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ABSTRACT 

Traditionally process planning and scheduling are two independent essential 

functions in a job shop manufacturing environment. In this paper, a unified 

representation model for Integrated Process Planning and Scheduling (IPPS) has 

been developed. Based on this model, a modern evolutionary algorithm, i.e., the 

Particle Swarm Optimisation (PSO) algorithm has been employed to optimise the 

IPPS problem. To explore the search space comprehensively and to avoid being 

trapped into local optima, the PSO algorithm has been enhanced with new operators 

to improve its performance and different criteria, such as makespan, total job 

tardiness and balanced level of machine utilisation, have been used to evaluate the 

job performance. To improve the flexibility and agility, a replanning method has 
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been developed to address the conditions of machine breakdown and new order 

arrival. Case studies have been used to verify the performance and efficiency of the 

modified PSO algorithm under different criteria. A comparison has been made 

between the result of the modified PSO algorithm and those of the Genetic 

Algorithm (GA) and the Simulated Annealing (SA) algorithm respectively, and 

different characteristics of the three algorithms are indicated. Case studies show that 

the developed PSO can generate satisfactory results in optimising the IPPS problem. 

 

Keywords: Integrated Process Planning and Scheduling, Particle Swarm 

Optimisation, Genetic Algorithm, Simulated Annealing, Replanning 

 

1. Introduction 

In job shop and batch manufacturing, both process planning and scheduling are 

responsible for the efficient allocation and utilisation of manufacturing resources. 

Process planning, as defined by Chang and Wysk (1985), is the act of preparing 

detailed operation instructions to transform an engineering design to a final part. In 

this process, the decision of which manufacturing resources to select is usually 

made based on the objective of achieving the correct quality, the minimal 

manufacturing cost and ensuring good manufacturability. Scheduling is the function 

of assigning manufacturing resources to parts and their operations indicated in 

process plans in such a way that the competition and conflict for the resources can 

be resolved. The objectives often relate to balanced level of machine utilisation, 
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minimised makespan and total tardiness. Usually, a process plan is determined 

before the actual scheduling with no regard for the scheduling objectives and with 

the assumption of all the resources are available. However, this sequential 

arrangement of the two functions ignores their close relationship. The two functions 

are interrelated because both of them take part in the assignment of machines to 

production tasks (Moon and Seo 2005). If a process plan is prepared offline without 

due consideration of the actual shop floor status, it may not be an optimal solution 

due to a heavily unbalanced resource assignment, or even become unfeasible due to 

changes or constraints in the manufacturing environment. Meanwhile, with the 

different objectives of these two functions, it is difficult to produce a satisfactory 

result in their sequential executions. As thus, Integrated Process Planning and 

Scheduling (IPPS) has been proposed, aiming to increase production feasibility and 

optimality by combining both the process planning and scheduling problems 

(Huang et al. 1995).  

Over the last decade, a number of research efforts have been made to solve the 

IPPS problem. An earlier review of different approaches can be found in Tan and 

Khoshnevis (2000). The most recent works can be generally classified into two 

categories: the enumerative approach and the simultaneous approach (Li and 

McMahon 2007). In the enumerative approach (Zhang et al. 2003, Tonshoff et al. 

1989, Sormaz and Khoshnevis 2003, Aldakhilallah and Ramesh 1999), alternative 

process plans for each part are first generated. A schedule can then be determined 

by iteratively selecting a suitable process plan from the alternative plans to replace 
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the current plan until a satisfactory performance is achieved. The simultaneous 

approach (Moon et al. 2002, Moon and Seo 2005, Kim et al. 2003, Yan et al. 2003, 

Zhang and Yan 2005, Li and McMahon 2007) is based on the idea of finding a 

solution from the combined solution space of process planning and scheduling. In 

this approach, the process planning and scheduling are both in dynamic adjustments 

until specific performance criteria are satisfied. Although this approach is more 

effective and efficient in integrating the two functions, it also enlarges the solution 

search space significantly. 

To facilitate the optimisation process, some optimisation approaches based on 

modern heuristic algorithms and Artificial Intelligence (AI) technologies, such as 

the Genetic Algorithm (GA) (Morad and Zalzala 1999, Kim et al. 2003, Moon and 

Seo 2005, Zhang and Yan 2005), Simulated Annealing (SA) algorithm (Zhang et al. 

2003, Li and McMahon 2007), Tabu search algorithm (Yan et al. 2003) and Agent-

based approach (Wong et al. 2006), have been developed in the last decade and 

significant improvements have been achieved. However, the following issues are 

still outstanding: 

(1) Most of the developed systems are unable to address the dynamic changes in 

shop floors effectively, such as routine machine maintenance, machine 

breakdown and new order arrival. Any occurrence of these situations will 

probably make the current schedule infeasible and result in a need to replan 

the schedule. The replanning process is more complex and time consuming 

due to the changed situations and manufacturing resource constraints. 

