixed and variable) price and volume as certain variables. In fact they are random. By considering these variables as random the uncertainty is introduced in breakeven analysis.

Here we propose a completely new method implemented by [START_REF] Chrysafis | On theoretical pricing of options with fuzzy estimators[END_REF] in the field of financial engineering and initially presented by Papadopoulos and Sfiris (submitted for publication). It concerns a new method of constructing fuzzy estimators for the parameters of a given probability distribution function, using statistical data. In statistics, as we know, there is the point estimation of a parameter. But this is not enough for us to derive safe conclusions. That's why statistics introduce confidence intervals. The disadvantage of confidence intervals is that we have to choose the probability so that the parameter for estimation to be in this interval. With this methodology and by making use of the tool of fuzzy numbers we define fuzzy estimators for any estimated parameter, using the confidence intervals. The fuzzy number that results is considered to be the statistical estimator that expresses a degree of an unbiased estimation. The motivation is the following: We wonder if the confidence intervals for the mean µ are the G-cuts of a fuzzy number A. The question that arises is: What does this fuzzy number depict? In other words, if x is a number, what does the membership value A(x) express? The answer is that the membership value A(x) expresses "a degree of unbiased estimation".

Since now many efforts have been realized in studying breakeven analysis under uncertainty. In J. and P. Yunker (2003[START_REF] Yunker | Cost-volume-profit analysis under uncertainty: An integration of economic and accounting concepts[END_REF]Yunker ( ), (2003)), they propose a generalized CVP model including both demand and average cost functions and incorporating very general allowance for stochastic elements. They develop the relationship between expected profit and breakeven probability in the general model. Then in they analyze and apply a CVP under uncertainty model specifically geared toward classroom instruction. It is a simpler model than many of those developed in the research literature, but it does incorporate one advanced component: an ''economic'' demand function relating the expected sales level to price. In R. [START_REF] Papadopoulos | Non-Asymptotic Fuzzy Estimators based on Confidence Intervals, Submitted for publication Ramarathnam[END_REF], the author presents a decision support system for applying cost-volume-profit analysis in an uncertain environment. He considers a decision support system for applying cost-volume-profit analysis in an uncertain environment. Product mix programming problem is considered when the contributions of the products are stochastic in nature. [START_REF] Jaedecke | Cost-volume-profit analysis under conditions of Uncertainty[END_REF] provided the seminal work regarding CVP analyses' lack of inclusion of uncertainty. That work, along with others [START_REF] Dickinson | Cost-volume-profit analysis under uncertainty[END_REF], [START_REF] Badr | Optimizing and satisfying in stochastic cost-volume-profit Analysis[END_REF]Loudeback (1979), Shih ((1979), [START_REF] Norland | Refinements in the Ismail-Loucerback Stochastic CVP Model[END_REF], [START_REF] Clarke | Bring uncertainty into the CVP analysis[END_REF], [START_REF] Chung | Cost-volume-profit analysis under uncertainty when the firm has production flexibility[END_REF] recognized as a major shortfall in the traditional analysis the likelihood that there would be uncertainty regarding much of the information used. Most of the studies focusing on uncertainty with CVP or breakeven analysis have focused on demand uncertainty, probably because the typical uses of the technique involve determining whether an opportunity for profit existed at a projected level of demand [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF]].

In this paper we extend the traditional breakeven analysis to accommodate situations that the variable cost is uncertain as [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF] do, but here we make use of fuzzy estimators. Finally we consider conditions of complete uncertainty and we express the breakeven point, in units of product as a fuzzy number by making use of fuzzy estimators for all the variables (fixed cost, variable cost, price, volume). In all of the applications, a numerical example is given for better understanding.

Fuzzy Set Theory

Basic Concepts

Here we need the following definitions and propositions [Klir, Yan (1995)]: 

Definition 2.1: If A is a function from X into the interval [ ] 1 , 0 then A is called a fuzzy set. A is convex iff or every [ ] 1 , 0 t and X x x 2 1 , we have { } ) ( ), ( min ) ) 1 ( ( 2 1 2 1 x A x A x t tx A + (2.
1. A is normal, 2. A is a convex fuzzy set, 3. A is upper semicontinuous, 4. The support of A, ( ] { } U 0 ) ( : 1 , 0 > = x A x A a a is compact.
Then the a-cuts of A are closed intervals. We also know that if

B A a a = ] 1 , 0 [ a for arbitrary fuzzy sets A and B then B A = .
For the realization of the operations we use [START_REF] Nguyen | A Note on the Extension Principle for Fuzzy Sets[END_REF] and we have:

) , ( )] , ( [ B A f B A f a a a = ] 1 , 0 [ a (2.1.4) if )] ( ) ( [ sup , ) ( ) , ( 1 y x Z z A x f y x µ µ is attained.
We also mention that the a-cut of a fuzzy number A can be written as an interval of this form:

(2.1.5)

Arithmetic operations on Intervals

Fuzzy arithmetic is based on two properties of fuzzy numbers [Klir, Yan (1995) . When one of the above intervals is degenerated, we obtain special operations; when both of them are degenerated we obtain the standard arithmetic of real numbers.

