Rubén Ruiz
email: rruiz@eio.upv.es

Ali Allahverdi
email: allahverdi@kuc01.kuniv.edu.kw

New Heuristics for No-Wait Flowshops with a Linear Combination of Makespan and Maximum Lateness

Keywords: No-wait flowshop, bicriteria, makespan, maximum lateness, dominance relation

New Heuristics for No-Wait Flowshops with a Linear Combination of Makespan and Maximum Lateness

Ruben Ruiz, Ali

Introduction

This paper considers the m-machine no-wait flowshop scheduling problem. In a no-wait flowshop problem, the operation of each job has to be processed without interruptions between consecutive machines. Applications of no-wait flowshops can be found in many industries. For example, in steel factories, the heated metal continuously goes through a sequence of operations before it is allowed to cool in order to prevent defects in the composition of the steel. A second example is a plastic product that requires a series of processes to immediately follow one another in order to prevent degradation. Similar situations arise in other process industries such as the chemical and pharmaceutical. [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF] provide a survey paper on the research and applications of the no-wait flowshop problems.

For the problem with the single criterion of makespan, or using the common three field notation, the problem max / / Fm no wait C , [START_REF] Reddi | On the flowshop sequencing problem with nowait in process[END_REF] and [START_REF] Wismer | Solution of the flowshop scheduling problem with no intermediate queues[END_REF] were the first to address the problem. [START_REF] Bonney | Solutions to the constrained flowshop sequencing problem[END_REF] and [START_REF] King | Heuristics for flowshop scheduling[END_REF] have later developed heuristics. [START_REF] Gangadharan | Heuristic algorithms for scheduling in the no-wait flowshop[END_REF] and [START_REF] Rajendran | A no-wait flowshop scheduling heuristic to minimize makespan[END_REF] have developed additional heuristics and showed that their heuristics outperform those of [START_REF] Bonney | Solutions to the constrained flowshop sequencing problem[END_REF] and [START_REF] King | Heuristics for flowshop scheduling[END_REF]. [START_REF] Aldowaisan | New heuristics for no-wait flowshops to minimize makespan[END_REF] presented new heuristics, which were shown to outperform those of [START_REF] Gangadharan | Heuristic algorithms for scheduling in the no-wait flowshop[END_REF] and [START_REF] Rajendran | A no-wait flowshop scheduling heuristic to minimize makespan[END_REF]. More recently, [START_REF] Grabowski | Some local search algorithms for no-wait flow-shop problem with makespan criterion[END_REF] have presented complex local search algorithms for the same problem based on tabu search methods. Additionally, and as it is well known, the max / / Fm no wait C problem can be transformed into a Traveling Salesman Problem (TSP) (see for example [START_REF] Bagchi | A review of TSP based approaches for flowshop scheduling[END_REF]) and therefore, all the existing TSP literature also applies.

Unlike the makespan criterion, and to the best of our knowledge, there is no known heuristic when the objective is to minimize maximum lateness for the general m-machine case. Actually, the literature on the max / /

Fm no wait L is rather scant. [START_REF] Dileepan | A note on minimizing maximum lateness in a two-machine no-wait flowshop[END_REF] presented a dominance relation for the two machine case. More recently, [START_REF] Wang | A heuristic approach for two-machine no-wait flowshop scheduling with due dates and class setups[END_REF] have also studied the two machine case and have proposed heuristics to solve the problem.

The bicriteria problem has also been scarcely investigated. [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] addressed the m-machine no-wait flowshop with the objective of minimizing a weighted sum of makespan and maximum lateness. [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] dominance relation for the two-machine case, and presented two hybrid heuristics for the case of m-machines based on simulated annealing and genetic algorithms. A related work is that of [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and total completion time[END_REF] where a constructive heuristic along with some improvement methods were presented for the same problem but for the objectives of makespan and total completion time.

In this paper we address the same problem that [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] studied.

We provide a dominance relation for the case of three-machines. Moreover, we propose several dispatching rules as well as an adapted genetic algorithm and an iterated greedy method. As we will show, the proposed methods clearly outperform those of [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] by a considerable margin under comparable conditions.

Problem description and formulation is given in the next section and a dominance relation is presented in Section 3. The proposed heuristics are described in Section 4 and computational analysis is carried out in Section 5. Finally, conclusions and future research are presented in Section 6.