Page 4 of 55

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

5 

 

(2) Both process planning and scheduling are NP-hard (Non-deterministic 

Polynomial) combinatorial optimisation problems. Compared to the problem 

of operation sequencing optimisation for a single part (Guo et al. 2006), there 

are two major difficulties in IPPS, (1) the search space of IPPS is much bigger 

than that of operation sequencing of a single part, and (2) the optimisation of 

IPPS becomes more complicated as the number of parts increases and there 

are more complex manufacturing constraints (such as operation precedence 

constraints and manufacturing resource constraints). All of these will increase 

the computation time dramatically. 

 

As thus, it is necessary to develop an adaptive and unified model for the IPPS 

problem and an efficient optimisation algorithm. Particle Swarm Optimisation 

(PSO) is a modern evolutionary computation technique based on a population 

mechanism (Kennedy and Eberhart 1995). It has been motivated by the simulation 

of the social behaviour of individuals (particles). The PSO algorithm was initially 

developed for continuous optimisation problems. Recently, there has been 

successful research focused on discrete problems such as the Travelling Salesman 

Problem (TSP) (Wang et al. 2003, Pang et al. 2004, Onwubolu and Clerc 2004), 

operation sequencing problem (Guo et al. 2006) and the scheduling problem (Jerald 

et al. 2005). In this paper, a new PSO-based optimisation algorithm for the IPPS 

problem has been developed. A case study with computational experiments to test 
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the algorithm on two groups of jobs is demonstrated, and a comparison between the 

result of the PSO algorithm and that of previous work is presented. 

 

2. Representation of the IPPS 

2.1 PSO algorithm 

The PSO algorithm was inspired by the social behaviour of bird flocking and 

fish schooling (Kennedy and Eberhart 1995). Three aspects will be considered 

simultaneously when an individual fish or bird (particle) makes a decision about 

where to move: (1) its current moving direction (velocity) according to the inertia of 

the movement, (2) the best position that it has achieved so far, and (3) the best 

position that its neighbour particles have achieved so far. In the algorithm, the 

particles form a swarm and each particle can be used to represent a potential 

solution of a problem. In each iteration, the position and velocity of a particle can be 

adjusted by the following formulae that take the above three considerations into 

account. After a number of iterations, the whole swarm will converge at an 

optimized position in the search space. 

)(*()*)(*()** 21

1 t

i

t

g

t

i

t

i

t

i

t

i XPRandcXPRandcVwV −+−+=+
 (1) 

11 ++ += t

i

t

i

t

i VXX  (2) 

),...,,( 21 iNiii XXXX =  (3) 

),...,,( 21 iNiii VVVV =  (4) 

Here, i  is the index number of particles in the swarm; t  is the iteration number; 

V  and X  are the velocity vector and the position vector of a particle respectively. 
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For an N-dimensional problem, V  and X  can be represented by N  particle 

dimensions as formulas (3) and (4) show. iP  is the local best position that the ith 

particle has achieved so far; gP  is the global best position that all the particles have 

achieved so far; w  is the inertia weight to adjust the tendency to facilitate global 

exploration (smaller w ) and the tendency to facilitate local exploration to fine-tune 

the current search area (larger w ); ()Rand  returns a random number in [0,1]; 1c  and 

2c  are two constant numbers to balance the effect of iP  and gP . 

 

2.2 Definition of IPPS 

The IPPS problem can be defined as:  

Given a set of n parts, and each of which has a number of operations. The parts are 

processed on m machines with alternative manufacturing plans (machines, tools 

and Tool Approach Directions-‘TADs’). The objective of the problem is to select 

suitable manufacturing resources and sequence the operations so as to determine a 

schedule in which the precedence constraints between operations can be satisfied 

and the corresponding objectives can be achieved. 

Figure 1 is used to illustrate this problem. For instance, there are 3 parts that can 

be machined by 3, 2 and 3 operations on 3 machines, respectively. For the different 

parts, there are precedence constraints among the operations to machine them 

(Part1: Oper1→Oper2→Oper3, Part2: Oper4→Oper5, Part3: 

Oper6→Oper7→Oper8). When all these 8 operations are sequenced 

(Oper1→Oper4→Oper2→ Oper6→Oper3→Oper7→Oper8→Oper5 as shown in 
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Figure 1) and the manufacturing resources are specified (machines, tools and 

TADs), the schedule can be determined accordingly. The optimisation problem is to 

determine the operation sequence and select the manufacturing resources so as to 

achieve the optimisation objectives (Makespan in Figure 1, for example) whilst 

maintaining the schedule and process planning feasible. 

(Here inserts Figure 1) 

 

2.3 Representation of IPPS 

To apply the PSO algorithm to the optimisation of the IPPS problem, two issues 

have to be handled first: 

(1) Encode a solution (here a solution refers to a sequence of operations) to produce 

a particle.  

