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Abstract

In this work we study a flowshop scheduling problem in which jobs are not allowed to 

wait in-between machines, a situation commonly referred to as no-wait. The concerned criterion 

is to minimize a weighted sum of makespan and maximum lateness. A dominance relation for 

the case of three-machine is presented and evaluated by experimental designs. Several heuristics 

and local search methods are proposed for the general m-machine case. The local search methods 

are based on genetic algorithms and iterated greedy procedures. An extensive computational 

analysis is conducted where it is shown that the proposed methods outperform existing heuristics

and metaheuristics in all tested scenarios by a considerable margin and under identical CPU 

times.
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1. Introduction

This paper considers the m-machine no-wait flowshop scheduling problem. In a no-wait 

flowshop problem, the operation of each job has to be processed without interruptions between 

consecutive machines. Applications of no-wait flowshops can be found in many industries. For 

example, in steel factories, the heated metal continuously goes through a sequence of operations 

before it is allowed to cool in order to prevent defects in the composition of the steel. A second 

example is a plastic product that requires a series of processes to immediately follow one another 

in order to prevent degradation. Similar situations arise in other process industries such as the 

chemical and pharmaceutical. Hall and Sriskandarajah (1996) provide a survey paper on the 

research and applications of the no-wait flowshop problems. 

For the problem with the single criterion of makespan, or using the common three field

notation, the problem 
max/ /Fm no wait C− , Reddi and Ramamoorthy (1972) and Wismer (1972)

were the first to address the problem. Bonney and Gundry (1976) and King and Spachis (1980)

have later developed heuristics. Gangadharan and Rajendran (1993) and Rajendran (1994) have 

developed additional heuristics and showed that their heuristics outperform those of Bonney and 

Gundry (1976) and King and Spachis (1980). Aldowaisan and Allahverdi (2003) presented new 

heuristics, which were shown to outperform those of Gangadharan and Rajendran (1993) and 

Rajendran (1994). More recently, Grabowski and Pempera (2005) have presented complex local 

search algorithms for the same problem based on tabu search methods. Additionally, and as it is 

well known, the 
max/ /Fm no wait C−  problem can be transformed into a Traveling Salesman 

Problem (TSP) (see for example Bagchi, Gupta and Sriskandarajah (2006)) and therefore, all the 

existing TSP literature also applies.

Unlike the makespan criterion, and to the best of our knowledge, there is no known heuristic

when the objective is to minimize maximum lateness for the general m-machine case. Actually, 

the literature on the 
max/ /Fm no wait L− is rather scant. Dileepan (2004) presented a dominance 

relation for the two machine case. More recently, Wang and Cheng (2006) have also studied the 

two machine case and have proposed heuristics to solve the problem.

The bicriteria problem has also been scarcely investigated. Allahverdi and Aldowaisan 

(2004) addressed the m-machine no-wait flowshop with the objective of minimizing a weighted 

sum of makespan and maximum lateness. Allahverdi and Aldowaisan (2004) developed a 
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dominance relation for the two-machine case, and presented two hybrid heuristics for the case of 

m-machines based on simulated annealing and genetic algorithms. A related work is that of 

Allahverdi and Aldowaisan (2002) where a constructive heuristic along with some improvement 

methods were presented for the same problem but for the objectives of makespan and total 

completion time.

In this paper we address the same problem that Allahverdi and Aldowaisan (2004) studied. 

We provide a dominance relation for the case of three-machines. Moreover, we propose several 

dispatching rules as well as an adapted genetic algorithm and an iterated greedy method. As we 

will show, the proposed methods clearly outperform those of Allahverdi and Aldowaisan (2004) 

by a considerable margin under comparable conditions.

Problem description and formulation is given in the next section and a dominance relation is

presented in Section 3. The proposed heuristics are described in Section 4 and computational 

analysis is carried out in Section 5. Finally, conclusions and future research are presented in

Section 6.

2. Problem Description

In the m-machine no-wait flowshop scheduling problem, each job needs to be processed 

on machines 1, 2, …, m in that order such that the operation of each job has to be processed 

without interruptions between consecutive machines. Therefore, if necessary, the start of a job on 

a given machine might be delayed so that the completion of the operation coincides with the 

beginning of the operation on the following machine and the no-wait constraint is satisfied. All 

jobs are ready and available for processing at time zero. We assume that every job has a positive 

processing time on each machine. At any time, machines can process at most one job at a time 

and jobs can be processed on at most one machine. The problem is to find a schedule that 

minimizes a linear combination of makespan and maximum lateness, i.e., αCmax+(1-α)Lmax.

Simplifications of this problem have been proven to be NP-Hard. For example, the 

max2 / /F no wait L−  was shown to be NP-Hard by Röck (1984a). Similarly, the 
max3/ /F no wait C−

was also shown to be NP-Hard by Röck (1984b) (more precisely, the associated decision 

problem was shown to be NP-Complete). Therefore, the 
max max/ / (1 )Fm no wait C Lα α− + −

problem is also NP-Hard.
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In the following we present some necessary notation. Let:

ti,k : processing time of job i on machine k (k=1, …, m)

di : due date of job i

t[i,k] : processing time of the job in position i on machine k

d[i] : due date of the job in position i

C[i] : completion time of the job in position i

L[i] : lateness of the job in position i

It can be shown that for the job in position j when m=3,

C[j] = 
i

j

=
∑

1

(t[i,2]-t[i-1,2] - t[i-1,3] + max (t[i,1] ,  t[i-1,2]))
+ + 

i

j

=
∑

1

t[i,3] (1)

where, t[0,2] = t[0,3] = 0. Notice that for simplicity max(0,X) is noted as (X)+.

