
HAL Id: hal-00513008
https://hal.science/hal-00513008

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Population Genetic Algorithm to Solve the
Synchronized and Integrated Two-Level Lot Sizing and

Scheduling Problem
Alf Kimms, Claudio F. Motta Toledo, Paulo M. Franca, Reinaldo Morabito

To cite this version:
Alf Kimms, Claudio F. Motta Toledo, Paulo M. Franca, Reinaldo Morabito. A Multi-Population
Genetic Algorithm to Solve the Synchronized and Integrated Two-Level Lot Sizing and Schedul-
ing Problem. International Journal of Production Research, 2009, 47 (11), pp.3097-3119.
�10.1080/00207540701675833�. �hal-00513008�

https://hal.science/hal-00513008
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

A Multi-Population Genetic Algorithm to Solve the 

Synchronized and Integrated Two-Level Lot Sizing and 

Scheduling Problem 
 
 

Journal: International Journal of Production Research 

Manuscript ID: TPRS-2006-IJPR-0729.R1 

Manuscript Type: Original Manuscript 

Date Submitted by the 
Author: 

31-May-2007 

Complete List of Authors: Kimms, Alf; University of Duisburg-Essen, Mercator School of 
Management 
Motta Toledo, Claudio; Universidade Federal de Lavras, 
Departmento de Ciencia da Computacao 
Franca, Paulo; Universidade Estadual de Campinas, Departamento 

de Engenharia de Sistemas 
Morabito, Reinaldo; Universidade Federal de Sao Carlos, 
Departamento de Engenharia de Producao 

Keywords: LOT SIZING, GENETIC ALGORITHMS, PROCESS INDUSTRY 

Keywords (user):   

  
 
 

 

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research



For Peer Review
 O

nly

Multi-Population Genetic Algorithm to Solve the Synchronized and
Integrated Two-Level Lot Sizing and Scheduling Problem

C. F. M. TOLEDO†, P.M. FRANÇA‡, R. MORABITO§ and A. KIMMS*
†Departamento de Ciência da Computação, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras,
MG, Brazil, claudio@dcc.ufla.br

‡Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, C.P. 6101, 13083-
852, Campinas, SP, Brazil, franca@densis.fee.unicamp.br

§Departamento de Engenharia de Produção, Universidade Federal de São Carlos, C.P. 676, 13565-905, São
Carlos, SP, Brazil, morabito@power.ufscar.br
*Dept. of Technology and Operations Management, University of Duisburg-Essen, 47048 Duisburg,
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This paper introduces an evolutionary algorithm as a procedure to solve the Synchronized and Integrated
Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem can be found in some industrial
settings, mainly soft drink companies, where the production process involves two interdependent levels with
decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously
determine the lot-sizing and scheduling of raw materials in tanks and soft drinks in bottling lines, where setup
costs and times depend on the previous items stored and bottled. A multi-population genetic algorithm
approach with a novel representation of solutions for individuals and a hierarchical ternary tree structure for
populations is proposed. Computational tests include comparisons with an exact approach for small-to-
moderate sized instances and with real-world production plans provided by a manufacturer.

Keywords: lot-sizing and scheduling, production planning, combinatorial optimization, genetic algorithm, soft
drink manufacturing.

1. Introduction

The production planning problem studied in this article was motivated by a real situation found in a
Brazilian soft drink company. The production process in this kind of company usually has two
interdependent levels. At the first level, it must be decided how many raw materials have to be
prepared and stored in each one of the available tanks and when. At the second level, it must be decided
how many products have to be produced in each one of the available production lines and when. A
schematic view of the two-level production process is shown in Figure 1.
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Fig. 1. The two-level production process.