Non-Asymptotic Fuzzy Estimators Based on Confidence Intervals

Here we present the method implemented by [START_REF] Chrysafis | On theoretical pricing of options with fuzzy estimators[END_REF] in the field of financial engineering and initially presented by Papadopoulos and Sfiris: Proposition 4.1: Let 1 2 , ,..., n be a random sample and let 1 2 , ,... n x x x be sample values assumed by the sample. Let also is a fuzzy number, the base of which is exactly the 1-T confidence interval for µ and the G-cuts of this fuzzy number are the closed intervals:

[ ) 0,1 . If the sample size is large enough, then 1 1 2 1 1 1 2 / ( ) 2 1 1 1 2 / x x if x x x n n M x x x if x x x n n ! " ! # $ " # $ = % " + ! ! " # $ # $ & (4.1)
(4.2)
which are exactly the ( )( )

1 1 T a confidence intervals for µ.
Where ( )

1 G G 2 2 2 g = + ! # $ , [ ] : 0,1 ,0.5 2 g ' ( ! ) * + , # $ and ( ) ( ) ( ) 1 G 1 G g z g =
Proposition 4.2: Let X be a random variable and 1 2 , ,... n x x x be observations on X. Let also

[ ) 0,1 . If the sample size is large enough, then 2 2 2 1 2 2 2 1 2 2 1 1 1 1 2 2 1 1 2 1 ( ) 2 2 1 1 1 1 2 2 1 1 2 1 n s s if x s x n M x n s s if s x x n " ! ! ! # $ " # $ + ! " " # $ = % " ! ! " ! # $ # $ " ! " # $ & (4.3)
is a fuzzy number, the base of which is exactly the 1-T confidence interval for 2 s and the G-cuts of this fuzzy number are the closed intervals:

( ) ( ) 2 2 G G G , 2 2 1 1 1 1 g g s s M z z n n ' ( ) * ) * = ) * + ) * + , (4.4)
which are exactly the ( )( )

1 1 T a confidence intervals for 2 s .
Where 

( ) 1 G G 2 2 2 g = + ! # $ , [ ] : 0,1 ,0.5 2 g ' ( ! ) * + , # $ and ( ) ( ) ( ) 1 G 1 G g z g = ( ) ( ) G G G , g g M x z x z n n ' ( = + ) * + , F o r P e e r
[ ) 0,1 . If the sample size is small, then 1 1 2 1 1 1 2 / ( ) 2 1 1 1 2 / x x F i f x F x x s n M x x x F if x x x F s n " ! ! # $ " # $ = % " + ! ! " # $ # $ & (4.5)
is a fuzzy number, the base of which is exactly the 1-T confidence interval for µ and the G-cuts of this fuzzy number are the closed intervals:

( ) ( ) , a g a g a s s M x t x t n n ' ( = + ) * + , (4.6)
which are exactly the (1-G)(1-T) confidence intervals for µ .

Where ( )

1 2 2 2 g a - = + ! # $ , [ ] : 0,1 , 0.5 2 g ' ( ! ) * + , # $ and ( ) ( ) (
)

1 1 g t F g - - =
Proposition 4.4: Let 1 2 , ,..., n be a random sample and let 1 2 , ,... n x x x be sample values assumed by the sample. Let also

[ ) 0,1 . If the sample size is small, then 2 2 2 1 1 2 2 2 1 1 2 2 ( 1) ( 1) ( 1) 1 1 1 2 2 ( ) 2 2 ( 1) ( 1) ( 1) 1 2 1 1 2 2 n s n s n s F i f x x F F M x n s n s n s F i f x x F F " ! # $ " ! ! " # $ # $ = % " + ! " # $ " ! ! # $ # $ & (4.7)
is a fuzzy number, the base of which is exactly the 1-T confidence interval for 2 s and the G-cuts of this fuzzy number are the closed intervals: Where ( )

( ) ( ) 2 2 2 2 1 ( 1) ( 1) , a g a g a n s n s M x x ' ( = ) * ) * + , (4.8) 
1 2 2 2 g a - = + ! # $ , [ ] : 0,1 , 0.5 2 g ' ( ! ) * + , # $ and ( ) ( ) ( ) 2 1 1 g x F g - - =

Fuzzy Estimators for low-cost alternatives in breakeven analysis

We consider two alternatives, (A) and (B), with the following cost structures [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF]]:

(5.1) (5.2) C: cost, F: Fixed Cost, V: Variable Cost, n: Production volume

An assumption implicit in these equations is that once variable cost has been realized, it applies to all the units in the production volume [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF]].