Therefore, the makespan, Cmax, can be written as 

Cmax = ∑
=

n

1i

(t[i,2]-t[i-1,2] - t[i-1,3] + max (t[i,1] ,  t[i-1,2]))
+ + ∑

=

n

1i

t[i,3] (2)

Given C[j], the lateness of the job in position j, L[j], can be written as

L[j] = 
i

j

=
∑

1

(t[i,2]-t[i-1,2] - t[i-1,3] + max (t[i,1] ,  t[i-1,2]))
+ + 

i

j

=
∑

1

t[i,3] - d[j] (3) 

Hence, maximum lateness, Lmax, is expressed as

}L{maxL ]i[
n,...,1i

max =
= (4) 

 The objective is to minimize αCmax+(1-α)Lmax. We assume that every job requires 

processing on all the m machines, i.e., tj,k>0. Such an m-machine no-wait flowshop is necessarily 

a permutation flow shop. In other words, the order of jobs on all machines must be the same.

The above formulae for the three machine cases can be generalized to the general case of m-

machines. It can be shown that (from a simplification of Allahverdi and Aldowaisan (2000) and

Brown, McGarvey and Ventura (2004)) for the job in position i on machine m:

[ ] [ ]
1

i
m

i l
l

C C
=

=∑ (5)

where, { }1
[ ] [ ] [ 1, ] [ , ]max ;0m m
l l l m l mC C t t−

−= − +

It should be noted that 0
][lC = ],0[ kt =0, l=1,…,n; k=1,…,m.
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Once the completion times of every job in the sequence ( [ ]iC ) are calculated, the lateness of the 

job in position i, [ ]iL , can be written as

[ ] [ ] [ ]i i iL C d= − (6) 

Therefore, the maximum lateness or maxL , is calculated as in expression (4).

Once these calculations are carried out, the bicriteria objective function for a given sequence 

is straightforward to calculate and can be carried out in O(nm) steps.

3. A Dominance Relation for Three-Machines

Dominance relations are common in the scheduling literature. They are mainly used 

either as part of heuristics or more commonly, in implicit enumeration techniques such as 

branch-and-bound algorithms. We provide a dominance relation in the following theorem for the 

considered problem.

Theorem: For a three-machine no-wait flowshop, there exists an optimal solution that 

minimizes both Cmax and Lmax where job j precedes job i if jobs i and j are adjacent and if the 

following three conditions are satisfied; (i) tj,k≤ti,k for k=1,2,3, (ii) dj≤di, and (iii) ti,2+max(ti,1, 

tj,2)≤tj,2+tj,3.

Proof: See the Appendix. 

Corollary: For a three-machine no-wait flowshop, in a sequence where jobs i and j are 

adjacent, there exists an optimal solution for minimizing αCmax+(1-α)Lmax for any value of α

where job j precedes job i if the following conditions are satisfied: (i) tj,k≤ti,k for k=1,2,3, (ii) 

dj≤di, and (iii) ti,2+max(ti,1, tj,2)≤tj,2+tj,3.

Proof: The proof directly follows from the previous theorem since if these conditions are 

satisfied then both Cmax and Lmax are simultaneously minimized, and hence, αCmax+(1-α)Lmax is

also minimized for any value of α.

One important aspect is to asses how effective this dominance relation might be. Checking 

the dominance relation has a negligible cost but, what about the expected number of times that 

the dominance relation is going to be satisfied? In order to answer this question, we generate a 

large set of random instances. To the best of our knowledge, there is no common benchmark in 
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the literature for the considered problem. Therefore, in the following we define a common 

benchmark set that will be used both for testing the dominance relation and later on for the 

computational evaluation of the existing and proposed heuristics. The number of jobs n is tested 

at n={20, 40, 60, 80, 100} and the number of machines m at m={3, 5, 10, 15, 20}. Of course, the 

dominance relation will be tested only for m=3. The due dates are generated as usual in the 

literature with a uniform distribution that follows the formula [P(1-T-R/2),P(1-T+R/2)] where P

is a lower bound on the makespan and T and R are the tardiness factor and relative range of the 

due dates, respectively. This method is extensively used in the literature and is due to Potts and 

Van Wassenhove (1982). We need a bound P on the makespan which is calculated as follows:

1

max , ,
1,...,

1 1

( ) min
m n

i k i m
i n

k i

P LB C t t
−

=
= =

 
= = + 

 
∑ ∑ (7) 

 Obviously this is a trivial bound on the makespan. Fortunately, we are not interested in tight 

lower bounds since they will tend to generate looser due dates (and henceforth, easy to solve 

problems). Once P is defined we have four different combinations of T and R, namely T={0.0,

0.6} and R={0.2, 0.6}. Lower values of T generate looser due dates whereas high values of T

generate very tight due dates. As regards to R, lower values result in due dates of jobs being 

closer together and high values result in due dates being more scattered. Presumably, the 

“hardest” combination is T-R=0.6-0.2 since this results in due dates being uniformly distributed 

between 0.3P and 0.5P, and since P is not a very tight bound on the makespan, we can expect 

due dates to be really difficult to satisfy. Another important factor to consider is how processing 

times are distributed, therefore we uniformly generate them in the range [1,5], [1,10], [1,50], 

[1,100] and according to a Gaussian distribution of average 100 and standard deviation of 2. 