Problem Description

In the m-machine no-wait flowshop scheduling problem, each job needs to be processed on machines 1, 2, …, m in that order such that the operation of each job has to be processed without interruptions between consecutive machines. Therefore, if necessary, the start of a job on a given machine might be delayed so that the completion of the operation coincides with the beginning of the operation on the following machine and the no-wait constraint is satisfied. All jobs are ready and available for processing at time zero. We assume that every job has a positive processing time on each machine. At any time, machines can process at most one job at a time and jobs can be processed on at most one machine. The problem is to find a schedule that minimizes a linear combination of makespan and maximum lateness, i.e., C max +(1-)L max .

Simplifications of this problem have been proven to be NP-Hard. For example, the max 2 / / F no wait L was shown to be NP-Hard by Röck (1984a). Similarly, the max 3/ / F no wait C was also shown to be NP-Hard by [START_REF] Röck | The three-machine no-wait flow shop is NP-Complete[END_REF] (more precisely, the associated decision problem was shown to be NP-Complete). Therefore, the In the following we present some necessary notation. Let: t i,k : processing time of job i on machine k (k=1, …, m) d i : due date of job i t [i,k] : processing time of the job in position i on machine k d [i] : due date of the job in position i C [i] : completion time of the job in position i L [i] : lateness of the job in position i It can be shown that for the job in position j when m=3,

C [j] = i j = 1 (t [i,2] -t [i-1,2] -t [i-1,3] + max (t [i,1] , t [i-1,2])) + + i j = 1 t [i,3] (1)
where, t [0,2] = t [0,3] = 0. Notice that for simplicity max(0,X) is noted as (X) + .

Therefore, the makespan, C max , can be written as

C max = = n 1 i (t [i,2] -t [i-1,2] -t [i-1,3] + max (t [i,1] , t [i-1,2])) + + = n 1 i t [i,3]
(2)

Given C [j] , the lateness of the job in position j, L [j] , can be written as

L [j] = i j = 1 (t [i,2] -t [i-1,2] -t [i-1,3] + max (t [i,1] , t [i-1,2])) + + i j = 1 t [i,3] -d [j]
(3) Hence, maximum lateness, L max , is expressed as

} L { max L] i [n ,..., 1 i max = = (4)
The objective is to minimize C max +(1-)L max . We assume that every job requires processing on all the m machines, i.e., t j,k >0. Such an m-machine no-wait flowshop is necessarily a permutation flow shop. In other words, the order of jobs on all machines must be the same.

The above formulae for the three machine cases can be generalized to the general case of mmachines. It can be shown that (from a simplification of [START_REF] Allahverdi | No-wait and separate setup three-machine flowshop with total completion time criterion[END_REF] and [START_REF] Brown | Total flowtime and makespan for a nowait m-machine flowshop with set-up times separated[END_REF]) for the job in position i on machine m:

[] [] 1 i m i l l C C = = (5)
where,

{ } 1 [] [] [1,] [,] max ;0 m m l l l m l m C C t t = + It should be noted that 0] [l C =] , 0 [k t =0, l=1,…,n; k=1,…,m.
[] [] [] i i i L C d = (6)
Therefore, the maximum lateness or max L , is calculated as in expression (4).

Once these calculations are carried out, the bicriteria objective function for a given sequence is straightforward to calculate and can be carried out in O(nm) steps.

A Dominance Relation for Three-Machines

Dominance relations are common in the scheduling literature. They are mainly used either as part of heuristics or more commonly, in implicit enumeration techniques such as branch-and-bound algorithms. We provide a dominance relation in the following theorem for the considered problem.

Theorem: For a three-machine no-wait flowshop, there exists an optimal solution that minimizes both C max and L max where job j precedes job i if jobs i and j are adjacent and if the following three conditions are satisfied; (i) t j,k t i,k for k=1,2,3, (ii) d j d i , and (iii) t i,2 +max(t i,1 , t j,2) t j,2 +t j,3 .

Proof: See the Appendix.