A lot-sizing and scheduling problem has to be solved in each part of these two-levels. The product mentioned
is defined by the flavor of the soft drink and the type of container, such as glass bottles, plastic bottles (PET),
cans or bag-in-boxes of different sizes. Each line can not produce more than one product at a time, but various
products can share a common production line and various lines can produce the same product in parallel.
There is a sequence-dependent setup time of up to several hours whenever a different product switches in a
line. However, if the production of the same product is paused for a while and continued after some idle time,
then no setup is required.
The raw material is the soft drink that is bottled on a production line. This soft drink comes from storage tanks
with a limited storage capacity. A tank is only filled up again when it is empty. Therefore, a sequence-
dependent setup time occurs from time to time to clean and fill up a tank, even if the soft drink replaced is the
same as before. Nothing can be pumped to a production line from that tank during the setup time. One tank
can be connected to production lines which use the same raw material. Analogously, one production line can
be connected with various tanks (containing the same raw material) at the same time.
In general, weekly demands within a time horizon of four weeks have to be met. If an excessive number of
products is produced at the end of each week, they are stored which incurs inventory costs. Moreover, there
are also costs related to storing raw material in tanks, the production process of each product and the
production process of each raw material. Sequence-dependent setup costs occur for products and raw
materials which are proportional to the sequence-dependent setup times in lines and tanks, respectively.
The challenging aspect of the problem addressed is the combination of all these issues in an interdependent
two-level problem. For these reasons, the present problem is called the Synchronized and Integrated Two-
Level Lot Sizing and Scheduling Problem (SITLSP). This problem covers various lot-sizing and scheduling
issues that have been dealt with in the literature before. The capacitated lot-sizing and scheduling problem
(CLSP) is a topic of broad interest and has attracted many researchers. Models and algorithms are discussed
in depth by Karimi et al. (2003) for the single-level lot-sizing problem with uncapacitated and
capacitated constraints. A literature review for the single-level, the continuous time and the multi-level
lot-sizing and scheduling problems can be found in Drexl and Kimms (1997), where the differences on
formal models are presented. A discussion of lot-sizing and scheduling with sequence-dependent setup costs
or sequence-dependent setup times is reported by e.g. Clark and Clark (2000), Fleischmann (1994), Gupta and
Magnusson (2005), Haase and Kimms (2000) and Meyr (2000). Publications addressing multi-level lot-sizing
(scheduling) problems are e.g. Berreta et al. (2005), França et al. (1997), Kimms (1997). Studies regarding
these problems with parallel machines are described in e.g. Clark and Clark (2000), Kang et al. (1999), Kuhn
and Quadt (2002) and Meyr (2002). The planning of a canning line at a drink manufacturer is presented
by Clark (2003) where the author proposes various heuristic approaches.
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A first mixed-integer mathematical model for the SITLSP is described in Toledo (2005) and Toledo et al.
(2006). The underlying idea to create a model for the SITLSP combines issues from the General Lot-sizing
and Scheduling Problem (GLSP) and the Continuous Setup Lot-sizing Problem (CSLP). In the SITLSP
model, a planning horizon is divided into T (macro-) periods of the same length. A maximum number of slots
(S for each line and S for each tank) is fixed for each macro-period t = t1, t2, ..., tT. The limited number of
slot assignments is an idea taken from the GLSP models presented in Fleischmann and Meyr (1997),
Meyr (2000) and Meyr (2002). This enables us to determine in the SITLSP for which product (raw material)
a particular slot in a particular line (tank) is reserved, and which lot size (a lot of size zero is possible) should
be scheduled. As well as the assignment of raw material to tanks and products to lines in each macro-period, it
is also necessary to synchronize the slots scheduled in a two-level problem like this. This is done by
introducing the concept of micro-period, an idea found in the CSLP model (Bitran and Matsuo 1986,
Drexl and Kimms 1997), where each macro-period t is divided into Tm micro-periods with the same
length. According to the CSLP assumptions, the capacity of each micro-period can be totally or partially
occupied and only one product type can be produced per micro-period.
An example helps to understand these ideas. Consider T=2 macro-periods, 5 raw materials (RmA, RmB, RmC,
RmD and RmE), 6 products (P1, P2,..., P6), 3 tanks (Tk1, Tk2 and Tk3) and 3 lines (L1, L2 and L3). Suppose
that the raw material RmA produces product P1, RmB produces P2 and P3, RmC produces P4, RmD produces
P5 and RmE produces P6. The total number of slots is S=S =2 and it can not be exceeded in each macro-
period. The same happens with the total number of micro-periods Tm=5. Figure 2 shows how the slot
assignments and micro-periods can help to synchronize and integrate the two-levels of the problem.