As shown in Figure 2, each operation is modelled as a particle dimension of the 

PSO algorithm, and the detailed information is listed in Table 1. Several new 

variables, including Mac_time, Change_time, Machine_s_time and Machine_e_time, 

are added to record and track the time related to the execution of the operation so as 

to determine the time allocation on the machines. Here, a position variable and a 

velocity variable are used to represent the position and velocity of an operation, 

respectively. As shown in Table 2, the array variable Oper[n] represents a solution 

that consists of n ParticleDimensions (operations). A particle can be initialised in the 

following steps: 
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• All the operations are given an Operation_id from 1 to n. 

• Machine_list, Tool_list and TAD_list applicable for each operation are 

specified, and a machine, tool and TAD are randomly selected from the 

three lists to execute the operation. 

• Mac_time, Change_time, Machine_s_time and Machine_e_time are set 

as 0 initially. 

• A random position between [0, 1] and a random velocity between [-1, 1] 

are initialised for each ParticleDimension in the particle. The sequence 

of operations is determined by the relative values of their positions.  

(2) Decode the particle to get a solution.  

In each iteration, when all the ParticleDimensions in a particle have been 

updated, the sequence of all the operations to machine the parts can be determined 

by the relative positions of the ParticleDimensions (Cagnina et al. 2004). As 

discussed in Section 2.2, when the sequence for all the operations is generated and 

the manufacturing resources are selected, the assignments of specific operations and 

machines are determined and therefore the schedule is obtained. By using a number 

of iterations to update the positions and velocities of the particle dimensions in each 

particle, an optimised sequence (i.e., an optimized solution) can be achieved 

eventually. 

(Here inserts figure 2) 

 (Here insert table 1 and table 2) 
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A feasible solution of the IPPS problem must comply with precedence 

constraints that come from geometrical and technological considerations. The 

precedence constraints between operations are usually classified into six types: (1) 

fixture interaction, (2) tool interaction, (3) datum interaction, (4) thin-wall 

interaction, (5) material-removal interaction, and (6) fixed order of machining 

operations. The definitions and illustrations of these constraints can be seen in works 

of Li et al. (2004) and Guo et al. (2006). 

The IPPS problem can be modeled as an extension of the operation sequencing 

optimisation problem relating to a single part (Li et al. 2004, Guo et al. 2006) into a 

multiple parts with the IPPS objectives. When the process plans of all parts are 

generated and the manufacturing resources are specified, it is required to determine 

the schedule based on this information and calculate the makespan, total tardiness, 

etc. Here, three evaluation criteria of the IPPS problem can be calculated as follows. 

 

Makespan: )_].[(
1

timeAvailablejMachineMaxMakespan
m

j=
= . 

Here  timeAvailablejMachine _].[  is the time when machine is available for 

next operation. 

Total job tardiness: The due date of a part is denoted as DD , and the completion 

moment of the part is denoted as CM . Hence, 

                    

        
      

         0
_

Otherwise

CMthanlaterisDDif

DDCM
TardinessPart





−
=  
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Balanced level of machine utilization: the Standard Deviation concept is 

introduced here to evaluate the balanced level of machine utilization (assuming 

there are m  machines, and each machine has n  operations).  

Total machining time of Machine[j]: 

∑
=

=
n

i

TMaciOperationnUtilizatiojMachine
1

)_].[(].[ , ( mj ,..,1= ) 

Mean machining time of all the machines: 

m

nUtilizatiojMachine
m

j

∑
== 1

)].[(

χ  

Standard Deviation to the Mean machining time: 

∑
=

−=
m

j

nUtilizatiojMachineLevelnUtilizatio
1

2)].[(_ χ  

 

3. The PSO algorithm with replanning ability 

The above approaches for the IPPS problem do not consider the possibility of 

making dynamic changes in shop floors, such as routine machine maintenance, 

machine breakdown and new order insertion to the current schedule to meet the 

deadlines. Any occurrence of these situations will probably make the current 

schedule unfeasible and require the replaning of the whole schedule. In this research, 

two types of changes are considered, namely machine breakdown and new order 

arrivals. The following will discuss these two situations respectively. 

3.1 Machine breakdown 
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If a machine breaks down, it will not only affect the part being machined on it, 

but also make other parts that are going to be executed on this machine unfeasible. 

Suppose ][ jMachine  breaks down at time bT , and the reparation of the machine 

requires time pT . The following assumptions are made: 

� The replanning generates a schedule from the next available time 

for ][ jMachine , mj ,...2,1= . 

� The available time of the machine that breaks down 

is timeAvailablejMachine _].[ = bT + pT . 

� The breakdown of ][ jMachine  does not affect the current operations of 

other machines. If an operation ][iOper is being executed on 

)]([ jkkMachine ≠  when ][ jMachine  breaks down, then the available time 

of the )]([ jkkMachine ≠  can be computed as follows: 

timeAvailablekMachine _].[ = timeeMachineiOper __].[ .  

� If no job is being processed on )]([ jkkMachine ≠  when ][ jMachine  breaks 

down, then the available time of the )]([ jkkMachine ≠  can be computed as 

timeAvailablekMachine _].[ = bT . 