Corollary: For a three-machine no-wait flowshop, in a sequence where jobs i and j are adjacent, there exists an optimal solution for minimizing C max +(1-)L max for any value of where job j precedes job i if the following conditions are satisfied: (i) t j,k t i,k for k=1,2,3, (ii) the literature for the considered problem. Therefore, in the following we define a common benchmark set that will be used both for testing the dominance relation and later on for the computational evaluation of the existing and proposed heuristics. The number of jobs n is tested at n={20, 40, 60, 80, 100} and the number of machines m at m={3, 5, 10, 15, 20}. Of course, the dominance relation will be tested only for m=3. The due dates are generated as usual in the literature with a uniform distribution that follows the formula [P(1-T-R/2),P(1-T+R/2)] where P is a lower bound on the makespan and T and R are the tardiness factor and relative range of the due dates, respectively. This method is extensively used in the literature and is due to [START_REF] Potts | A decomposition algorithm for the single machine total tardiness problem[END_REF]. We need a bound P on the makespan which is calculated as follows:

d j d i ,
1 max , , 1,..., 1 1 () min m n i k i m i n k i P LB C t t = = = = = + (7)
Obviously this is a trivial bound on the makespan. Fortunately, we are not interested in tight lower bounds since they will tend to generate looser due dates (and henceforth, easy to solve problems). Once P is defined we have four different combinations of T and R, namely T={0. [1,100] and according to a Gaussian distribution of average 100 and standard deviation of 2.

Overall we have five combinations of n, five of m, four of T-R and five combinations for the distribution of processing times. This results in 500 different combinations. For each combination we generate 10 different problems to a grand total of 5,000 instances. The full set of instances as well as the best solutions known for them are available for download from http://soa.iti.es.

For testing the dominance relation, we restrict to the subset where m=3 (1,000 instances).

For every instance there are n•(n-1) possible pairs of jobs in a sequence. An important measure of the performance of this dominance rule is to count how many of these possible pairs actually satisfy it. We compare the percentage of times that the dominance rule is satisfied among the n•(n-1) possible pairs (%Satisfied). Additionally, it is easy to see that every job pair that satisfies the dominance rule results in (n-1)! solutions saved if used in a branch and bound algorithm.

However, in this case, the same solution can be saved by several pairs of jobs satisfying the dominance rule, so counting the estimated number of nodes saved over the total n! is not an easy task. A first experimental design in which all the instance characteristics are considered as factors is analyzed by means of the ANOVA technique. The response variable is %Satisfied for each instance. From the resulting analysis, we can conclude that the only significant factor is the distribution of processing times whose means plot and confidence intervals can bee seen in Figure 1.

[

INSERT FIGURE 1 ABOUT HERE]

As can be seen, tightly distributed processing times result in more pairs of jobs satisfying the dominance relation. Overall, when the processing times are uniformly distributed between 1 and 5, there is an average of 1.22% pairs of jobs in the instances that satisfy the dominance relation.

While this percentage might be small, one has to think that each pair saves (n-1)! solutions at best. For example, for a problem with 50 jobs, 1.22% means about 30 pairs that satisfy the dominance relation and that can translate to a best scenario of about 60% of solutions saved in a branch and bound algorithm. Clearly, the usage of the proposed dominance relation for the three machine case in exact algorithms is a worthwhile venue for research. In the following we propose heuristic methods for the more general m-machine case.

Heuristic and local search methods

Heuristic methods

Among the most widely used heuristic algorithms for due date based scheduling problems are dispatching rules. We make use of some of the most well known dispatching rules for the bicriteria no-wait flowshop problem considered in this paper. More precisely, the dispatching rules are:

1. Earliest Due Date (EDD). The sequence of jobs is obtained by sorting the jobs on increasing order of their due dates i d .

F

= m k k i i i t C d 1 ,) (
5. NEH heuristic. This well known constructive heuristic, initially proposed by [START_REF] Nawaz | A heuristic algorithm for the m machine, n job flowshop sequencing problem[END_REF] has been profusely used in the scheduling literature. Although it was originally devised for the regular flowshop with makespan objective, its structure allows for an easy adaptation to other problems and criteria. In the NEH, jobs are first sorted in non-increasing order of their total processing times. The first job in the ordered list is first scheduled. Then, at each step, the remaining jobs in the list are selected and inserted in all possible solutions of the partial sequence, keeping the best one for the next insertions. We tested several different initial orders for the considered bicriteria objective (a much more in depth study about different initial orders for the NEH method can be seen in [START_REF] Framinan | Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem[END_REF]). The best results for most tested values of resulted to be the EDD rule. Therefore, prior to the application of the NEH algorithm, jobs are initially ordered according to the EDD rule.

Local search methods

The performance of the previous dispatching rules cannot be expected to be competitive when compared against modern metaheuristics. In what follows we explain two competitive algorithms that we apply to the A recent new breed of fast genetic algorithms was presented in [START_REF] Ruiz | No-wait flowshop with separate setup times to minimize maximum lateness[END_REF]. In that work, a total of four genetic algorithms were presented. Among the four, the This representation is adopted for the individuals that form the population of the genetic algorithm. In order to match the characteristics of the bicriteria problem, all individuals in the initial population are generated at random except two. These two solutions are generated after applying the aforementioned EDD and NEH heuristics.