Fig. 2. Synchronization between lines and tank slots

The method proposed in this paper to solve the SITLSP is a multi-population genetic algorithm where
each population is conceived as a hierarchical ternary tree structure. The Genetic Algorithm (GA) is a
very popular search procedure inspired by biological evolution processes (Goldberg 1989, Holland
1975, Michalewicz 1996). There is vast literature concerning the use of GAs to solve lot-sizing and
scheduling problems. A lot-sizing and scheduling problem with sequence-dependent setup times is
solved using GA by Sikora (1996), where an individual is represented as a string of paired values (type
of product and lot size) in each scheduling period. The capacitated lot-sizing and loading problem with
setup times, parallel facilities and overtime, proposed by Özdamar and Birbil (1998), uses another
direct representation of solutions for individuals in GA. An individual is also a string of paired values,
where the first value is the lot size and the second is the facility.
A more elaborate representation of a solution is proposed in Dellaert et al. (2000), where a binary
matrix PxT (P products and T periods) represents an individual for the multi-level lot-sizing problem.
Each binary entry y i,t is set to 1 if a setup for product i occurs in t; otherwise yi,t=0. Another elaborate
representation is given by Dorndorf and Pesch (1995) where the genes in the GA are rules to select
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tasks to be scheduled in a job shop scheduling problem. All the GA papers mentioned above have
specific genetic operators (crossover, mutation, and selection) designed to deal with these individual
representations (solutions) for lot-sizing and scheduling problems. A multi-population GA was developed
in this paper because populations that evolve separately will have different characteristics according to the
genetic drift idea (Weiner 1995). This can allow for a more effective exploration in the solution space of the
problem. As reported by Mendes (2003) better results solving different optimization problems using a
structured multi-population GA instead of a non-structured single population GA were attained. In addition,
França et al. (2001) found better results solving the total tardiness single machine scheduling problem using
GA with hierarchically structured populations.
This paper is organized as follows. In Section 2, the GA approach with the individual representation
and its decoding procedure are fully described, as well as the tailor-made genetic operators and the
multi-population structure. Computational results using instances, whose data were provided by a soft
drink company, are reported in Section 3. The conclusion follows in Section 4.

2. Genetic Algorithm

In this section a multi-population hierarchical GA procedure is developed. In França et al. (2001),
Mendes et al. (2001) and Mendes (2003) similar and well succeeded approaches are reported. These
findings have also been observed in the present work with the SITLSP. Moreover, the adoption of the
multi-population approach has enhanced the convergence features of the GA, postponing premature
convergence and improving its whole effectiveness (Toledo 2005).
The GA proposed here was implemented using the NP-Opt (Mendes et al. 2001, Mendes 2003) an object-
oriented framework written in JAVA (Java Sun 2007) code which contains procedures based on evolutionary
computation techniques to address NP-hard problems. The next pseudo-code (Figure 3) describes the multi-
population GA available in the NP-Opt.

Method MultiPopulationGeneticAlg
begin
repeat
for i = 1 to numberOfPopulations do

initializePopulation(pop( i ));
evaluatePopulationFitness(pop( i ));
structurePopulation(pop( i ));
repeat
for j = 1 to numberOfCrossover do

selectParents(individualA,individualB);
newInd=crossover(individualA, individualB);
if (executeMutation newInd) then

newInd=mutation(newInd);
evaluateFitnessIndividual(newInd);
insertPopulation(newInd, pop(i ));

end
structurePopulation(pop( i ));
until(populationConvergence pop(i ));

end
for i = 1 to numberOfPopulations do

executeMigration pop(i );
end

until(stop criterion)
end
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Fig.3. Pseudo-code for the Multi-Population Genetic Algorithm.

The algorithm executes a fixed number of crossovers in each population while there is no convergence. This
process involves a parent selection (selectParents(individualA, individualB)), a new individual creation by
crossover (crossover(individualA, individualB)), a possible mutation application to the new individual
(mutation(newInd)), its fitness evaluation (evaluateFitnessIndividual(newInd)) and its insertion or not into
the population (insertPopulation(newInd, pop(i)). The population convergence occurs when there are no new
individuals inserted after a fixed number of crossovers has taken place. A migration among populations
(executeMigration pop(i)) is executed when all populations have converged and the stop criterion has not
been satisfied yet. In case a new initialization of the populations (initializePopulation(pop(i ))) occurs, the
best individual and the migrated individuals are kept. Details on the constitution of populations and the
migration policy will be presented later.

2.1 Individual

Two interdependent lot-sizing and scheduling problems have to be solved by the GA approach. An
elaborate coding of solutions is proposed in this work. This representation is close to the one presented
in Kimms (1999) which uses assignment rules in a multi-level proportional lot-sizing and scheduling
problem with multiple machines. An individual in Kimms (1999) is a matrix with M lines and T
columns and each matrix entry (gene) is a rule m,t used to select the setup state for machine m at the
end of period t. Figure 4 introduces the individual representation proposed for the SITLSP.