� If there is a part being machined when the machine breaks down, it does not 

destroy the part and only the operation disturbed needs to be re-executed in 

one of two ways: a) to be machined on the current machine after it is 

repaired, and b) to be rescheduled to be executed on other machines. 
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� Only the operations that have not been executed and the operation being 

executed on the broken down machine need to be rescheduled from the 

machine available time obtained previously. 

With the above assumptions, it can be seen in Figure 3, when machine 2 breaks 

down at time bT , the available times for three machines are 1T , 2T  and 3T  

respectively. 

(Here inserts figure 3) 

Therefore, with these assumptions, the replanning of the scheduling problem can 

be resolved by two changes applied to the PSO algorithm described before: 

1) Reduce the operations range to the operations that have not been 

executed. 

2) Initialise the operations (particle dimensions) and machines with the 

new generated available time. 

3.2 New order arrival 

Compared to machine breakdowns, the situation of the arrival of a new order is 

less complex. Suppose the new part arrives at time aT . The following assumptions 

are made: 

� The replanning generates a schedule from the next available times 

for ][ jMachine , mj ,...2,1= . 
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� If an operation ][iOper  is being executed on ][ jMachine  when the new part 

arrives, then the available time of the ][ jMachine  can be computed as 

follows: timeAvailablejMachine _].[ = timeeMachineiOper __].[ . 

� If no job is being processed on ][ jMachine  when a new part arrives, then 

the available time of the ][ jMachine  can be computed as: 

timeAvailablejMachine _].[ = aT . 

� Only the operations that have not been executed and the new operations that 

are required to machine the new part need to be rescheduled from the 

machine available time obtained previously. 

With the above assumptions, it can be seen in Figure 4, when a new order 

arrives at time aT , the available times for three machines are 1T , 2T  and 3T  

respectively. 

(Here inserts figure 4) 

 

Therefore, with these assumptions, the replanning of the scheduling problem can 

be resolved by two changes applied to the PSO algorithm described before: 

1) Increase the operations range, including the operations of old parts that 

have not been executed and the operations that are required to machine 

the new part. 

2) Initialise the operations (particle dimensions) and machines with the 

new generated available time. 
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3.3 Method to improve the efficiency of the algorithm in replanning 

It is required to reduce the computation time for generating a new schedule 

quickly when encountering the above situations. However, the process of replanning 

will take more time, especially when adding new orders as it will increase the search 

space and there is a need to keep the schedule feasible with the consideration of 

more precedence constraints. As presented above, the critical step to replan the 

schedule is the initialisation of the particle (all the operations need to be scheduled). 

Furthermore, the old schedule generated was feasible and optimised whilst 

complying with all the precedence constraints before the situation occurred. For 

efficiency, it is better to minimise changes to the existing plan as some allocated 

resources may already be in place, e.g., tools and materials taken to machines in 

advance. Therefore, the strategy has been used to update the old schedule with some 

modifications as a new particle: 

� For the situations of machine breakdown, it is possible to initialise a particle by 

three steps: a) delete the operations that have been executed in the old schedule, 

b) keep the velocity and position values to keep the sequence of the operations, 

and c) change the corresponding available time for the machines. 

� For the situations of new order arrival, it is possible to initialise a particle by the 

following steps: a) delete the operations that have been executed in the old 

schedule, b) keep the velocity and position values to keep the sequence of the 

operations in the old schedule, c) add the operations that are required to 
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machine the new part to the end of old schedule, d) initialise the newly added 

operations by selecting alternative manufacturing resources and set the position 

and velocity values, and d) changing the corresponding available time for the 

machines. 

With this method, the optimised sequence in the old schedule is mostly kept and 

this saves a large amount of computation, and hence reduces the time for replanning 

the schedule. 

  

4. The Modified PSO Algorithm 

A traditional PSO algorithm can be applied to optimise the IPPS problem in the 

following steps: 

(1) Initialisation: 

• Set the size of a swarm, e.g., the number of particles “Swarm_Size” and the 

maximum number of iterations “Iter_Num”. 

• Initialise all the particles in the method introduced in section 2.3. Decode 

every particle (solution) to get the schedule of the particle and then calculate 

the corresponding criteria of particle (the result is called fitness here) as 

described in section 2.3. 

• Set the local best ][nPi  and the global best gP  with the best fitness. 

(2) Iterate the following steps until Iter_Num is reached: 
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• For each particle in the swarm, and each ParticleDimension, (i.e., operation 

in particle), update ParticleDimension’s velocity and position values 

according to formulas (1) and (2), i.e., Oper[1].Position, Oper[2].Position, 

…, Oper[n].Position. 

• Decode the particle into a solution in terms of new position values and 

calculate the fitness of the particle. Update the local best ][nPi  and the global 

best gP  if a lower fitness is achieved. 

(3) Decode global best gP  to get the optimised solution. 