Overall we have five combinations of n, five of m, four of T-R and five combinations for the 

distribution of processing times. This results in 500 different combinations. For each 

combination we generate 10 different problems to a grand total of 5,000 instances. The full set of 

instances as well as the best solutions known for them are available for download from 

http://soa.iti.es.

For testing the dominance relation, we restrict to the subset where m=3 (1,000 instances). 

For every instance there are n·(n-1) possible pairs of jobs in a sequence. An important measure of 

the performance of this dominance rule is to count how many of these possible pairs actually 

Page 6 of 27

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://soa.iti.es/


For Peer Review
 O

nly

7

satisfy it. We compare the percentage of times that the dominance rule is satisfied among the 

n·(n-1) possible pairs (%Satisfied). Additionally, it is easy to see that every job pair that satisfies 

the dominance rule results in (n-1)! solutions saved if used in a branch and bound algorithm. 

However, in this case, the same solution can be saved by several pairs of jobs satisfying the 

dominance rule, so counting the estimated number of nodes saved over the total n! is not an easy 

task. A first experimental design in which all the instance characteristics are considered as 

factors is analyzed by means of the ANOVA technique. The response variable is %Satisfied for 

each instance. From the resulting analysis, we can conclude that the only significant factor is the 

distribution of processing times whose means plot and confidence intervals can bee seen in

Figure 1. 

 

[INSERT FIGURE 1 ABOUT HERE]

As can be seen, tightly distributed processing times result in more pairs of jobs satisfying the 

dominance relation. Overall, when the processing times are uniformly distributed between 1 and 

5, there is an average of 1.22% pairs of jobs in the instances that satisfy the dominance relation. 

While this percentage might be small, one has to think that each pair saves (n-1)! solutions at 

best. For example, for a problem with 50 jobs, 1.22% means about 30 pairs that satisfy the 

dominance relation and that can translate to a best scenario of about 60% of solutions saved in a 

branch and bound algorithm. Clearly, the usage of the proposed dominance relation for the three 

machine case in exact algorithms is a worthwhile venue for research. In the following we 

propose heuristic methods for the more general m-machine case.

4. Heuristic and local search methods

4.1. Heuristic methods

Among the most widely used heuristic algorithms for due date based scheduling 

problems are dispatching rules. We make use of some of the most well known dispatching rules 

for the bicriteria no-wait flowshop problem considered in this paper. More precisely, the 

dispatching rules are:

1. Earliest Due Date (EDD). The sequence of jobs is obtained by sorting the jobs on 

increasing order of their due dates id .
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2. Modified Due Date (MDD). In this rule, the next scheduled job is the one with the 

minimum modified due date { })(,max σii Cd .

3. SLACK. At each step, the completion time of job i, when appended to the partial 

sequenceσ , i.e. )(σiC , is calculated. The job with the minimum slack with regards to its 

due date or )(σii Cd −  is appended to the sequence.

4. SLACK with Remaining Work (SLACKRW). It is a modification of the previous 

SLACK rule where the total processing time of each job i is also considered. As a result, 

the job with the minimum value in the following index is scheduled:

∑
=

−
m

k
ki

ii

t

Cd

1
,

)(σ

5. NEH heuristic. This well known constructive heuristic, initially proposed by Nawaz, 

Enscore and Ham (1983) has been profusely used in the scheduling literature. Although it 

was originally devised for the regular flowshop with makespan objective, its structure

allows for an easy adaptation to other problems and criteria. In the NEH, jobs are first 

sorted in non-increasing order of their total processing times. The first job in the ordered 

list is first scheduled. Then, at each step, the remaining jobs in the list are selected and 

inserted in all possible solutions of the partial sequence, keeping the best one for the next 

insertions. We tested several different initial orders for the considered bicriteria objective 

(a much more in depth study about different initial orders for the NEH method can be 

seen in Framinan, Leisten and Rajendran (2003)). The best results for most tested values 

of α resulted to be the EDD rule. Therefore, prior to the application of the NEH 

algorithm, jobs are initially ordered according to the EDD rule.

4.2. Local search methods

The performance of the previous dispatching rules cannot be expected to be competitive 

when compared against modern metaheuristics. In what follows we explain two competitive

algorithms that we apply to the 
max max/ / (1 )Fm no wait C Lα α− + −  problem obtaining very good 

results.

A recent new breed of fast genetic algorithms was  presented in Ruiz and Allahverdi 

(2007). In that work, a total of four genetic algorithms were presented. Among the four, the 
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steady state version with local search yielded the best results. This algorithm is referred to as 

SGALS. Here we explain the basic workings of this method and of the special adaptations for the 

no-wait flowshop with the bicriteria objective. Given that no-wait flowshops are necessarily 

permutation flowshops, a non-delay schedule is best represented by a simple permutation of jobs. 

This representation is adopted for the individuals that form the population of the genetic 

algorithm. In order to match the characteristics of the bicriteria problem, all individuals in the 

initial population are generated at random except two. These two solutions are generated after 

applying the aforementioned EDD and NEH heuristics.