Fig. 4. Individual representation

The rows represent macro-periods t1, t2,...,tT. The column represents the genes and there can be a different
number of genes per macro-period. Each gene corresponds to a cell in the individual representation that
contains the following data:

 Pmn: product in gene n to be produced in macro-period m.
 Dmn: lot size of product Pmn.
 SLmn: sequence of lines where Dmn can be produced.
 STkmn: sequence of tanks where the raw material of Dmn can be stored.

The demand dit of product i in period t is divided into many lots (Dmn) and randomly distributed among the
genes in periods t, t-1, t-2, ..., 1. The sequences SLmn and STkmn are randomly generated with length k.
Sequence SLmn is defined below, where L is the number of lines:
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SLmn=(1,...,k) with i {1,...,L},
i is the line number in position i of the sequence. Sequence STkmn is defined below, where L is the number of
tanks:

STkmn=(1,..., k) with i {1,2,...,2L },
i tells where and how the raw material will be stored. The i is taken from 2 L possible values and the
reasons to do this will be explained next. The tank number j where the raw material will be stored is obtained
from i doing:

(1)

Let Rma be the raw material of lot size Dmn. The assignment of Rma to tank j obeys the following criteria:
 Criterion 1: If tank j stores lots of raw materials Rmb and Rma Rma, the Rma lot will occupy the next

assignment to j. Two different raw materials cannot be stored at the same time in j.
 Criterion 2: If tank j is full, Rma will occupy the next assignment to j.
 Criterion 3: If tank j is empty, it will be immediately occupied by Rma.
 Criterion 4: If tank j is already occupied by other lots of Rma and the minimum tank capacity is not

filled yet, the new Rma lot has to be assigned to j.
 Criterion 5: If 1iL , Rma occupies a new assignment to tank j =i, as the previous conditions

have been regarded.
 Criterion 6: If L < i2 L , Rma integrates the previous lot already assigned to tank j = i- L , as the

previous conditions have been regarded.
Criteria 1 to 4 ensure that the problem constraints (such as different raw materials in the same tank,
minimum tank capacity, etc) are not violated. They have priority over criteria 5 and 6 which allow for
solutions with a partial (criterion 5) or total (criterion 6) tank occupation. The individuals in each initial
population are generated following the pseudo-code next (Figure 5). There are T macro-periods, J products, L
lines and L tanks.

IndividualInitializationAlg.
For t=t1, t2,..., tT do

repeat
Select a product P i {P1, P2,...,PJ}randomly with dPi,t > 0.
Set Dem = dPi,t

while Dem>0 do
Select the matrix row m { t1, t2 ,...,t} of the individual

randomly.
Determine n as the first gene available in line m of the

individual.
Determine Dmn  0 with Dmn  [0, Dem] randomly

generated.
Insert Dmn and Pi in the gene position (m,n) of the individual.
Generate SLmn= (1,...,k) with i  {1,...,L} randomly

selected.
Generate STkmn= (1,..., k) with i {1,2,...,2L } randomly

selected.
Set Dem = Dem - Dmn;

end
until All demands have been distributed among the genes.

end
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Fig. 5. Individual initialization algorithm

Individuals which are randomly generated make a certain level of diversity to the initial population
possible. First, the variable Dem receives the total demand dPi,t of product Pi in the macro-period t. This
demand is randomly divided and distributed among the genes. Of course, each piece of demand is not
positioned after its demand’s due date (macro-period t). The following example clarifies the solution
representation as an individual. Suppose two products (P1 and P2) where each product has a demand of 100
units to be filled in macro-period t1 and another 100 units to be filled in macro-period t2. The products use
different raw materials. Moreover, there are two lines available to produce both products and two tanks
available to store both raw materials. Figure 6 gives us two possible representations, both based on the
individual initialization algorithm.

Fig. 6. Two possible individuals

The demands are distributed in their respective macro-periods in individual 1. However, the demand of P2 in
t1 is split between two genes. In individual 2, part of the P1 demand in t2 is produced in t1. Notice that the
sequence of lines and tanks can repeat values of i {1,2} and i {1,2,3,4} for L= L =2 and length k = 4 in
the sequences SLmn and STkmn.