However, the traditional PSO algorithm introduced above is still not effective in 

resolving the operation sequencing problem. There are two major reasons for this:  

(1) Due to the inherent mathematical operators, it is difficult for the traditional PSO 

algorithm to consider the different arrangements of machines, tools and TADs 

for each operation, and therefore the particle is unable to fully explore the 

whole search space.  

(2) The traditional algorithm usually works well in finding solutions at the early 

stage of the search process (the optimisation result improves fast), but is less 

efficient during the final stage. Due to the loss of diversity in the population, 

the particles move quite slowly with low or even zero velocities and this make 

it is hard to reach the global best solution (Stacey et al. 2003). Therefore, the 

whole swarm is prone to be trapped in a local optimum from which it is 

difficult to escape.  
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To solve these two problems and enhance the ability of the traditional PSO 

algorithm to find the global optimum, new operations, including mutation, crossover 

and shift, have been developed and incorporated in a modified PSO algorithm. 

Meanwhile, considering the characteristics of the algorithm, the initial values of the 

particles and gP  (the global best position of all the particles in formula (1)) have 

been well planned. Some modification details are depicted below. 

(1) New operators in the algorithm 

• Mutation. In this strategy, an operation is first randomly selected in a 

particle. From its candidate machining resources (Machine_list[], Tool_list[] 

and TAD_list[]), an alternative set (machine, tool, TAD) is then randomly 

chosen to replace the current machining resource in the operation. This 

operator enables the PSO algorithm to select the alternative Machine-Tool-

TAD candidates so the optimisation can be preceded. The probability of 

applying this strategy is defined as mP . 

• Crossover. Two particles in the swarm are chosen as Parent particles for a 

crossover operation. In the crossover, a cutting point is randomly 

determined, and each parent particle is separated as left and right parts of the 

cutting point. The positions and velocities of the left part of Parent 1 and the 

right part of Parent 2 are reorganised to form Child 1. The positions and 

velocities of the left part of Parent 2 and the right part of Parent 1 are 

reorganised to form Child 2. The probability of applying the crossover is 

defined as cP . 
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• Shift. This operator is used to exchange the positions and velocities of two 

operations in a particle so as to change their relative positions in the particle. 

The probability of applying the shift is defined as sP . 

(2) Escape method for gP  

• During the optimisation process, if the iteration number of obtaining the 

same best fitness is more than 10, then the mutation and shift operations are 

applied to gP to try to escape from the local optima. 

5. Case Studies and Discussions 

Two experiments are used here to verify the efficiency of the PSO algorithm for 

the IPPS problem. The first experiment is used to compare the efficiencies of the 

PSO, GA and SA algorithms. The second experiment is used to verify the 

replanning ability of the PSO algorithm under machine breakdown and new order 

arrival conditions. For simplification, the parameters of the PSO algorithm 

recommended in Guo et al.’s work (2006) are used in the PSO algorithm for 

experiments in this paper. 

5.1 Experiment 1 

The example parts and manufacturing resources from Li and McMahon (2007), 

which were for comparing GA and SA on optimisation of process planning, are 

used here to verify and compare the efficiencies of the PSO, GA and SA 

approaches. Two groups of parts are used for the experiment. 

 

Group 1: 
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The first group consists of three parts that are taken from the works of Shah, et 

al. (1995) and Zhang, et al. (1997). The specifications of the parts are shown in 

Table 3. 

(Here inserts Table 3) 

Two criteria are used here as the optimisation direction, i.e., the makespan and 

the balanced machine utilisation. 

The optimisation processes and results of the PSO algorithm and influence of 

applying new operators are shown in Figures 5 and 6 respectively (the mutation 

operator is not included because it is an essential operator to enable optimisation to 

select alternative Machine-Tool-Tad candidates). From these two figures, it can be 

seen that the PSO can optimise Makespan and Balanced Level of Machine 

Utilisation for Group 1 successfully, and the performance of the PSO is improved 

with these two new operators (The PSO with both crossover and shift converges 

faster and can achieve better result than the PSO without crossover especially). 

Figure 7 shows an optimised result for Makespan in Gantt chart. The optimised 

schedule for a minimised Makespan can be achieved after nearly 3000 iterations and 

the optimised schedule for Balanced Level of Machine Utilisation can be achieved 

more quickly, after 200 iterations. 

(Here insert Figures 5, 6 and 7) 

Two other evolutionary algorithms, GA and SA developed by Li and McMahon 

(2007), are used to compare the optimised results, computation efficiency and 

robustness. Figures 8 and 9 show the optimisation results of GA, SA and PSO for 
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two objectives respectively. The optimisation results are based on 5000 iterations 

for each algorithm. The population of the GA and the PSO are both set as 200. 

(Here insert Figures 8 and 9) 

 

Makespan: 

 As Table 4 shows, the SA takes 59 minutes to finish 5000 iterations, so Figure 8 

shows the results after an 8 minute run. As shown in Table 4 and Figure 8, with the 

same time period, the SA and the PSO can achieve better results than GA, but the 

SA is not as robust as the GA and PSO. For 20 random consecutive trials, the SA 

optimise successfully in 14 trials (Here the optimisation is regarded unsuccessful if 

no better solutions than the initialised solution can be found in 5 minutes after the 

starting of the optimisation process), the PSO and the GA can optimise successfully 

in all 20 trials. 