One of the salient characteristics of the proposed genetic algorithm is that selection is carried out on the basis of the direct bicriteria objective value. No mappings and/or fitness values are assigned to individuals. This keeps the algorithm simpler and at the same time speeds up selection and population upkeep. According to a given parameter called pressure%, a given percentage of the population is randomly screened, and among the screened individuals, the one with the best bicriteria objective value is selected as a parent. For selecting the second parent, the first one is not considered in the draw. Therefore, we ensure that two distinct parents are selected for crossover. This type of selection has been refereed to as n-tournament and results in both fast and simple genetic algorithms. After the extensive calibration and experimentation carried out in [START_REF] Ruiz | No-wait flowshop with separate setup times to minimize maximum lateness[END_REF], the population size was set to 50 individuals and the pressure parameter to 30%.

In the same study, the best crossover operator resulted to be the Two Point Order crossover which is a simple and at the same time fast operator since it always generates feasible offspring. This crossover operator is applied to both parents after selection with a probability of 0.3 to generate two feasible offspring. If the operator is not applied, direct copies of parents are generated as offspring. After the crossover, a simple insertion mutation operator is applied to each position in the chromosome with a probability of 0.02. This is, each position in the chromosome is randomly extracted and re-inserted in another random position with a low probability of 0.02. The last important characteristic of the adapted SGALS algorithm is that it is a steady stage genetic algorithm. Once the two offspring have been finally generated and possibly improved by the curtailed local search procedure, they are considered for insertion in the population. They are only inserted if they satisfy two criteria; a) they are not already in the population (the same bicriteria objective value is not present in the population or if it is, the permutations are different) and b) they have a lower bicriteria objective value than the worst individual in the population. Only after these two criteria are satisfied, offspring are inserted in the population replacing the two worst individuals. Such a scheme has been also tested in successful GAs (see [START_REF] Ruiz | Two new robust genetic algorithms for the flowshop scheduling problem[END_REF]) since it provides a fast, albeit diverse, generational scheme avoiding at the same time premature convergence.

The second local search method we present in this work is based on the recent Iterated Greedy (IG) algorithm proposed by [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF] for the regular flowshop problem with makespan criterion and later adapted by the same authors (see [START_REF] Ruiz | An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives[END_REF]) to the sequence dependent setup times flowshop with makespan and total weighted tardiness objectives. According to those studies, the Iterated Greedy algorithm with local search (IGLS) is currently the best algorithm in those problems. Hence, it seems natural that we adapt the IGLS method to the scheduling problem tackled in this study.

As the name implies, IG algorithms start from a given initial solution and then iterate through four operators; destruction, construction, local search and acceptance criterion. These four operators are adapted to the bi-criteria problem as follows: First, we construct an initial solution by the modified NEH algorithm given in Section 4.1. Then we enter the main loop. In this loop, the incumbent solution is first partially deconstructed (destruction). To this end, a given number of jobs are randomly selected and removed from the sequence, leaving a partial sequence as a result. Afterwards, the removed jobs in the destruction phase are re-inserted in this partial sequence one at a time, starting from the job that was removed first. This phase is called construction and each job that was removed is tested in all possible positions of the partial sequence, just like in the NEH or in the local search procedures outlined above. The construction phase ends when there are no more jobs to re-insert and thus the sequence is complete. After the incumbent sequence has been put through destruction and construction, a full local search procedure is applied. In this case, the local search algorithm outlined for the SGALS is repeated until no further improvements are obtained, i.e., the resulting sequence is a local optima with respect to the insertion neighborhood. Notice that this local search procedure is noticeably slower that the curtailed one. However, IGLS mainly relies on this local search to obtain good results.

The last step in this IGLS algorithm is to decide if the sequence obtained after the local search should replace the incumbent sequence for the next iteration. We use the same approach as in [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF] which consists in accepting the new sequence according to a fixed temperature simulated annealing criterion, in which worse solutions have a small probability of being accepted. The proposed IGLS only needs a single parameter which is the number of jobs that are removed from the sequence and later re-inserted in the destruction phase. Some short experiments indicate that the original value of four given by Ruiz and Stützle (2007) is a good choice.