2.2 Decoding and fitness

The decoding procedure is responsible for determining a solution from the data encoded in each gene of
an individual. The procedure starts from the first gene in the last macro-period up to the last gene in the first
macro-period. This backward procedure allows us to postpone setups and processing time of products and raw
materials in lines and tanks. However, there is no guarantee that all demands will be produced at the end and a
penalty in the fitness is taken into account for that. An example illustrates the decoding procedure. Consider
the same data used in the example of section 2.1 and individual 2 shown there. The process begins by the first
gene in the last macro-period. A lot of product P2 (D21 = 30) has to be produced using the first pair (1, 1) =
(2, 4) from sequences SL21 and STk21 (Figure 7). Product P2 is produced in line 2 because 1 = 2 and let's
assume that its processing time takes 1 micro-period. The other processing times used in this example are
suppositions as well. According to equation (1) of section 2.1, raw material Rm2 of P2 has to be stored in tank
j = 4-2 = 2 because 1 = 4 and 2<1 4 with L=2. Given the criteria defined in section 2.1, criterion 3 has
priority over the others in this case because tank j = 2 is empty and must be occupied immediately. A tank
should be ready at least one micro-period before the production starts in lines. Therefore, the setup time of
Rm2 occurs in Figure 7 one micro-period before the P2 production starts in L2. Let us suppose that the setup
time of raw materials will take 1 micro-period in any tank in this example.
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Fig. 7. Decoding of the first gene in t2.

The demand of this gene has been completely scheduled, so the next gene in t2 is decoded (Figure 8). The first
pair of rules (1, 1) = (2,3) is selected to schedule 55 units of P1 which are also produced in L2 (1 = 2).
There is a setup time because P2 is scheduled next. Value1 = 3 means j = 3-2 = 1 (2<1 4) by equation (1).
Tank j = 1 is empty and, according to criterion 3, must be occupied immediately by Rm1 of P1. Figure 9
presents the third gene decoding in t2 . The lot size of P2 has to be produced in L1 (1 =1) and its raw material
has to be stored in tank j = 2 (= 4 implies j = 4-2 = 2). There is a lot of Rm2 in j = 2 (criterion 1 does not
apply) and we are supposing that there is available capacity in this tank (criterion 2 does not apply as well).
This tank is not empty and, according to criterion 6, the Rm2 must integrate the lot of Rm2 already stored in
j=2. The insertion of the new lot in j = 2 causes a setup time anticipation. The tank now has to be ready one
micro-period before the P2 production starts in L1.

Fig. 8. Decoding of the second gene in t2 Fig. 9. Decoding of the third gene in t2.

The decoding process continues in the first gene in t1 (Figure 10). Product P2 is produced in L2 (1 = 2) and
Rm2 is assigned to tank j = 2 (1 =2). Let’s suppose that the minimum tank capacity has already been filled.
In this case, criterion 4 does not apply as well as the criteria 1 to 3. Therefore, criterion 5 can be applied (1 =2
with 1<12), and a new lot is scheduled for tank j = 2. The next gene decoding is shown in Figure 11. Line
L1 (1 =1) is selected to produce D12 = 100 units of P1. Raw material Rm1 is assigned to j = 4-3 =1 (1 = 3)
and it must occupy the previous lot already assigned to this tank (criterion 6). However, we are supposing at
this point that there is available capacity in tank j = 1 to store raw material sufficient to produce only 45 units
of P1. In this case, the setup time of Rm1 is anticipated for the third micro-period and part of D12=100 is
scheduled in line L1. Thus, the next pair (2, 2) is selected to schedule the remaining lot D12 = 100-45 = 55.
The remaining lot is produced in L1 (2=1) and a new lot of Rm1 must be used in tank j=1 (2 =1) by criterion
5.
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Fig. 10. Decoding of the first gene in t1.

.Fig. 11. Decoding of the second gene in in t1.

The next gene decoding is illustrated in Figure 12. Line L2 produces P2 (1 =2) and there is no setup time
because the same product is scheduled next. Raw material Rm2 is integrated into the lot already stored in tank
j = 4-2 = 2 (1 = 4), so there is anticipation in the setup time of this tank. Figure 13 has the last gene decoding.
Product P1 is scheduled in L2 (1 = 2) and we have a setup time because P2 is produced next. Rm2 will
integrate the lot previously stored in tank j = 3-2 = 1 because 1 = 3 and the conditions of criterion 6 are
satisfied.

Fig. 12. Decoding of the third gene in t1. Fig. 13. Decoding of the last gene in t1.

The final schedule established by the decoding procedure for lines and tanks is a possible solution for
the problem which is evaluated using the fitness function. The objective function of the mathematical
formulation described in Toledo (2005) and Toledo et al. (2006) is the fitness function in the GA. To
sum up, this value is determined adding up all costs that happen in the final schedule: setup, production
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and inventory costs for products and raw materials in lines and tanks, respectively. If some demands
are not satisfied, a high penalty cost per unit also occurs in the objective function. The best individual of
the population is the one whose decoding process determines a final schedule with a minimum cost
value.