Let us now consider the difference between these alternatives which will help us derive which alternative is the lower cost [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF]].

(5.3)

In [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF] the authors mention that variable costs are often projections of future cost per unit and are comprised of such costs as labour, materials, utilities, etc., which can be difficult to predict and subject to inflation or other environmental factors. Variable costs include such product-specific issues as inspection costs, rework costs and scrap costs [START_REF] Lin | Cost-tolerance analysis model based on a neural networks method[END_REF]] as well as maintenance costs [START_REF] Sheu | A decision model for corrective maintenance management[END_REF]] Research devoted to the impact of learning curves often focuses on its effects on variable costs [START_REF] Finch | The impact of learning rate and constraints on system performance[END_REF], [START_REF] Smunt | Log-linear and non-log-linear learning curve models for production research and cost estimation[END_REF]].

Thus we consider the variable cost as a random variable thus we can estimate its expected price. Here we do that by using the fuzzy estimators.

It holds that if a random variable

2 2 1 1 X a X a Y = then ) ( ) ( ) ( 2 2 1 1 X E a X E a Y E = , thus n V E F F n D E n V E V E F F n D D B A B A B A ) ( )) ( ( )] ( ) ( [ ) ( + = . + =
(5.4)

Let us now consider the fuzzy estimators for the variable cost of the alternatives A and B. Here we will consider that the sample is large. Thus for our computations we will use propositions 1, 2 (we can do exactly the same process if we consider that the sample is small by using propositions 3, 4).

n V F n C n V F n C B B B A A A + = + = ) ( ) ( n V F F n V V F F n C n C n D D B A B A B A B A + = + = = ) ( ) ( ) ( ) ( F o r P e e r R e v i e w O n l y 1 1 2 1 1 1 2 / ( ) 2 1 1 1 2 / VA A A A VA VA VA VA VA A A A VA VA VA x v if v x v n n E x v x if v x v n n " ! ! ! # $ " " # $ = % " + ! ! " ! # $ " # $ &
(5.5)
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In order to realize the appropriate operations with the fuzzy estimators, we need to find their a-cuts. The acuts of the fuzzy estimators are the following:

] , [ ) ( ) ( ) ( vA vA a g A vA vA a g A A a n z v n z v V E + = (5.7) ] , [ ) ( ) ( ) ( vB vB a g B vB vB a g B B a n z v n z v V E + = (5.8) So it results that: ] , [ ) ( ) ( ) ( ) ( ) ( vB vB a g B vA vA a g A vB vB a g B vA vA a g A D a n z v n z v n z v n z v V E + + =
(5.9) We consider fuzzy D and we take from (1) the following result:

vB vB a g B vA vA a g A B A l a n nz nv n nz nv F F D ) ( ) ( + = (5.10) vB vB a g B vA vA a g A B A r a n nz nv n nz nv F F D ) ( ) ( + + + =
(5.11) We now need to find the fuzzy number D from its a-cuts. So we have:

F o r P e e r R e v i e w O n l y 9 - ! ! ! ! ! $ # + + + + = . ! ! ! ! ! $ # + + + + = + ! $ # . ! ! ! ! ! $ # + + + + = . + + = . + + = . + = 1 2 2 2 1 ) ( )) ( 1 ( 1 ) ( ) ( ) ( vB vB vA vA B A B A vB vB vA vA B A B A vB vB vA vA B A B A vB vB vA vA B A B A vB vB vA vA B A B A a g vB vB a g B vA vA a g A B A n n n n x nv nv F F n n n n x nv nv F F a n n n n x nv nv F F a g n n n n x nv nv F F a g n n n n x nv nv F F z n nz nv n nz nv F F x (5.12) But ] 1 . 0 [ a
thus we will create the next inequality and we will solve it in order to find x:

B A B A B A B A vB vB vA vA vB vB vA vA B A B A vB vB vA vA B A B A nv nv F F x nv nv F F n n n n n n n n x nv nv F F n n n n x nv nv F F + + + + . + + + + . ! ! ! ! ! $ # + + + + ) )( 2 ( 0 ) 2 ( 1 1 2 0 1 1 (5.13) Similarly we derive that . ! ! ! ! ! $ # + + = . + + + + = . + + + + = . + + + = vB vB vA vA B A B A vB vB vA vA B A B A vB vB vA vA B A B A a g vB vB a g B vA vA a g A B A n n n n x nv nv F F a g n n n n x nv nv F F a g n n n n x nv nv F F z n nz nv n nz nv F F x ) ( )) ( 1 ( 1 ) ( ) ( ) ( F o r P e e r R e v i e w O n l y 10 - ! ! ! ! ! $ # + + = . ! ! ! ! ! $ # + + = + ! $ # 1 2 2 2 1 vB vB vA vA B A B A vB vB vA vA B A B A n n n n x nv nv F F n n n n x nv nv F F a (5.14) But ] 1 . 0 [ a thus: B A B A vB vB vA vA B A B A vB vB vA vA B A B A vB vB vA vA B A B A nv nv F F n n n n x nv nv F F n n n n x nv nv F F n n n n x nv nv F F + + + < + . + + . ! ! ! ! ! $ # + + ) )( 2 ( 0 ) 2 ( 1 1 2 0 1 1
(5.15) So the fuzzy D is the following:

" " " " " " " " " " & " " " " " " " " " " % + + + < + ! ! ! ! ! $ # + + + + + + ! ! ! ! ! $ # + + + + = otherwise nv nv F F n n n n x nv nv F F n n n n x nv nv F F nv nv F F x nv nv F F n n n n n n n n x nv nv F F x D B A B A vB vB vA vA B A B A vB vB vA vA B A B A B A B A B A B A vB vB vA vA vB vB vA vA B A B A 0 ) )( 2 ( , 1 2 ) )( 2 ( , 1 2 ) ( 1 1 (5.16)
In [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF] the authors mention that it is so important, in the process of estimating the cost as a random variable, the selection of the appropriate distribution. In some situations, the distribution can be known from experience, in which case the problem is reduced merely to selecting the appropriate parameters [START_REF] Asiedu | Simulation-based cost estimation under economic uncertainty using kernel estimator[END_REF]]. But in most situations the distribution is not known and must be determined. The estimation of the variable cost associated with the production of a product, is essentially a forecast of the issues that contribute. In other words they consider the estimation of the expected variable cost as unbiased and the distribution of the error as normal. Thus the distribution of possible variable costs creates a total cost curve that has an expanding range of possible total costs as the production volume increases. They apply 3-sigma limits to that error and in that way they estimate an expected range of possible costs at any given volume. Here we applied fuzzy estimators for the expected value of the random variable. We used propositions 1,2 where we consider that the sample is large. Furthermore, we could use propositions 3,4 if the sample was small. One of the greatest advantages of this method in relation with the most of the existing ones is that we do not need to consider a certain distribution for the random variable, in this instance the cost. Regardless of the fact that we have a large or a small sample we do not need to know the distribution of the sample.

But this is not the most important novelty of this paper. Next, we will see that we realize a more detailed analysis in relation with the existing probabilistic methods, which accommodates the decision making of a company as concerning the production section. As [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF] do, we also assume that the cost function remains linear and that although there is uncertainty concerning the cost per unit, the cost per unit does not change from unit to unit. [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF]]p.4336]: Suppose two alternative cost functions A and B. Alternative A has a fixed cost of 35500USD an expected variable cost of 810USD per unit with a standard deviation of 30USD. Alternative A has a fixed cost of 52000USD and an expected variable cost of 330USD per unit with a standard deviation of 25USD with a standard deviation. The number of observations from which we derive the expected variable cost and the standard deviation both for alternatives is 36

Numerical Example [revisited

= = vB vA n n
. Let us depict the curves for the variable cost and also find the fuzzy D in order to be able to choose the low cost alternative for different volumes (n). .

In table 1, we can see the fuzzy estimators for difference between the two alternatives for different values of n. We note that until n = 32 the 0-cuts of ) (x D , take only negative values, that is to say