(Here insert Tables 4 and 5) 

Balanced Level of Machine Utilisation:  

From Table 5 and Figure 9, it can be seen that all three algorithms can achieve 

the optimised results in all 20 consecutive trials, whilst the GA and the SA 

algorithms approach the optimised result more quickly. 

 

Group 2: 

Eight parts taken from (Li and McMahon, 2007) have been used to test the 

algorithm under more complex conditions. The relevant specifications of the parts 
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are given in Table 6. The above two objectives have been used again, and the 

optimisation results are shown in Figures 10 and 11. It can be seen that the PSO can 

optimise Makespan after nearly 4000 iterations and Balanced Level of Machine 

Utilisation after 3000 iterations. 

(Here inserts Table 6) 

(Here insert Figures 10 and 11) 

 

The comparisons of the GA, SA and PSO designed for Group 1 are used to 

compare the results, efficiencies and robustness for group 2 as well. 

Makespan: 

As shown in Table 7 and Figure 12, with the same time period, the PSO and the 

SA can achieve better results than the GA. However, for 20 random consecutive 

trials, the SA can only proceed with successful optimisation in 6 trials, the PSO and 

the GA can proceed with successful optimisation in all 20 trials. 

(Here insert Tables 7 and 8) 

(Here insert Figure 12 and 13) 

 

Balanced Level of Machine Utilisation: 

 From Table 8 and Figure 13, it can be observed that all of the algorithms can 

achieve good results, while different characteristics are shown due to the inherent 

mechanisms of the algorithms. The SA is much “sharper” to find optimized 

solutions than the GA and the PSO. The SA can achieve better results than the GA 

and the PSO. However, in 20 random consecutive trials, the SA can only proceed 
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with successful optimisation in 6 trials but the GA and the PSO can proceed with 

successful optimisation in all 20 trials. 

 

Summary of GA, SA and PSO algorithms 

As discussed in above section and in Guo et al.’s work (2006), the GA, SA and 

PSO algorithms are used to optimise the operation sequencing problem and the 

IPPS problem. All of them can yield good results, but they have different 

characteristics. The GA and the PSO are both population based algorithms except 

the SA. Therefore, the optimisation processes of the GA and the PSO take a longer 

time than that of the SA (Guo et al. 2006). It can also be observed that the PSO 

needs to adjust the particle dimensions by updating the velocities and positions of 

them due to its intrinsic mechanism so that it needs more computation time than the 

GA. For the optimisation results, the SA and the PSO both outperform the GA in all 

the above case studies. As the complexity of the problem increases (for example 

when optimising IPPS problems), the SA can achieve better results than the GA and 

the PSO in the case studies described above. But as the complexity of the problem 

increases, the SA is not as robust as the GA and the PSO. This is probably because 

the SA is not population based, so that the initial plan does not have enough 

diversity to enable it to search the space successfully. Also as the complexity of the 

problem increases, it can be seen that the optimisation speed advantages of the GA 

and the SA over the PSO diminish. It is well known that simple mathematic 

operations run much faster than other position changing operations. This can 
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probably be attributed to the fact that each iteration of the PSO algorithm uses 

mainly simple mathematical operators that can be finished in a shorter time than for 

the GA and the SA algorithms with mainly complex position changing operators. In 

constraints handling, the GA and the SA can use the adjustment method developed 

by Li et al. (2002) to keep the plan feasible, but the PSO can only use the penalty 

method to enable the results to comply with the constraints due to its intrinsic 

mechanism. The above discussion is illustrated in Table 9. 

(Here inserts Table 9) 

 

 

5.2 Experiment 2 

The parts in group 2 have been used to test the replanning ability of the PSO 

developed for IPPS under machine breakdown and new order arrival conditions. In 

this experiment, as new order arrivals and machine breakdowns occur, it is 

appropriate to set the total tardiness as the main objective, so as to make comparison 

under these two conditions. 

 

1. First planning 

The 8 parts in group 2 consist of a total of 59 operations. Here the Due Date 

(DD) is set as 2700.0. Table 10 shows the first scheduling results of the complete 

time for individual parts in group 2. It also can be seen from Figure 14, the process 

can be optimised to achieve the DD for all the parts. 
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(Here inserts Figure 14) 

(Here inserts Table 10) 

 

2. Condition of new order arrival 

At time 1000.0, a new order arrives (part 9 in this experiment which is the same 

as part 1) and the corresponding DD is set as 3500.0. At the time 1000.0, 18 

operations have been finished and 41 operations are left. With part 9 added as a new 

part, 7 operations are then inserted into the total operation list which includes 48 

operations. The individual available time for all the machines is shown in Table 11. 