2.3 Crossover and mutation

Previous computational experiments with several crossover operators revealed that the best behavior was
attained by the uniform crossover. In this recombination operator, genes of two different parents that occupy
the same position in the individuals have some probability of being inherited by the child. Individuals 1 and 2
(Figure 6) are used to show how the uniform crossover operator works. Sequences SLmn and STkmn are not
relevant because the new individual (Child) will inherit these sequences without changes. Figure 14 illustrates
the crossover of Ind1 and Ind2. For each gene in the same position in Ind1 and Ind2, a random value [0,1]
is generated. If <0.5, Child inherits the gene of Ind1; otherwise, Child inherits the gene of Ind2. The genes
selected following this procedure are shaded in Figure 14. Notice that there are more genes in macro-periods
t1 and t2 of Ind2 than in the same macro-periods of Ind1. In this case, the procedure continues in Ind2
selecting those genes where 0.5. We do not allow excessive demands in a new individual. For example,
the gene of Ind1 marked by a circle in Figure 14 is not inherited because it would exceed the total demand of
P1 in Child. If there is a gene in the same position in Ind2, this gene must be inherited by Child if the same
problem does not occur. On the other hand, a lack of demand can occur at the end of the crossover. For this
reason, a repair procedure is necessary and the demand deficits in some macro-period are inserted (Figure 15).

Fig. 14. Uniform crossover example.

Fig. 15. Repair in Child.

Mutation aims to keep diversity in a population avoiding premature convergence. A mutation rate determines
the number of individuals that will be changed. The mutations adopted in this paper basically swap gene
positions. Figure 16 shows an example of the three mutation operators used. The first type swaps the positions
of two selected genes in the same macro-period. In the second type, the selected gene is removed and inserted
into another position which is also randomly selected. The third type swaps the positions of two chosen genes
that are in different macro-periods. The new gene positions have to respect the macro-period demand of each
product. A product swap will not take place if it can violate the demand satisfaction. The mutation procedure
randomly chooses which mutation type will be applied to the individual.

Page 10 of 20

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Fig. 16. Mutation types.

2.4 Populations and migration

A multi-population genetic algorithm is proposed here where each population is constituted by a hierarchical
two-level ternary tree structure. Each structure is formed by 4 clusters of 4 individuals and arranged in two
levels (1 cluster in level 1 and 3 clusters in level 2). The cluster has a node leader and 3 other nodes called
supporters (Figure 17).

Fig. 17. A population as a hierarchical ternary tree structure.

Note that the leader of the whole population is called the best individual. In the algorithm
MultiPopulationGeneticAlg explained in the beginning of this section, the parameter numberOfCrossover is
used to determine the maximum number of recombination executed in each population. This parameter is
provided by the equation:

numberOfCrossover = *PopulationSize (2)
where is the crossover rate. A crossover is carried out over a cluster (selected at random) and always selects
a supporter node as parents, also randomly chosen, and its respective leader node. If better than some parents,
the new individual (Child) will replace the parent with the worst fitness value (Figure 18). Otherwise, the new
individual is not inserted into this population. After every crossover, adjustments are necessary to keep the
cluster structure well ordered where the best is the leader (Figure 19).
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Fig. 18. Population before and after Child insertion.

Fig. 19. Adjustments in the population.

The populations converge when no new individuals are inserted in any population after the
numberOfCrossover executions are reached. In this case, a copy of each best individual is inserted into the
next population replacing some individual randomly selected - except the best one. This is the migration
process and only one new individual is inserted into each population. New initialization of the population
occurs after the migration process. However, the best individuals and the individuals that have just migrated
are kept (Figure 20).

Fig. 20. Migration between populations.

3. Computational Results

In this section, computational results for a set of instances are presented. These instances are based on data
provided by a soft drink company.

3.1 Computational results: small-to-moderate size instances

The parameters adopted to create small-to-moderate size instances are in Table 1. Some parameter values are
fixed and others are chosen from a set of values.