B A C C >
so the best alternative is B. From n=33 to n= 36 the left tails negative and the right tail positive, so we maybe have a better alternative we maybe not because the difference can be zero for a specific membership grade (a=0.02). From n=37 and then the 0-cuts of ) (x D are positive that is to say In our paper we do not use probability theory but fuzzy sets theory. The table we developed (Table 1) presents the difference between costs of the two alternatives as a fuzzy number and in particular as a fuzzy estimator. Our target is not to talk about the probabilities of alternatives as Finch and Gavirneni [9] do. For each production volume (n) we provide a fuzzy estimator for the difference of costs of the alternatives. This fuzzy number is defined on [0,1]. Thus we can derive for every membership grade on [0,1] (and not probability) which is the sign of the difference D(x) and consequently which alternative is most preferable. For example we can say that for production volume n=35, with membership grade 0.96, the difference D(x) [284.07, 315.93]. Thus it is easy to understand that since D(x)>0 the best alternative is B. Reversely we can search the membership grade for certain (n) and D(x). For example, for production volume n=35 the difference D(x) = 199.4 with membership grade 0.75. The same process we can follow for all production volumes, for all membership grades [0,1]. In that we way we consider that we have managed to provide a more detailed analysis. Furthermore we believe that this method is a completely new approach, which gives us the opportunity to develop o a completely new "philosophy" in cost analysis. It is a fact that this method is more complicated mathematically. That is why we developed simple software which can realize these operations comfortably and easy. Table 1: Fuzzy estimators of ) (x D , for different production volumes. [START_REF] Finch | Confidence intervals for optimal selection among alternatives with stochastic variable costs[END_REF] the authors developed a formula which shows the probabilities for which alternatives A and B are low cost for any value of n. In this paper, we provide a fuzzy estimator for D(x) using formula (5.16) (difference of costs of the alternatives) Thus if we want to talk simple we can say that with our method we derive a fuzzy number for the difference between the costs of the alternatives. Reversely, we can also search which is the membership grade for certain production volume (n) and certain D(x). Furthermore we can do the same thing for the costs by using the fuzzy estimators for them by (5.5) and (5.6). As we can see, we managed to provide a more detailed analysis as concerning the choice of the best alternative.

CVP analysis under uncertainty

The fact that the CVP analysis is based on some limiting assumptions, we have mentioned above, decrease its usefulness. Here we try to remove some of these assumptions so that the breakeven point analysis can be used in cases where the information is limited. According to quality and the quantity of the information given as concerning a specific financial condition we can discriminate three kinds of uncertainty: ignorance, economic indeterminacy, risk. The case of ignorance is when we lack of information. Economic indeterminacy is the case that the decision of a company or a manager depends on the actions of other companies or managers. Risk is the variance of the profit that the companies can realize [START_REF] Holmen | A cash flow cost-volume-profit model[END_REF], [START_REF] Shubic | Risk, Information, Ignorance and Indeterminacy[END_REF]].

Let us consider a company which wants to choose between products A and B. Each of them can be produced in the currents plants and demands an increase in the fixed cost of the company of 20000USD. The contribution margin is 4USD. According to this data the breakeven point for both products is 5000 units. So the company cannot decide which of these two products to choose. In other words the traditional breakeven analysis gives the company the capability to compute the breakeven point of each product, but it cannot discriminate between the two products. This weakness is due to the fact that the traditional breakeven analysis assumes cost (fixed and variable) price and volume as certain variables. Here we use the fuzzy estimators (here we use the a-cuts in order to realize the operations of fuzzy numbers) in order to express the uncertainty of these parameters. So let us consider:

] , [ ) ( ) ( ) ( f f a g f f a g a n z f n z f F E + = (6.1) ] , [ ) ( ) ( ) ( p p a g p p a g a n z p n z p P E + = (6.2) ] , [ ) ( ) ( ) ( v v a g v v a g a n z v n z v V E + = (6.3) ] , [ ) ( ) ( ) ( q q a g q q a g a n z q n z q Q E + = (6.4)
Thus the profits can be described by the following formula [Yunker and Yunker (2003)]:

F V P Q profits = ) (
(6.5) Q: production volume, P: price, V: variable costs, F: fixed cost By considering them as random variables we take the expected values:

) ( )] ( ) ( )[ ( ) ( F E V E P E Q E profits E = (6.6)
Then we make use of fuzzy estimators:

. = ) ( )] ( ) ( )[ ( ) ( F E V E P E Q E profits E a a a a a f f a g v v a g p p a g q q a g l a n z f n z v n z p n z q profits E ) ( ) ( ) ( ) ( ) )( ( ) ( = (6.7) f f a g v v a g p p a g q q a g r a n z f n z v n z p n z q profits E ) ( ) ( ) ( ) ( ) )( ( ) ( + + + + = (6.8)
The risk can be expressed with the standard deviation of the profits:

2 2 2 2 2 2 2 2 2 )] ( ) ( [ ) )( ( ) ( F Q V P V P Q V E P E Q E + + + + + =
Then we make use of fuzzy estimators and by realizing the appropriate operations we derive:

F o r P e e r R e v i e w O n l y 14 1 2 1 1 2 1 ) ( 1 2 1 1 2 1 ) ( 1 2 1 1 2 1 1 2 1 ) ( ) ( 2 ) ( 2 ) ( ) ( ) ( 2 ) ( 2 2 ) ( ) ( 2 ) ( 2 ) ( 2 + + + + ! ! ! ! ! $ # + + + + ! ! ! ! ! $ # + + + + = f a g f q a g q v v a g p p a g v a g v p a g p q q a g v a g v p a g p q a g q l a n z s n z s n z v n z p n Z s n Z s n z q n Z s n Z s n z s risk SD (6.9) 1 2 1 1 2 1 ) ( 1 2 1 1 2 1 ) ( 1 2 1 1 2 1 1 2 1 ) ( ) ( 2 ) ( 2 ) ( ) ( ) ( 2 ) ( 2 2 ) ( ) ( 2 ) ( 2 ) ( 2 + + + + ! ! ! ! ! $ # + + + ! ! ! ! ! $ # + = f a g f q a g q v v a g p p a g v a g v p a g p q q a g v a g v p a g p q a g q r a n z s n z s n z v n z p n z s n z s n z q n z s n z s n z s risk SD (6.10)
Numerical Example: We now assume that the all the factors of the breakeven point analysis are random variables (fixed cost, variable cost per unit, price per unit). We do not know the distribution function of these random variables but we make use of fuzzy estimators thus, we do not need to. So let us consider the next data: Product A: The average fixed cost is 20000USD which results from a sample of 36 observations with standard deviation to be 2000, the price per unit is 20USD and results from a sample of 36 observations with standard deviation to be 2, the variable cost per unit is 16USD and results from a sample of 36 observations with standard deviation to be 1.5, the production volume is 7000 and results from a sample of 36 observations with standard deviation to be 500. Product B: The average fixed cost is 20000USD which results from a sample of 36 observations with standard deviation to be 1500, the price per unit is 20USD and results from a sample of 36 observations with standard deviation to be 2.5, the variable cost per unit is 16USD and results from a sample of 36 observations with standard deviation to be 1, the production volume is 7000 and results from a sample of 36 observations with standard deviation to be 500.

Solution:

The 0-cut of profits for the product For the figures 5, 7 the x axis represents the profit and the y axis the membership grade. For figures 6, 8 the x axis represents the risk (measured by standard deviation) and the y axis the membership grade. Thus for each membership grade the company can decide for the choice of the combination of risk and profit comparing these two products.

Fuzzy Estimators for the Breakeven Point in Production Volume

According to this methodology we can consider that the profits are zero. Thus we can derive the fuzzy breakeven point. The break even point in production volume is given by the equation:

V P F Q = * (7.1)
We consider total fixed cost, price per unit, and variable cost per unit as random variables. So we have the above equation under uncertainty by having the expected prices of these variables.

) ( ) ( ) ( ) ( * V E P E F E Q E = (7.2)
Now we consider the fuzzy estimators for the expected prices of these variables.

] , [ ) ( ) ( ) ( f f a g f f a g a n z f n z f F E + = (7.3) ] , [ ) ( ) ( ) ( p p a g p p a g a n z p n z p P E + = (7.4) ] , [ ) ( ) ( ) ( v v a g v v a g a n z v n z v V E + = (7.6) Thus we have: ] , [ ] , [ ) ( ) ( ) ( ) ( ) ( ) ( ) ( * v v a g p p a g v v a g p p a g f f a g f f a g a n z v n z p n z v n z p n z f n z f Q E + + + = (7.7) F o r P e e r R e v i e w O n l y v v a g p p a g f f a g l a n z v n z p n z f Q E ) ( ) ( ) ( * ) ( + + = and (7.8) v v a g p p a g f f a g r a n z v n z p n z f Q E ) ( ) ( ) ( * ) ( + = (7.9)
We now need to find the fuzzy number for this a-cut. I) Let: 