One of the salient characteristics of the proposed genetic algorithm is that selection is 

carried out on the basis of the direct bicriteria objective value. No mappings and/or fitness values 

are assigned to individuals. This keeps the algorithm simpler and at the same time speeds up 

selection and population upkeep. According to a given parameter called pressure%, a given 

percentage of the population is randomly screened, and among the screened individuals, the one 

with the best bicriteria objective value is selected as a parent. For selecting the second parent, the 

first one is not considered in the draw. Therefore, we ensure that two distinct parents are selected 

for crossover. This type of selection has been refereed to as n-tournament and results in both fast 

and simple genetic algorithms. After the extensive calibration and experimentation carried out in 

Ruiz and Allahverdi (2007), the population size was set to 50 individuals and the pressure 

parameter to 30%.

In the same study, the best crossover operator resulted to be the Two Point Order 

crossover which is a simple and at the same time fast operator since it always generates feasible 

offspring. This crossover operator is applied to both parents after selection with a probability of 

0.3 to generate two feasible offspring. If the operator is not applied, direct copies of parents are 

generated as offspring. After the crossover, a simple insertion mutation operator is applied to 

each position in the chromosome with a probability of 0.02. This is, each position in the 

chromosome is randomly extracted and re-inserted in another random position with a low 

probability of 0.02.

After generating the new offspring with selection, crossover and mutation, these new 

individuals undergo an improvement phase. This improvement is carried out by local search. We 

improve each individual with a probability of 0.15 by means of a limited local search in which 

each job is removed from the sequence and tested in all the possible positions of the sequence 
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(i.e., n positions). The lowest bicriteria objective value dictates the final position for the job. The 

process stops when all jobs have been reinserted. This local search does not guarantee the final 

improved offspring to be local optima with respect to the insertion neighborhood but it is much 

faster.

The last important characteristic of the adapted SGALS algorithm is that it is a steady 

stage genetic algorithm. Once the two offspring have been finally generated and possibly 

improved by the curtailed local search procedure, they are considered for insertion in the 

population. They are only inserted if they satisfy two criteria; a) they are not already in the 

population (the same bicriteria objective value is not present in the population or if it is, the 

permutations are different) and b) they have a lower bicriteria objective value than the worst 

individual in the population. Only after these two criteria are satisfied, offspring are inserted in 

the population replacing the two worst individuals. Such a scheme has been also tested in 

successful GAs (see Ruiz, Maroto and Alcaraz (2006)) since it provides a fast, albeit diverse, 

generational scheme avoiding at the same time premature convergence.

The second local search method we present in this work is based on the recent Iterated

Greedy (IG) algorithm proposed by Ruiz and Stützle (2007) for the regular flowshop problem 

with makespan criterion and later adapted by the same authors (see Ruiz and Stützle (2008)) to 

the sequence dependent setup times flowshop with makespan and total weighted tardiness 

objectives. According to those studies, the Iterated Greedy algorithm with local search (IGLS) is 

currently the best algorithm in those problems. Hence, it seems natural that we adapt the IGLS 

method to the scheduling problem tackled in this study.

As the name implies, IG algorithms start from a given initial solution and then iterate 

through four operators; destruction, construction, local search and acceptance criterion. These 

four operators are adapted to the bi-criteria problem as follows: First, we construct an initial 

solution by the modified NEH algorithm given in Section 4.1. Then we enter the main loop. In 

this loop, the incumbent solution is first partially deconstructed (destruction). To this end, a 

given number of jobs are randomly selected and removed from the sequence, leaving a partial 

sequence as a result. Afterwards, the removed jobs in the destruction phase are re-inserted in this 

partial sequence one at a time, starting from the job that was removed first. This phase is called 

construction and each job that was removed is tested in all possible positions of the partial 
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sequence, just like in the NEH or in the local search procedures outlined above. The construction 

phase ends when there are no more jobs to re-insert and thus the sequence is complete. After the 

incumbent sequence has been put through destruction and construction, a full local search 

procedure is applied. In this case, the local search algorithm outlined for the SGALS is repeated 

until no further improvements are obtained, i.e., the resulting sequence is a local optima with 

respect to the insertion neighborhood. Notice that this local search procedure is noticeably slower 

that the curtailed one. However, IGLS mainly relies on this local search to obtain good results.

The last step in this IGLS algorithm is to decide if the sequence obtained after the local 

search should replace the incumbent sequence for the next iteration. We use the same approach 

as in Ruiz and Stützle (2007) which consists in accepting the new sequence according to a fixed 

temperature simulated annealing criterion, in which worse solutions have a small probability of 

being accepted. The proposed IGLS only needs a single parameter which is the number of jobs 

that are removed from the sequence and later re-inserted in the destruction phase. Some short 

experiments indicate that the original value of four given by  Ruiz and Stützle (2007) is a good 

choice.

As a result, we propose five heuristics, one genetic algorithm with local search and an 

iterated greedy method. In total there are seven algorithms that we apply to the 

max max/ / (1 )Fm no wait C Lα α− + −  problem.