Table 1. Parameter values and meanings
Param. Values Meaning Param. Values Meaning
L {2;3;4} Number of lines hj 1($/u) Unity inventory cost of product j

L {2;3} Number of tanks h j
1($/u) Unity inventory cost of raw material j

J {2;3;4} Number of products v jl 1($/u) Unity production cost of product j in
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line l

J {1;2} Number of raw materials v jk
1($/u) Unity production cost of raw material j

in tank k
T {1;2;3; 4} Number of macro-periods Qk 5000 l Maximum capacity of tank k (liters)
C 5 Capacity of each macro-period Qk 1000 l Minimum capacity of tank k (liters)

A certain combination of parameters L, L , J, J defines a set of instances. Table 2 presents the values used in
each combination.These particular parameter combinations were chosen because most of the variables
and constraints in the mathematical model (see Toledo 2005, Toledo et al. 2006) are indexed by these
parameters. Increments in these parameter values may result in the exact approach to failing in solving
the instances.

Table 2. Combination of parameters per macro-period for small-to-moderate sized instances
Comb. L/ L /J/ J Comb. L/ L /J/ J Comb. L/ L /J/ J

1 2/2/2/1 4 3/3/2/1 7 4/4/2/1
2 2/2/3/2 5 3/3/3/2 8 4/4/3/2
3 2/2/4/2 6 3/3/4/2 9 4/4/4/2

A total of 9 parameter combinations per macro-period (T={1,2,3,4}) were chosen, limiting the simulations to
4x9=36 possible set of instances. These sets are considered of small-to-moderate size if compared to the
industrial instances found in soft drink companies and also in terms of the number of variables and
constraints in the related mathematical model (see Table 4). In each set of instances, 10 replications are
randomly generated resulting in 4x9x10 = 360 instances in total. The other parameters used to create instances
are shown in Table 3.

Table 3. Parameter ranges
Param. Ranges Meaning
ijl U[0.5; 1] Setup time (hours) from product i to j in line l
ijk U[1; 2] Setup time (hours) from raw material i to j in tank k
pjl U[1000; 2000] Processing time (units/hour) of product i in line l
djt U[500; 10000] Demand (units) of product j in period t.
rji U[0.3; 3] Conversion factor

The conversion factor rji determines how many liters of raw material i are necessary to produce one unit of
product j. These parameters are generated from a uniform distribution in the interval [a,b]. The setup costs in
lines and tanks are calculated as:

ijkijk fs  (3)

ijkijk fs  (4)

respectively, where sijl is the setup cost when one shifts from product i to j in line l and sijk is the setup cost

when one shifts from raw material i to j in tank k. These setup costs are proportional to the setup times as
determined by parameter f in equations (3) and (4). The same approach is used in Haase and Kimms (2000),
where a similar procedure establishes setup costs from setup times in a lot-sizing and scheduling problem for
a single-stage and single-machine production system. According to the results reported in Toledo (2005) and
Toledo et al. (2006), the most adequate value for f is 1000 given that it provides a suitable trade off between
the different terms of the objective function.
The mathematical model developed in Toledo (2005) and Toledo et al. (2006), and the instances generated
wherein were coded using the modelling language GAMS IDE, version 2.0.10.0, and solved by the solver
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CPLEX, version 7 (Gams 2007). The CPLEX handles mixed integer problems using a branch & cut algorithm
which solves a series of LP subproblems (Hoffman and Padberg 1991). GAMS/CPLEX ran on each instance
only once during the time limit of 1 hour. Two kinds of problem solutions can be returned: the optimal
solution or the best feasible solution achieved up to the time limit.
The other series of experiments involving the small-to-moderate size instance set was to find heuristic
solutions using the multi-Population genetic algorithm (GA). In the combinations where the GAMS/CPLEX
spent up to 0.5 hour (CPU time) on average to find the optimal solution (see Table 4), the GA ran during 360
seconds and this execution was repeated 5 times over each instance. Taking this into account, the GA had a
total execution time of 0.5 hour per instance. In the combinations where GAMS/CPLEX spent more than 0.5
hour on average to return a solution (see Table 6), the GA ran on each instance during 1200 seconds. This GA
execution was repeated 3 times over each instance, that is, a total execution time of 1 hour per instance. The
GA consists of 3 populations structured in ternary trees of 13 individuals each, which means a total of 39
individuals. The crossover rate was set to 1.5 which leads the procedure to execute 19 crossovers over each
population. The mutation rate is fixed at 0.7. A number is randomly chosen in the interval [0,1] with
uniform distribution. If< 0.7, the mutation operator is executed on the new individual.
All the computational tests were executed on a Pentium IV microcomputer with 2.8 GHz. For each
combination of parameters (Comb.), Table 4 presents the number of constraints (Const.) and binary (Bin.) and
continuous (Cont.) variables of the mathematical model generated by GAMS/CPLEX with T=1,2. The
number of optimal solutions (Opt.) returned by the solver and the average CPU time (seconds) are presented
as well.