As a result, we propose five heuristics, one genetic algorithm with local search and an iterated greedy method. In total there are seven algorithms that we apply to the max max / / (1) Fm no wait C L + problem.

Computational Evaluation

As mentioned in Section 2, the only existing work that deals with the

Where Alg sol is the solution for any of the tested algorithms for a given instance and Best sol is the best solution known for that instance. As mentioned, the best solutions can be obtained from http://soa.iti.es.

All algorithms are run five independent times. This is necessary in the case of the stochastic methods such as HG, HSA, SGALS and IGLS in order to better asses the quality of solutions. In the case of all other tested methods (EDD, MDD, NEH, PAAH, SLACK and SLACKRW) this is not necessary since the solution is deterministic. However, we also run five replicates in order to better estimate running times by averaging the results. We run all algorithms and replicates against the 800 instances six different times in which we vary the value of (the relative weight assigned to C max) in the bicriteria objective function C max +(1-)L max . The values tested are ={0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Notice that when =0.0 (=1.0), the considered bicriteria problem reduces to L max (C max).

An important issue as regards to the computational evaluation is the stopping criterion for the metaheuristic methods. The existing algorithms HSA and HG have a specific stopping criterion that was set by [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] according to their own results. We choose to run these algorithms with this original or "natural" stopping criterion and will refer to them as HSA N and HG N , respectively.

Apart from this natural stopping criterion, and considering that all algorithms have been coded in the same language, sharing most functions and being run on the same computer, a much better stopping criterion is a maximum elapsed CPU time. By doing so, all algorithms are run under the same computational effort on the same computer and therefore, the AVRPD values are more directly comparable. We modify the HG and HSA algorithms so that they stop at a specific elapsed CPU time. Both proposed methods IGLS and SGALS also use this stopping criterion which is set to n•(m/2)•60 milliseconds. As we can see, as the size of the instance grows, more CPU time is allowed.

In summary, we have 800 instances, six values for , 12 algorithms (EDD, HG, HG N , HSA, HSA N , IGLS, MDD, NEH, PAAH, SGALS, SLACK, SLACKRW) and five replicates for each algorithm, instance and value of . This results in a total of 288,000 data points.

Let us first analyze the results for all instances grouped by T and R. Table 1 andTable 2 show the results for all values of . Bold and italic underlined values indicate the best and the worst average results, respectively.

[INSERT TABLE 1 ABOUT HERE] [INSERT TABLE 2 ABOUT HERE]

As can be seen from the results, there seems to be a trend for lower AVRPD values as increases. Recall that the case of =0.0 reduces to the single criterion L max whereas the case of =1.0 reduces to C max . For =0.0, the average results of all methods are significantly larger than for larger values of . This does not mean that instances are harder in this case, rather the contrary. For many instances, the optimum values of L max are small, in one case even 0 and for a few instances even negative. The way the AVRPD values are calculated tends to generate very large AVRPD values when the optimum solution for a given instance is close to zero, and thus the larger overall AVRPD values for =0.0. This together with the fact that the AVRPD values depend on the best solutions known (and there is no clear idea about how far these best solutions might be from the optimum ones) makes the interpretation of the effect of difficult. What seems clear though is that the dispatching rules EDD, MDD, SLACK and SLACKRW yield solutions that are, as expected, considerably worse than those of the other methods. Judging average values alone, it seems that SLACK and SLACKRW are the worst and best performers, respectively. PAAH performs better than NEH in most situations. This outcome is certainly remarkable, since NEH has been regarded as the best constructive heuristic for many flowshop related scheduling problems. Afterwards, as average performance is concerned, we find the two previous existing algorithms from [START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF] with the natural and elapsed CPU time stopping criterion, namely HG, HG N , HSA and HSA N with similar performances throughout the tests. HSA and HSA N yield near identical results. However, HG and HG N show different results, which favor HG across the board. This indicates that probably the original stopping criterion for HG N does not result in enough time. Lastly, it is clear that the two proposed IGLS and SGALS algorithms are the best performers with a slight advantage for IGLS although not for every value of .

As regards to the effect of T and R, it can be seen that for most methods and values of , an increase in R results in worse solutions whereas an increase in T results in better AVRPD values.

The effect of R is contrary to what was expected but the effect of T was definitely envisioned. Of course, this trend is very strong for low values of and, as one expects, weak for high values of .

Of additional interest are the results when grouped by n and m values. Such a grouping for =0.6 is presented in Table 3.