5. Computational Evaluation

As mentioned in Section 2, the only existing work that deals with the 

max max/ / (1 )Fm no wait C Lα α− + −  problem considered in this paper is that of Allahverdi and 

Aldowaisan (2004). Other related papers are Allahverdi and Aldowaisan (2002), where the 

max/ / (1 ) iFm no wait C Cα α− + − ∑  problem is addressed or Ruiz and Allahverdi (2007) where a 

single criterion no-wait version with setups (
max/ , /ijFm no wait s L− ) is studied. For the 

computational evaluation, we will compare the proposed heuristics and local search methods 

against some of these algorithms. The hybrid genetic algorithm and hybrid simulated annealing 

of Allahverdi and Aldowaisan (2004) will be referred to as HG and HSA, respectively, following 

the original names given by the authors. The heuristic proposed by Allahverdi and Aldowaisan 

(2002) will be called PAAH.
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All algorithms are coded in Delphi 2006 and share most functions and all data structures. 

We test every algorithm in a Pentium IV PC/AT computer running at 3.2 GHz with 2 GBytes of 

RAM memory and Windows XP professional operating system. From the 5,000 instances 

introduced in Section 3, we focus on those in which the processing times are uniformly 

distributed in the range [1,100] as it is usual in the literature. This is because a heuristic 

performing well for a wide rage of processing times is expected to perform well for other 

narrower ranges. Similarly, we skip instances where m=3. Therefore, the benchmark test 

comprises 800 instances with different values of T, R, n and m. We measure the average 

percentage deviation over the best solution known or:

sol sol

sol

Alg Best
100

Best
AVRPD

 −
= × 
 

 (8) 

Where Algsol is the solution for any of the tested algorithms for a given instance and Bestsol is the 

best solution known for that instance. As mentioned, the best solutions can be obtained from 

http://soa.iti.es.

All algorithms are run five independent times. This is necessary in the case of the stochastic 

methods such as HG, HSA, SGALS and IGLS in order to better asses the quality of solutions. In 

the case of all other tested methods (EDD, MDD, NEH, PAAH, SLACK and SLACKRW) this is 

not necessary since the solution is deterministic. However, we also run five replicates in order to 

better estimate running times by averaging the results. We run all algorithms and replicates 

against the 800 instances six different times in which we vary the value of α (the relative weight 

assigned to Cmax) in the bicriteria objective function αCmax+(1-α)Lmax. The values tested are 

α={0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Notice that when α=0.0 (α=1.0), the considered bicriteria 

problem reduces to Lmax (Cmax).

An important issue as regards to the computational evaluation is the stopping criterion for 

the metaheuristic methods. The existing algorithms HSA and HG have a specific stopping 

criterion that was set by Allahverdi and Aldowaisan (2004) according to their own results. We 

choose to run these algorithms with this original or “natural” stopping criterion and will refer to 

them as HSAN and HGN, respectively.

Apart from this natural stopping criterion, and considering that all algorithms have been 

coded in the same language, sharing most functions and being run on the same computer, a much 

better stopping criterion is a maximum elapsed CPU time. By doing so, all algorithms are run 
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under the same computational effort on the same computer and therefore, the AVRPD values are 

more directly comparable. We modify the HG and HSA algorithms so that they stop at a specific 

elapsed CPU time. Both proposed methods IGLS and SGALS also use this stopping criterion 

which is set to n·(m/2)·60 milliseconds. As we can see, as the size of the instance grows, more 

CPU time is allowed.

In summary, we have 800 instances, six values for α, 12 algorithms (EDD, HG, HGN, HSA, 

HSAN, IGLS, MDD, NEH, PAAH, SGALS, SLACK, SLACKRW) and five replicates for each 

algorithm, instance and value of α. This results in a total of 288,000 data points.

Let us first analyze the results for all instances grouped by T and R. Table 1 and Table 2

show the results for all values of α. Bold and italic underlined values indicate the best and the 

worst average results, respectively.

[INSERT TABLE 1 ABOUT HERE]

[INSERT TABLE 2 ABOUT HERE]

As can be seen from the results, there seems to be a trend for lower AVRPD values as α

increases. Recall that the case of α=0.0 reduces to the single criterion Lmax whereas the case of

α=1.0 reduces to Cmax. For α=0.0, the average results of all methods are significantly larger than 

for larger values of α. This does not mean that instances are harder in this case, rather the 

contrary. For many instances, the optimum values of Lmax are small, in one case even 0 and for a 

few instances even negative. The way the AVRPD values are calculated tends to generate very 

large AVRPD values when the optimum solution for a given instance is close to zero, and thus 

the larger overall AVRPD values for α=0.0. This together with the fact that the AVRPD values 

depend on the best solutions known (and there is no clear idea about how far these best solutions 

might be from the optimum ones) makes the interpretation of the effect of α difficult. What 

seems clear though is that the dispatching rules EDD, MDD, SLACK and SLACKRW yield 

solutions that are, as expected, considerably worse than those of the other methods. Judging 

average values alone, it seems that SLACK and SLACKRW are the worst and best performers, 

respectively. PAAH performs better than NEH in most situations. This outcome is certainly 

remarkable, since NEH has been regarded as the best constructive heuristic for many flowshop 

related scheduling problems. Afterwards, as average performance is concerned, we find the two 
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previous existing algorithms from Allahverdi and Aldowaisan (2004) with the natural and 

elapsed CPU time stopping criterion, namely HG, HGN, HSA and HSAN with similar 

performances throughout the tests. HSA and HSAN yield near identical results. However, HG

and HGN show different results, which favor HG across the board. This indicates that probably 

the original stopping criterion for HGN does not result in enough time. Lastly, it is clear that the 

two proposed IGLS and SGALS algorithms are the best performers with a slight advantage for 

IGLS although not for every value of α.