. = + + . + + = f f a g v v a g p p a g v v a g p p a g f f a g n z f n xz vx n xz xp n z v n z p n z f x ) ( ) ( ) ( ) ( ) ( ) ( - ! ! ! ! ! $ # + + + = . ! ! ! ! ! $ # + + + = + ! $ # . ! ! ! ! ! $ # + + + = + ! $ # . ! ! ! ! ! $ # + + + = . + + + = . + + + = . = + + + 1 2 2 2 1 1 2 2 1 ) ( 1 )) ( 1 ( ) ( 1 ) ( ) ( f f v v p p f f v v p p f f v v p p f f v v p p f f v v p p f f v v p p a g f f v v p p a
# + + + . ! ! ! ! ! $ # + + + 1 2 1 1 2 0 f f v v p p f f v v p p n n x n x xp vx f n n x n x xp vx f 0 ) 2 ( 1 + + + f f v v p p n n x n x xp vx f (7.11) So we have the next two inequalities: 1) v p f x thus v p but f v p x n n x n x xp vx f f f v v p p > . + + + 0 ) ( 0 (7.12) 2) . + + . + + + f f v v p p f f v v p p n x n x n f vx px n n x n x xp vx f ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 1 1 1 ) )( 2 ( ) 2 ( ) 2 ( ) )( 2 ( 1 1 1 1 v v p p f f f f v v p p n n v p f n x f x n n n v p x + + . + * * , ( ) ) + ' + ( 
! ! ! ! ! $ # + + + = . + + + = . + + + = . = + + . + = . + = f f v v p p f f v v p p f f v v p p a g f f v v p p a g f f a g v v a g p p a g v v a g p p a g f f a g n n x n x xp vx f a g n n x n x xp vx f a g n n x n x xp vx f z f vx n n x n x z xp n z f n xz vx n xz xp n z v n z p n z f x ) ( 1 )) ( 1 ( ) ( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( . ! ! ! ! ! $ # + + + = + ! $ # . ! ! ! ! ! $ # + + + = + ! $ # f f v v p p f f v v p p n n x n x xp vx f a n n x n x xp vx f a 2 2 1 1 2 2 1 - ! ! ! ! ! $ # + + + = 1 2 f f v v p p n n x n x xp vx f (7.14) But ] 1 , 0 [ a thus, 0 ) 2 ( 1 2 1 1 2 0 1 + + + . ! ! ! ! ! $ # + + + . ! ! ! ! ! $ # + + + f f v v p p f f v v p p f f v v p p n n x n x xp vx f n n x n x xp vx f n n x n x xp vx f (7.
) v p f x thus p v but f p v x n n x n x xp vx f f f v v p p > < . < + + + 0 ) ( 0 (7.16) 2) ) )( 2 ( ) 2 ( ) 2 ( ) )( 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( 1 1 1 1 1 1 1 1 v v p p f f f f v v p p f f v v p p f f v v p p n n v p f n x f n n n v p x n x n x n f vx px n n x
) ) + ' + ) )( 2 ( 1 v v p p n n v p without changing the inequality because 0 ) )( 2 ( 1 > * * , ( ) ) + ' + v v p p n n v p since 0 > v p and for 0 ) )( 2 ( 1 < + v v p p n n 01 . 0 = ( 
that we will use next.

So we derived that the fuzzy break even point in units of product is: 

" " " " " " " " " " " " " & " " " " " " " " " " " " " % + + + < ! ! ! ! ! $ # + + + + + ! ! ! ! ! $ # + + + = otherwise n n v p f n x v p f n n x n x xp vx f v p f x n n v p f n n n x n x xp vx f x Q v v

Solution:

  In figure (1) we depict the variable cost functions. The x axis represents the production volume and y axis represents the cost. If we consider the fuzzy estimators for the cost the lines of figure1represent their a-cuts and in particular the 0-cut and the 1-cut. The upper three lines depict the alternative A and the lower three lines depict the alternative B. The lower line of the first triple is

  alternative is A. We can confirm these results if we zoom in figure (1). So, let us see in figure (4): Until the intersection of Ar C a better alternative we maybe not, because the difference can be zero. From this point and then, n = 35), we present the fuzzy estimators for the costs and difference respectively. In figure2the x axis represents the cost and the y axis represents the membership grade on [0,1] of the membership function of the fuzzy estimator for cost. In figure 3 the x axis represents the difference of costs of the two alternatives and the y axis represents the membership grade on [0,1] of the membership function of the fuzzy estimator for the difference D(x).
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  Figure 3: Fuzzy Estimators of ) (x D for n=35.
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  15)So we have the next two inequalities:
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  It is known that the a-cuts determine the fuzzy set A. Let now A and B denote fuzzy numbers and let * denote any of the four basic arithmetic operations. Then, we define a fuzzy set on , We say that A is a fuzzy number if the following conditions hold:

	A is normalized if there exists	x	X	, such that	) ( = x A	1	.
	Definition 2.2: If A is a fuzzy set, by a-cuts	a		[ ] 1 , 0	we mean the sets	a	A	=	{ x	X	:	A (	x	)	} a	.
																A* B , by defining it's
	a-cut,	a	) ( B * A	as											
								a	(	A	*	B )	=	a	A * a	B	(2.1.2)
	for any Definition 2.3: ]. 1 , 0 ( a	F o r								
						P							
							e				
								e r
												R e v
																i e
																w
																O n l
																y
																1.1)
																3

  propositions.