[INSERT TABLE 3 ABOUT HERE]

Overall, all methods result in higher AVRPD values as both n and m increase. Although for large values of n the trend is less clear. More or less the same situation is found for other values of , but we do not present them here for the sake of limited space.

Now we analyze the CPU times consumed by all methods. These times are not affected by T, R or , as they mainly depend on the number of jobs n and to a lesser extent on the number of machines m. These CPU times are shown in Table 4 for =0.6.

[INSERT TABLE 4 ABOUT HERE]

Dispatching rules are extremely fast even for the largest 100×20 instances as they need a negligible CPU time. As a matter of fact, the elapsed times are on the limit of what can be reliably measured (les than 0.001 seconds). The adaptation of the NEH method is also very fast, needing an average of 0.09 seconds for the largest instances. PAAH, is considerably slower than NEH, needing a bit less than two seconds for the largest instances. As expected, IGLS and Aldowaisan (2004) stopping criterion, we see that HSA N and HG N are much faster. In the case of HSA N this is good since we observed in Table 3 that there is no difference in performance between HSA and HSA N . However, for HG, the additional CPU time results in better solutions.

It is worth noting that HG N and HSA N times are comparable to those of PAAH.

All previous results are based on average values. While there is a large number of data points (and therefore the observed averages are likely to approach those averages at the population level), a more comprehensive statistical analysis must be carried out. We analyze a complete statistical experiment in which all factors affecting the instances; T, R, n, m and are considered along with a last factor that controls the algorithm. The response variable in the experiment is the AVRPD. The dispatching rules EDD, MDD, SLACK and SLACKRW had to be analyzed separately from the other methods due to much larger AVRPD values. All studied factors resulted to be statistically significant at a 95% confidence level for values larger than 0.0. All dispatching rules presented the same statistical performance for =0.0. Figure 2 shows a means plot of the AVRPD values for the interaction between the dispatching rules and .

[INSERT FIGURE 2 ABOUT HERE]

All tested dispatching rules work with due dates, and therefore, this plot confirms the previous findings that increasing values (closer to C max objective) result in lower AVRPD values. There are no statistically significant differences for many levels. However, we can see that MDD is worse than EDD and SLACKRW for =0.2 but better than all others for =1.0.

A similar analysis can be carried out for the remaining methods. A means plot of the AVRPD values across all other factors is shown in Figure 3. 4.

F

[INSERT FIGURE 4 ABOUT HERE]

As we can see, there are no differences for all values of except for =0.0. This is an unexpected result since IGLS was specifically designed for the C max objective. Some differences can be found between these two algorithms when studying other factors. Although not shown, IGLS shows better results than SGALS for n=80 across all other factors. The same can be said for R=0.6, T=0.0 and m=5. Therefore, we can conclude that IGLS performs better than SGALS in many cases and statistically equivalent in other cases. Moreover, the coding of IGLS is simpler, and therefore, it is preferable to SGALS.

Concluding Remarks

In this paper, the m-machine no-wait scheduling problem is addressed to minimize a linear combination of makespan and maximum lateness performance measures. A dominance relation is developed for the case of three-machines. Moreover, several heuristics are proposed and compared with the existing heuristics for the problem. The computational experiments and algorithms share most functions, it can be safely stated that the computational evaluation is fair and therefore our proposed methods outperform the existing ones.

There are usually two approaches to solve the problem addressed in this paper. One is use an implicit enumeration technique such as a branch-and-bound algorithm by which problems with a limited number of jobs can be solved optimally. The other is to use heuristics to solve the problem, where an optimal solution may not be obtained but problems with much larger number of jobs and machines can be easily solved. We have chosen the latter approach to address the problem since we could solve larger realistic size problems, and more importantly, we were able to compare our proposed heuristics with the existing ones in the literature. Furthermore, we also We have assumed that setup times are included in the processing times. This assumption is perfectly valid for some environments. However, the assumption is not realistic for some other manufacturing environments, e.g., [START_REF] Yu | Parameter setting in a bio-inspired model for dynamic flexible job shop scheduling with sequence-dependent setups[END_REF][START_REF] Hendizadeh | Bi-criteria scheduling of a flowshop manufacturing cell with sequence dependent setup times[END_REF], [START_REF] Pessan | An unrelated parallel machines model for an industrial production resetting problem[END_REF][START_REF] Chandrasekaran | Metaheuristics for solving economic lot scheduling problems (ELSP) using time-varying lotsizes approach[END_REF]. The significance of considering setup times as separate is addressed by [START_REF] Allahverdi | The significance of reducing setup times/setup costs[END_REF], and a recent survey of scheduling with separate setup times is given by Allahverdi et al. (2008). Therefore, one possible research area is to address the problem where setup times are explicitly treated as separate from processing times.