As regards to the effect of T and R, it can be seen that for most methods and values of α, an 

increase in R results in worse solutions whereas an increase in T results in better AVRPD values. 

The effect of R is contrary to what was expected but the effect of T was definitely envisioned. Of 

course, this trend is very strong for low values of α and, as one expects, weak for high values of 

α.

Of additional interest are the results when grouped by n and m values. Such a grouping for 

α=0.6 is presented in Table 3.

[INSERT TABLE 3 ABOUT HERE]

Overall, all methods result in higher AVRPD values as both n and m increase. Although for 

large values of n the trend is less clear. More or less the same situation is found for other values 

of α, but we do not present them here for the sake of limited space.

Now we analyze the CPU times consumed by all methods. These times are not affected by 

T, R or α, as they mainly depend on the number of jobs n and to a lesser extent on the number of 

machines m. These CPU times are shown in Table 4 for α=0.6.

[INSERT TABLE 4 ABOUT HERE]

Dispatching rules are extremely fast even for the largest 100×20 instances as they need a 

negligible CPU time. As a matter of fact, the elapsed times are on the limit of what can be 

reliably measured (les than 0.001 seconds). The adaptation of the NEH method is also very fast, 

needing an average of 0.09 seconds for the largest instances. PAAH, is considerably slower than 

NEH, needing a bit less than two seconds for the largest instances. As expected, IGLS and 
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SGALS use the same times since these two methods stop by a given elapsed CPU time given by 

the expression n·(m/2)·60 milliseconds. Notice that this time results in 30 seconds for the largest 

instances which is still a short CPU time. It is important to mention that both HSA and HG are 

expected to have the same time. However, in these two methods, and as specified by Allahverdi 

and Aldowaisan (2004), a final local search step is applied the final solution, therefore, HSA and 

HG times are slightly larger than those of IGLS and SGALS. Comparing HSA and HG with the 

elapsed CPU time stopping criterion against the HSAN and HGN versions with Allahverdi and 

Aldowaisan (2004) stopping criterion, we see that HSAN and HGN are much faster. In the case of 

HSAN this is good since we observed in Table 3 that there is no difference in performance 

between HSA and HSAN. However, for HG, the additional CPU time results in better solutions. 

It is worth noting that HGN and HSAN times are comparable to those of PAAH.

All previous results are based on average values. While there is a large number of data 

points (and therefore the observed averages are likely to approach those averages at the 

population level), a more comprehensive statistical analysis must be carried out. We analyze a 

complete statistical experiment in which all factors affecting the instances; T, R, n, m and α are 

considered along with a last factor that controls the algorithm. The response variable in the 

experiment is the AVRPD. The dispatching rules EDD, MDD, SLACK and SLACKRW had to 

be analyzed separately from the other methods due to much larger AVRPD values. All studied 

factors resulted to be statistically significant at a 95% confidence level for α values larger than 

0.0. All dispatching rules presented the same statistical performance for α=0.0. Figure 2 shows a 

means plot of the AVRPD values for the interaction between the dispatching rules and α.

[INSERT FIGURE 2 ABOUT HERE]

All tested dispatching rules work with due dates, and therefore, this plot confirms the 

previous findings that increasing α values (closer to Cmax objective) result in lower AVRPD

values. There are no statistically significant differences for many α levels. However, we can see 

that MDD is worse than EDD and SLACKRW for α=0.2 but better than all others for α=1.0.

A similar analysis can be carried out for the remaining methods. A means plot of the 

AVRPD values across all other factors is shown in Figure 3.
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[INSERT FIGURE 3 ABOUT HERE]

Three groups can be observed. First we have the NEH and PAAH algorithms. Clearly, 

PAAH yields better solutions in all scenarios but as we have shown earlier, at a much higher 

CPU time. On the other hand, HSA and HG algorithms have better performance with both 

stopping criteria. At this stage it is important to note that both HSAN and HGN are statistically 

better than PAAH and even faster on average. Although HG is shown as statistically equivalent 

to HGN, differences can be found for specific values of α (not shown). Lastly, it is clear that

IGLS and SGALS outperform all other methods, including HSA and HG by a considerably 

margin. Taking into account that the CPU times for IGLS and SGLS are slightly smaller than 

those of HSA and HG, we can safely conclude that IGLS and SGALS are preferable for all 

scenarios. Although not shown here, the performances for different values of α, T, R and other 

factors are similar and IGLS and SGALS are consistently better in all situations. A comparison 

of these two algorithms is shown in Figure 4.

[INSERT FIGURE 4 ABOUT HERE]

As we can see, there are no differences for all values of α except for α=0.0. This is an 

unexpected result since IGLS was specifically designed for the Cmax objective. Some differences 

can be found between these two algorithms when studying other factors. Although not shown, 

IGLS shows better results than SGALS for n=80 across all other factors. The same can be said 

for R=0.6, T=0.0 and m=5. Therefore, we can conclude that IGLS performs better than SGALS 

in many cases and statistically equivalent in other cases. Moreover, the coding of IGLS is 

simpler, and therefore, it is preferable to SGALS.