	Proposition 2.1: Let	f	:	X	x	Y	Z	,	and	A		P	(	X	),	B	P	( Y	)	then:
																				1
																	f	(	A ,	B	)	=	af	(	a	A ,	a	B	)	da	(2.1.3)
																				0
	Proposition 2.2: With the notation of the proposition 2.1 and If	f	:	×	is continuous then,
	, A	B	P	(	,	S	,	K	)										

  Let 1 2 , ,..., n be a random sample and let 1 2 , ,... n x x x be sample values assumed by the sample. Let also

	Proposition 4.3:
	R e v
	i e
	w
	O n l
	y

6: Fuzzy Estimators of profit (up) and risk (down) for product A.

  

												Figures 7,			
																						F o r
																										P
																										e
																										e r
																										R e v
																										i e
																										w
																										O n l
																										A is	0	E	(	profits	)	45 . 3911 y [ = A	,	3 7 . 20556	]	and
	for	0	E	(	profits	)	B	=	[		82 . 3696	,	] 74 . 20341	.	As concerning the 1-cut it is easy to see
	that	1	E	(	profits	)	A	=	1 E	(	profits	)	B	=	8000	. The 0-cut of risk for the product A is	0	SD	A	=	[	38 . 2016	,	3 7 . 6387	]
	and for	0	SD	B	=	74 . 1755 [	87 . 6180 ,	]	.	As concerning the 1-cut it is easy to see that
	1	SD	A	=	4 . 3099	and	1	SD	B	=	38 . 2848	. Next we depict the fuzzy estimators for profit and risk for each product.

Figures 5,

8: Fuzzy Estimators of profit (up) and risk (down) for product B.
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	n	memebership grade		difference D(n) = x
	25		0		-5090.23		-3909.77
			1			-4500
	26		0		-4633.84		-3406.16
			1			-4020
	27		0		-4177.45		-2902.55
			1			-3540
	28		0		-3271.06		-2398.94
			1			-3060
	29		0		-3264.67		-1895.33
			1			-2580
	30		0		-2808.28		-1391.72
			1			-2100
	31 32 33	F o r	0 1 0 1 0 1		-2351.89 -1895.5 -1439.11	-1620 -1140 -660	-888.11 -384.5 119.11
	34 35	0 1 P 0	-982.72 -526.33	-180	622.72 1126.33
	36	1 e 0	-69.93	300	1629.93
	37		1 0 1	e r	386.46	780 1260	2133.54
	38		0		842.85		2637.15
	39 40 41 42		1 0 1 0 1 0 1 0 1	1299.24 1753.63 2212.02 v R e i 2668.41 e	1740 2220 2700 3180 3660	3140.76 3644.37 4147.98 4651.59
	43 44		0 1 0		3124.8 w 3581.19	4140	5155.2 5658.81
	45 46 47 48		1 0 1 0 1 0 1 0		4620 5100 O 4037.58 4493.97 5580 n 4950.36 l 6060 y 5406.75	6162.42 6666.03 7169.64 7673.25
			1			6540
	49		0		5863.14		8176.86
			1			7020
	50		0		6319.53		8680.47
			1			7500
	51		0		6775.93		9184.07
			1			7980
	52		0		7232.32		9687.68
			1			8640
	53		0		7688.71		10191.29
			1			8940

Table 1 : Some membership grades for different volumes. Page 35 of 35 http
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Numerical Example: Let us consider the next data: the average fixed cost is 48000USD which results from a sample of 36 observations with standard deviation to be 500. The variable cost is 30000USD and results from a sample of 36 observations with standard deviation to be 420. The average price per unit is 1.5USD with standard deviation to be 0.2. The average variable cost per unit is 1.1USD with the standard deviation to be 0.2. Solution: By replacing in (7.18) we take the fuzzy estimator for the mean value of the breakeven point. Next we depict this fuzzy estimator. The 0-cut of . The x axis represents the values of that the breakeven point takes and the y axis represents the membership grades. We estimated the fuzzy Q*. If we consider the a-cut as a risk level, then the company based on this method can find the "position" of the breakeven point for certain levels of risk on [0,1]. That means that the company can make decisions according to the level of risk the decision maker takes, knowing that the breakeven point exists in this fuzzy number with a certain membership grade each time.

Summary

In this paper we presented an alternative model which expresses the uncertainty existing in CVP analysis. We used the method of non-asymptotic fuzzy estimators thus we did not need to know the distribution function of the random variable. The analysis realized via this method is more detailed than the existing probabilistic methods. Furthermore we think that we have managed to contribute in decision making of a company. That is to say we applied fuzzy estimators in a well known method (based on profit and risk) which can help a company decide which product to produce and also in the breakeven point analysis under uncertainty. In other words we applied a new methodology in traditional breakeven analysis in order to contribute in this section of research in conditions of uncertainty.