Another possible extension is to consider the problem with respect to other objective functions such as job waiting time variance, e.g., [START_REF] Li | Influencing factors of job waiting time variance on a single machine[END_REF] Observe that (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + =0 since t i,2 +max(t i,1 , t j,2) t j,2 +t j,3 , Therefore, equation (9) reduces to

C max (2) -C max (1) = (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + (t [+2,2] -t i,2 -t i,3 + max (t [+2,1] , t i,2)) + -(t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + -(t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + -(t [+2,2] -t j,2 -t j,3 + max (t [+2,1] , t j,2)) + = (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + (t [+2,2] -t i,3 + (t [+2,1] -t i,2) +) + -(t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + -(t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + -(t [+2,2] -t j,3 + (t [+2,1]] -t j,2) +) +
Since t j,k t i,k for k=1,2,3, it follows from the above equation that

C max (2) C max (1).
The lateness of the jobs in positions and +1 for the two sequences are given as: [-1,3] + max (t i,1 , t [-1,2])) + + t i,3 + (t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + + t j,3 -d j , ((t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])) + + = 1 1 r t [r,3] + (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + t j,3 + (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + + t i,3 -d i , (

L [] (1) = = 1 1 r (t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])) + + = 1 1 r t [r,3] + (t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + + t i,3 -d i , (10) L [] (2) = = 1 1 r (t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])) + + = 1 1 r t [r,3] + (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + t j,3 -d j , (11) L [+1] (1) = = 1 1 r (t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])) + + = 1 1 r t [r,3] + (t i,2 -t [-1,2] -t
It follows from equations (11) and (12 and

L [r] (2) = = 1 1 r (t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])) + + = 1 1 r
t [r,3] + (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + t j,3 + (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + where

+ + = 2 3 p (.) = 0.
From the last two equations.

L [r] (2) -L [r] (1) = (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + (t [+2,2] -t i,2 -t i,3 + max (t [+2,1] , t i,2)) + -(t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + -(t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + -(t [+2,2] -t j,2 -t j,3 + max (t [+2,1] , t j,2)) +

The right hand side of the above equation is equal to the right hand side of equation (9), hence L [r] (2) L [r] (1) (17)

for r = + 2, ..., n. Needles to say L [r] (2) L [r] (1), r = 1,2, …, -1 since both sequences have the same jobs in these positions. Therefore, from equations (16) and (17), L max (2) L max (1).

 times of every job in the sequence ([] i C) are calculated, the lateness of the job in position i, [] i L , can be written as

 with local search yielded the best results. This algorithm is referred to as SGALS. Here we explain the basic workings of this method and of the special adaptations for the no-wait flowshop with the bicriteria objective. Given that no-wait flowshops are necessarily permutation flowshops, a non-delay schedule is best represented by a simple permutation of jobs.

 After generating the new offspring with selection, crossover and mutation, these new individuals undergo an improvement phase. This improvement is carried out by local search. We improve each individual with a probability of 0.15 by means of a limited local search in which each job is removed from the sequence and tested in all the possible positions of the sequence e., n positions). The lowest bicriteria objective value dictates the final position for the job. The process stops when all jobs have been reinserted. This local search does not guarantee the final improved offspring to be local optima with respect to the insertion neighborhood but it is much faster.

 same times since these two methods stop by a given elapsed CPU time given by the expression n•(m/2)•60 milliseconds. Notice that this time results in 30 seconds for the largest instances which is still a short CPU time. It is important to mention that both HSA and HG are expected to have the same time. However, in these two methods, and as specified by[START_REF] Allahverdi | No-wait flowshops with bicriteria of makespan and maximum lateness[END_REF], a final local search step is applied the final solution, therefore, HSA and HG times are slightly larger than those of IGLS and SGALS. Comparing HSA and HG with the elapsed CPU time stopping criterion against the HSA N and HG N versions withAllahverdi and

 indicate that the proposed heuristics significantly outperform the existing ones for all scenarios considered; different linear combinations of the objectives, tardiness factors, ranges of due dates and number of jobs and machines. Since the comparisons have been done in the same computer with identical stopping criterion, and the codes of all tested

 established a dominance relation for the case m=3. Dominance relations are very helpful when used in implicit enumeration techniques. Therefore, a possible research area is to construct a branch-and-bound algorithm for this problem by utilizing the dominance relation established in this paper or to develop a Lagrangian relaxation approach similar to the one used by[START_REF] Augusto | Operating theatre scheduling using Lagrangian relaxation[END_REF].