6. Concluding Remarks

In this paper, the m-machine no-wait scheduling problem is addressed to minimize a linear 

combination of makespan and maximum lateness performance measures. A dominance relation 

is developed for the case of three-machines. Moreover, several heuristics are proposed and 

compared with the existing heuristics for the problem. The computational experiments and 
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thorough statistical analyses indicate that the proposed heuristics significantly outperform the 

existing ones for all scenarios considered; different linear combinations of the objectives, 

tardiness factors, ranges of due dates and number of jobs and machines. Since the comparisons 

have been done in the same computer with identical stopping criterion, and the codes of all tested 

algorithms share most functions, it can be safely stated that the computational evaluation is fair 

and therefore our proposed methods outperform the existing ones.

There are usually two approaches to solve the problem addressed in this paper. One is use 

an implicit enumeration technique such as a branch-and-bound algorithm by which problems 

with a limited number of jobs can be solved optimally. The other is to use heuristics to solve the 

problem, where an optimal solution may not be obtained but problems with much larger number 

of jobs and machines can be easily solved. We have chosen the latter approach to address the 

problem since we could solve larger realistic size problems, and more importantly, we were able 

to compare our proposed heuristics with the existing ones in the literature. Furthermore, we also 

established a dominance relation for the case m=3. Dominance relations are very helpful when 

used in implicit enumeration techniques. Therefore, a possible research area is to construct a 

branch-and-bound algorithm for this problem by utilizing the dominance relation established in 

this paper or to develop a Lagrangian relaxation approach similar to the one used by Augusto et 

al. (2008). 

We have assumed that setup times are included in the processing times. This assumption is 

perfectly valid for some environments. However, the assumption is not realistic for some other 

manufacturing environments, e.g., Yu et al. (2007), Hendizadeh et al. (2007), Pessan et al. 

(2008), and Chandrasekaran et al. (2007). The significance of considering setup times as separate 

is addressed by Allahverdi and Soroush (2008), and a recent survey of scheduling with separate 

setup times is given by Allahverdi et al. (2008). Therefore, one possible research area is to 

address the problem where setup times are explicitly treated as separate from processing times. 

Another possible extension is to consider the problem with respect to other objective functions 

such as job waiting time variance, e.g., Li et al., (2007) or an objective function taking into 

account early and tardy penalties, e.g., Valente, (2007). It would be also interesting to consider a 

hybrid flowshop, e.g., Ben Hmida et al. (2007).
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Further work needs to be conducted in order to deal the bi-criteria problem in a more 

explicit way by building methods capable of obtaining a full set of non-dominated solutions in 

the bi-criteria space (a posteriori approach) which would eliminate the need of fixing α values.
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Appendix (Proof of the Theorem)

Consider two job sequences π1 and π2 such that π 1 has job i in an arbitrary position τ and 

job j in position τ+1. The sequence π 2 is exactly the same as π 1 except that job j is in position τ

and job i in position τ+1.  

The makespan for these two sequences can be written as:

Cmax(π 1) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ +∑

−

=

1

1

τ

r

t[r,3]

+ (ti,2 - t[τ-1,2] - t[τ-1,3] + max (ti,1,  t[τ-1,2]))
+

+ (tj,2 - ti,2 - ti,3 + max (tj,1,  ti,2))
+

+ (t[τ+2,2] - tj,2- tj,3 + max ( t[τ+2,1],  tj,2)}+ ti,3 + tj,3 + t[τ+2,3] 

 + ∑
+=

n

r 3τ

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

+=

n

r 3τ

t[r,3],

and

Cmax(π 2) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ +∑

−

=

1

1

τ

r

t[r,3]

+ (tj,2 - t[τ-1,2] - t[τ-1,3] + max (tj,1,  t[τ-1,2]))
+

+ (ti,2 – tj,2 – tj,3 + max (ti,1,  tj,2))
+

+ (t[τ+2,2] – ti,2- ti,3 + max ( t[τ+2,1],  ti,2))
+ + tj,3 + ti,3 + t[τ+2,3] 

 + ∑
+=

n

r 3τ

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

+=

n

r 3τ

t[r,3]

where t[0,2] = t[0,3] =0. 

Since both sequences have the same jobs in all positions except τ and τ+1, it follows from 

the above two equations that 

Cmax(π2) – Cmax(π1) =   (tj,2 - t[τ-1,2] - t[τ-1,3] + max (tj,1,  t[τ-1,2]))
+

+(ti,2 – tj,2 – tj,3 + max (ti,1,  tj,2))
+

+ (t[τ+2,2] – ti,2- ti,3 + max ( t[τ+2,1],  ti,2))
+

- (ti,2 - t[τ-1,2] - t[τ-1,3] + max (ti,1,  t[τ-1,2]))
+

- (tj,2 - ti,2 - ti,3 + max (tj,1,  ti,2))
+
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- (t[τ+2,2] - tj,2- tj,3 + max ( t[τ+2,1],  tj,2))
+ (9)