The optimisation result is shown in Figure 14 and the individual complete time for 

all the 9 parts after replanning is shown in Table 12. 

(Here insert Tables 11 and 12) 

 

3. Condition of machine breaks down 

At time 1500.0, machine 3 breaks down (repair time 300.0). Table 13 shows the 

available times for different machines. At that time, 16 operations have been 

finished and only 32 operations are left. The optimisation result is shown in Figure 

14 and the individual complete time for all the 9 parts after replanning is shown in 

Table 14. 

(Here insert tables 13 and 14) 

 

Because the algorithm will not continue the optimisation when it achieves the 

lowest value in terms of the objective (here total tardiness=0), it can find the earliest 
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complete date for parts by reducing the DD. For example if DD(part 1-8) = 1500.0, 

DD(9) = 2500, the planning results are shown in Tables 15, 16 and 17: 

(Here insert tables 15, 16 and 17) 

From this case study, it can be seen that the modified PSO algorithm has the 

ability to replan when new order arrival and machine breakdowns occur. Figure 14 

shows that with the method discussed in section 3, the replanning time can be 

reduced and the computation efficiency can be improved significantly. 

 

6. Conclusions 

Efficient and adaptive integration of process planning and scheduling has 

become imperative in order to optimise the decisions of allocating manufacturing 

resources in a job shop/batch manufacturing environment. To realise this, it is 

required to consider the dynamic changes of the shop floor’s situation and adopt a 

more efficient and adaptive algorithm to optimise it. 

In this research, the IPPS problem has been defined and a modified PSO 

algorithm has been used to optimise it. Solutions to the IPPS problem are encoded 

into PSO particles to intelligently search for the best sequence of the operations 

through leveraging the optimisation strategies of the PSO algorithm. To explore the 

search space more effectively, new operators, i.e., mutation, crossover and shift 

have been developed and incorporated to produce a modified PSO algorithm with 

improved performance. In order to react to the dynamic changes of shop floor 

situation (machine breakdown and new order arrival), the method to equip the 
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algorithm with replanning ability has been proposed. The GA and SA algorithms 

have been used to verify and compare the performance of the modified PSO 

algorithm with experiments of two groups’ parts. It is shown that the PSO algorithm 

can obtain a satisfactory optimisation result for the IPPS problem and can execute 

replanning efficiently. The characteristics of the GA, SA and PSO algorithms have 

been given and for these cases. The PSO algorithm has been shown to outperform 

both the GA and SA in applications by considering the computation efficiency, 

optimality and robustness. At this point in time the conclusions are limited by this 

computational experience, and more theoretical analysis needs to be made in future. 

The PSO algorithm has shown the significant improvement in performance by 

applying the crossover operator taken from GA. Therefore it is possible to introduce 

other new operators and inspirations from other algorithms in future. With the 

population based characteristics, a bounded rationality mechanism which is used in 

social science and economics can also be applied in future to improve the 

performance of the algorithm further. 
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Table 1 Class definition of a particle dimension (an operation) 

Class ParticleDimension: an operation 

Variable Description 

Operation_id The id of the operation 

Part_id The id of part to which the operation belongs 

Machine_id The id of a machine to execute the operation 

Tool_id The id of a cutting tool to execute the operation 

TAD_id The id of a TAD to apply the operation 

Machine_list[ ] The candidate machine list for executing the operation 

Tool_list[ ] The candidate tool list for executing the operation 

TAD_list[ ] The candidate TAD list for applying the operation 

Mac_time The machining time for this operation 

Change_time 
The change time required for this operation including tool 

change, set-up change and machine change 

Machine_s_time The start machining time of executing this operation 

Machine_e_time The end machining time of executing this operation 

Position The position value of the operation 

Velocity The velocity value of the operation 
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Table 2 Class definition of a particle (a solution) 

Class Particle: a solution 

Variable Description 

Oper[n] Define a process plan Oper[n] based on the above class-

ParticleDimension. n is the number of operations in the plan 

TC Total Cost of the plan 

APC Additional Penalty Cost of violating constraints in the plan 
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Table 3 The technical specifications for the part in Group 1 (Li and McMahon 2007). 

 

Parts Numbers of Operations (with Numbers of Alternative 

Machining Plans for Each Operation) 
Numbers of 

Constraints 

1 20 (9, 9, 9, 8, 12, 12, 6, 12, 3, 4, 12, 12, 3, 4, 4, 3, 6, 12, 3, 4) 58 

2 16 (8, 12, 9, 9, 18, 8, 6, 8, 9, 4, 9, 9, 8, 18, 4, 60) 10 

3 14 (9, 9, 36, 16, 36, 24, 27, 36, 24, 6, 8, 8, 6, 8) 51 
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               Table 4 The comparisons of GA, SA and PSO of Makespan for Group 1 

Algorithm Time for 5000 iterations 
Robustness (successful optimisation 

trials out of 20 trials) 

GA 19 min 40 sec 20 

SA 59 min 14 

PSO 7 min 40 sec 20 
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Table 5 The comparisons of GA, SA and PSO of balance level of machine utilisation for 