 FIGURES

 SLACK with Remaining Work (SLACKRW). It is a modification of the previous SLACK rule where the total processing time of each job i is also considered. As a result, the job with the minimum value in the following index is scheduled:

									max	d	, i C	i	()	.
	3. SLACK. At each step, the completion time of job i, when appended to the partial
	sequence , i.e.	C	i	()	, is calculated. The job with the minimum slack with regards to its
	due date or	d	i	C	i	()	is appended to the sequence.
	4.							
	o				
		r
				P
								e e r
									R e v i e w
									O n
									l y

8 2. Modified Due Date (MDD). In this rule, the next scheduled job is the one with the minimum modified due date { }

 Three groups can be observed. First we have the NEH and PAAH algorithms. Clearly, PAAH yields better solutions in all scenarios but as we have shown earlier, at a much higher CPU time. On the other hand, HSA and HG algorithms have better performance with both stopping criteria. At this stage it is important to note that both HSA N and HG N are statistically better than PAAH and even faster on average. Although HG is shown as statistically equivalent to HG N , differences can be found for specific values of (not shown). Lastly, it is clear that IGLS and SGALS outperform all other methods, including HSA and HG by a considerably margin. Taking into account that the CPU times for IGLS and SGLS are slightly smaller than those of HSA and HG, we can safely conclude that IGLS and SGALS are preferable for all scenarios. Although not shown here, the performances for different values of , T, R and other factors are similar and IGLS and SGALS are consistently better in all situations. A comparison of these two algorithms is shown in Figure

	[INSERT FIGURE 3 ABOUT HERE]
	o
	r
	P
	e e r
	R e v i e w
	O n
	l y
	16

 Now it follows from the last equation and the fact that t j,k t i,k for k=1,2,3 But (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + = (t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + =0 since t i,2 +max(t i,1 , t j,2) t j,2 +t j,3 , and t j,2 +max(t j,1 , t i,2) t i,2 +t i,3 , Moreover, t j,k t i,k for k=1,2,3 andd j d i , hence, t [r,2] -t [r-1,2] -t [r-1,3] + max (t [r,1] , t [r-1,2])} + (t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + + t i,3+ (t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + + t j,3 + (t [+2,2] -t j,2 -t j,3 + max (t [+2,1] , t j,2)) + + t[+2,3]

						1	1
	L [r] (1) =						t [r,3]
			r	= 1	r	= 1
) that
	L [] (2)-L [+1] (1) = (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + -(t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + -t i,3 r F + = p 3 o + (t [p,2] -t [p-1,2] -t [p-1,3] + max (t [p,1] , t [p-1,2])) +
	+	p	r =	+	3	r -(t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + P t [p,3] -d [r] ,
	L [] (2) L [+1] (1). Taking the difference between equations (12) and (13) yields e e r	(14)
	L [+1] (2)-L [+1] (1)= (t j,2 -t [-1,2] -t [-1,3] + max (t j,1 , t [-1,2])) + + (t i,2 -t j,2 -t j,3 + max (t i,1 , t j,2)) + -(t i,2 -t [-1,2] -t [-1,3] + max (t i,1 , t [-1,2])) + -(t j,2 -t i,2 -t i,3 + max (t j,1 , t i,2)) + + d j -d i R e v i e w
							O n
	L [+1] (2) L [+1] (1)	l y	(15)
	Therefore. from equations (14) and (15)
	max{ L [] (2), L [+1] (2)} max{ L [] (1), L [+1] (1)}	(16)
							24

Now, for L

[r]

where r = + 2,...,n, (+

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.ukInternational Journal of Production Research

Further work needs to be conducted in order to deal the bi-criteria problem in a more explicit way by building methods capable of obtaining a full set of non-dominated solutions in the bi-criteria space (a posteriori approach) which would eliminate the need of fixing values.

Appendix (Proof of the Theorem)

Consider two job sequences 1 and 2 such that 1 has job i in an arbitrary position and job j in position +1. The sequence 2 is exactly the same as 1 except that job j is in position and job i in position +1.

The makespan for these two sequences can be written as:

and

where

Since both sequences have the same jobs in all positions except and +1, it follows from the above two equations that