Observe that (ti,2 – tj,2 – tj,3 + max (ti,1,  tj,2))
+ =0 since ti,2+max(ti,1, tj,2)≤tj,2+tj,3, Therefore, 

equation (9) reduces to

Cmax(π2) – Cmax(π1) =   (tj,2 - t[τ-1,2] - t[τ-1,3] + max (tj,1,  t[τ-1,2]))
+

+ (t[τ+2,2] – ti,2- ti,3 + max ( t[τ+2,1],  ti,2))
+

- (ti,2 - t[τ-1,2] - t[τ-1,3] + max (ti,1,  t[τ-1,2]))
+

- (tj,2 - ti,2 - ti,3 + max (tj,1,  ti,2))
+

- (t[τ+2,2] - tj,2- tj,3 + max ( t[τ+2,1],  tj,2))
+

=  (tj,2 - t[τ-1,2] - t[τ-1,3] + max (tj,1,  t[τ-1,2]))
+

+ (t[τ+2,2] - ti,3 + (t[τ+2,1]- ti,2)
+)+

- (ti,2 - t[τ-1,2] - t[τ-1,3] + max (ti,1,  t[τ-1,2]))
+

- (tj,2 - ti,2 - ti,3 + max (tj,1,  ti,2))
+

- (t[τ+2,2] - tj,3 + (t[τ+2,1] ]- tj,2)
+)+

Since tj,k≤ti,k for k=1,2,3, it follows from the above equation that  

Cmax(π2) ≤ Cmax(π1).

The lateness of the jobs in positions τ and τ+1 for the two sequences are given as:

L[τ](π1) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

−

=

1

1

τ

r

t[r,3]

+ (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
++ ti,3 - di, (10)

L[τ](π2) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

−

=

1

1

τ

r

t[r,3]

+ (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
++ tj,3 - dj, (11)

L[τ+1](π1) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

−

=

1

1

τ

r

t[r,3]

+ (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
++ ti,3 

 + (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))
++ tj,3 - dj, (12)
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L[τ+1](π2) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

−

=

1

1

τ

r

t[r,3]

+  (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
+ + tj,3 

+ (ti,2-tj,2 – tj,3 + max (ti,1 , tj,2))
+ + ti,3 - di, (13) 

It follows from equations (11) and (12) that

L[τ](π2)-L[τ+1](π1) = (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
+

- (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
+- ti,3 

- (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))
+

Now it follows from the last equation and the fact that tj,k≤ti,k for k=1,2,3 

L[τ](π2) ≤L[τ+1](π1). (14)

Taking the difference between equations (12) and (13) yields

L[τ+1](π2)-L[τ+1](π1)= (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
+

+ (ti,2-tj,2 – tj,3 + max (ti,1 ,  tj,2))
+

- (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
+

- (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))
+

+ dj - di

But (ti,2-tj,2 – tj,3 + max (ti,1 ,  tj,2))
+ =  (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))

+ =0 since ti,2+max(ti,1,

tj,2)≤tj,2+tj,3, and tj,2+max(tj,1, ti,2)≤ti,2+ti,3, Moreover, tj,k≤ti,k for k=1,2,3 and  dj≤di, hence,

L[τ+1](π2) ≤L[τ+1](π1) (15)

Therefore. from equations (14) and (15)

max{ L[τ](π2), L[τ+1](π2)} ≤ max{ L[τ](π1), L[τ+1](π1)} (16)

Now, for L[r] where r = τ + 2,...,n,
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L[r](π 1) = ∑
−

=

1

1

τ

r

( t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2])} + ∑
−

=

1

1

τ

r

t[r,3]

+ (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
+ + ti,3 

+ (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))
+ + tj,3 

 + (t[τ+2,2]- tj,2 – tj,3+ max (t[τ+2,1] ,  tj,2))
+ + t[τ+2,3]

+ ∑
+=

r

p 3τ

(t[p,2]-t[p-1,2] – t[p-1,3]+ max (t[p,1] ,  t[p-1,2]))
+

+ ∑
+=

r

p 3τ

t[p,3] - d[r],

and

L[r](π 2) = ∑
−

=

1

1

τ

r

(t[r,2]-t[r-1,2] - t[r-1,3] + max (t[r,1] ,  t[r-1,2]))
+ + ∑

−

=

1

1

τ

r

t[r,3]

+ (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
+ + tj,3 

+ (ti,2-tj,2 – tj,3 + max (ti,1 , tj,2))
+ + ti,3 

 + (t[τ+2,2]- ti,2 – ti,3+ max (t[τ+2,1] ,  ti,2))
+ + t[τ+2,3]

+  ∑
+=

r

p 3τ

(t[p,2]-t[p-1,2] – t[p-1,3]+ max (t[p,1] , t[p-1,2]))
+

+ ∑
+=

r

p 3τ

t[p,3] - d[r],

where ∑
+

+=

2

3

τ

τp

 (.) = 0.

From the last two equations.

L[r](π 2) - L[r](π 1) = (tj,2-t[τ-1,2] - t[τ-1,3] + max (tj,1 ,  t[τ-1,2]))
+

+ (ti,2-tj,2 – tj,3 + max (ti,1 ,  tj,2))
+
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+ (t[τ+2,2]- ti,2 – ti,3+ max (t[τ+2,1] ,  ti,2))
+

- (ti,2-t[τ-1,2] - t[τ-1,3] + max (ti,1 ,  t[τ-1,2]))
+

- (tj,2-ti,2 – ti,3 + max (tj,1 ,  ti,2))
+

- (t[τ+2,2]- tj,2 – tj,3+ max (t[τ+2,1] , tj,2))
+

The right hand side of the above equation is equal to the right hand side of equation (9), hence 

L[r](π 2) ≤ L[r](π 1) (17)

for r = τ + 2, ..., n. Needles to say L[r](π 2) ≤ L[r](π 1), r = 1,2, …,τ-1 since  both sequences have 

the same jobs in these positions.  Therefore, from equations (16) and (17), Lmax(π 2) ≤ Lmax(π 1).
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