Group 1 

Algorithm Time for 5000 iterations 
Robustness (successful optimisation 

trials out of 20 trials) 

GA 16 min 15 sec 20 

SA 45 sec 20 

PSO 3 min 20 
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Table 6 The technical specifications for the part in Group 2 (Li and McMahon 2007) 

 

Part Number of Operations (with Numbers of 

Alternative Machining Plans for Each Operation) 
Number of Constraints 

1 7 (9, 9, 27, 8, 8, 9, 36) 11 

2 8 (9, 9, 36, 18, 27, 8, 27, 18) 11 

3 7 (9, 9, 36, 36, 18, 6, 6) 10 

4 9 (9, 9, 27, 6, 36, 36, 6, 18, 18) 18 

5 7 (9, 9, 36, 36, 36, 18, 6) 13 

6 9 (9, 9, 36, 27, 18, 6, 27, 6, 18) 20 

7 5 (9, 27, 27, 18, 9) 5 

8 7 (9, 9, 27, 36, 36, 6, 6) 13 
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Table 7 The comparisons of GA, SA and PSO of Makespan for Group 2 

Algorithm Time for 5000 iterations 
Robustness (successful optimisation 

trials out of 20 trials) 

GA 16 min 45 sec 20 

SA 45 min 6 

PSO 7 min 20 
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Table 8 The comparisons of GA, SA and PSO of Balance level of machine utlisation for 

Group 2 

Algorithm Time for 5000 iterations 
Robustness (successful optimisation 

trials out of 20 trials) 

GA 16 min 45 sec 20 

SA 22 min 6 

PSO 7 min 30 sec 20 
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Table 9 The comparison of GA, SA and PSO algorithms 

Algorithm Population 

based 

Optimisation 

result (out of 

10) 

Optimisation 

speed 

Constraints 

handling 

Robustness 

GA Yes 6 

Fast but get slow 

when complexity 

of problems 

increases 

Adjust 

Penalty 
Robust 

SA No 9 

Faster but get slow 

when complexity 

of problems 

increases 

Adjust 

Penalty 

Not robust 

when 

complexity of 

problems 

increases 

PSO Yes 8 Fast Penalty Robust 
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Table 10 Complete time for individual part after optimisation 

Part 1 2 3 4 5 6 7 8 

Time 2272 1958 2665 2355 2350 2505 2690 2697 

Table 11 Machines available time when new order arrives 

Machine 1 2 3 4 5 

Available time 1000 1120 1078 1116 1000 

Table 12 Complete time for individual part after replanning when new order arrives 

Part 1 2 3 4 5 6 7 8 9 

Time 2221 2513 2051 2659 2660 2689 2344 2654 3458 

Table 13 Machines available time when machine 3 breaks down 

Machine 1 2 3 4 5 

Available time 1500 1560 1800 1574 1500 

Table 14 Complete time for individual part after replanning when machine 3 breaks down 

Part 1 2 3 4 5 6 7 8 9 

Time 1845 2651 2497 2484 2613 2659 2334 2634 3357 

Table 15 Complete time for individual part after first planning 

Part 1 2 3 4 5 6 7 8 

Time 1313 1914 2399 2242 1775 1488 1123 2095 

Table 16 Complete time for individual part after replanning after new order arrives 

Part 1 2 3 4 5 6 7 8 9 

Time 1415 1738 2038 2226 1710 1572 1123 2539 2546 

Table 17 Complete time for individual part after replanning when machine 3 breaks down 

Part 1 2 3 4 5 6 7 8 9 

Time 1415 1918 2063 2310 1844 1692 1123 2295 2502 

 

Page 41 of 55

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

42 

 

 

Figure 1 Illustration of the IPPS problem 
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Figure 2 Representation of a solution for IPPS problem 
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Figure 3 Determination of machines available times when machine2 breaks down 

Page 44 of 55

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

45 

 

Figure 4 Determination of available times for machines when new order arrives at Ta 
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Figure 5 The optimisation results of Makespan for Group 1 
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Figure 6 The optimisation results of Balanced Level of Machine Utilisation for Group 1 
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Figure 7 The optimisation result of Makespan for Group 1 in Gantt chart  
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Figure 8 Comparison of GA, SA and PSO of Makespan for Group 1 (8 mins’ run) 
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Figure 9 Comparison of GA, SA and PSO of Balanced Level of Machine Utilisation for 

Group 1 
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Figure 10 The PSO optimisation result of Makespan for Group 2 
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Figure 11 The PSO optimisation result of Balanced Level of Machine Utilisation for Group 

2 
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Figure 12 Comparison of PSO, GA and SA of Makespan for Group 2 (in 7 min) 
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Figure 13 Comparison of PSO, GA and SA of Balanced Level of Machine Utilisation for 

Group 2 
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Figure 14 Results of optimisation for first planning, replannings  

after new order arrival and machine breaks down 
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