Table 4. GAMS/CPLEX model sizes and optimal solutions for the sets of instances with T=1,2
T=1 T=2Comb.

Bin. Cont. Const. Opt. CPU Bin. Cont. Const. Opt. CPU
1 100 263 281 10 2 210 533 575 10 28
2 136 499 454 10 1 282 1004 919 6 1703
3 142 615 512 10 1 294 1235 1039 6 1545
4 150 452 419 10 573 315 916 862 1 3366
5 204 880 673 10 152 423 1771 1368 0 3600
6 213 1098 764 10 46 441 2206 1552 1 3260
7 176 555 498 2 3069 367 1122 1013 0 3600
8 246 1100 821 8 989 507 2211 1641 1 3255
9 258 1390 924 7 1357 531 2790 1865 0 3600

The GAMS/CPLEX solved most of the problem instances with T = 1 (77 out of 90 instances) optimally.
However, GAMS/CPLEX had problems to solve instances with T=2 optimally within the time limit (25
out of 90 instances). This was expected, because of the increasing number of constraints and variables
of the model for each instance with T = 1 and T = 2. The following relative deviation was used to compare
the GA and GAMS/CPLEX solutions:






 
Z

ZZDev 100(%)

where, Z is the final solution returned by GA and Z is the final solution returned by GAMS/CPLEX. The
average (Avg), maximum (Max) and minimum(Min) deviation values are listed for T=1,2 in Table 5. The Avg
determines an average deviation of the final GA solution from the solution returned by GAMS/CPLEX. This
average considers the final solutions of all (three or five) GA ran on each instance. Max is the same average
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deviation, but it considers only the worse solution found by GA in its runs in each instance. Min is the average
deviation considering only the best solution found by GA, after the executions in each instance.

Table 5. GA deviation values from GAMS/CPLEX
solutions for T=1,2

T=1 – Dev(%) T=2 – Dev(%)Comb.
Avg. Min. Max. Avg. Min. Max.

1 0.00 0.00 0.00 0.27 0.23 0.31
2 0.00 0.00 0.00 0.18 0.11 0.28
3 0.34 0.34 0.34 0.65 0.38 0.83
4 0.00 0.00 0.00 0.79 0.66 1.03
5 0.00 0.00 0.00 -0.11 -0.27 0.16
6 0.00 0.00 0.00 0.04 -0.08 0.10
7 0.00 0.00 0.00 1.30 1.01 1.72
8 0.00 0.00 0.00 1.84 0.86 2.53
9 0.00 0.00 0.00 -1.86 -1.88 -1.82

The GA was able to solve most of the problem instances with T=1 optimally. For T = 2, notice that some
of the deviation values are negative, meaning that the GA was able to find better solutions than the
(non-optimal) solutions returned by GAMS/CPLEX. In the sets where GA did not outperform
GAMS/CPLEX, its average deviations were less than 1% in most of the cases. Table 6 shows the model
dimensions, the number of optimal solutions and the average CPU time for the instance sets with T=3,4.

Table 6. GAMS/CPLEX model sizes and optimal solutions for the sets of instances with T=3,4
T=3 T=4Comb.

Bin. Cont. Const. Opt. CPU Bin. Cont. Const. Opt. CPU
1 320 803 863 2 3147 430 1073 1163 1 3377
2 574 2014 1835 3 3077 574 2014 1827 1 3245
3 598 2475 2075 3 2912 598 2475 2075 0 3600
4 480 1380 1303 0 3600 645 1844 1752 0 3600
5 642 2662 2071 0 3600 861 3553 2764 0 3600
6 669 3314 2350 0 3600 897 4422 3140 0 3600
7 558 1689 1536 1 3281 749 2256 2039 0 3600
8 768 3322 2466 0 3600 1029 4433 3335 0 3600
9 804 4190 2799 0 3600 1077 5590 3735 0 3600

GAMS/CPLEX was unable to find optimal solutions in most of these problem instances within 1 hour. The
GA deviations regarding GAMS/CPLEX final solutions for T=3,4 are shown in Table 7. GA was able to find
better final solutions than the best feasible solutions provided by GAMS/CPLEX in many sets of instances. In
the other instance sets, the GA deviation was less than 5% in most of the cases.

Table 7. GA deviation values from GAMS/CPLEX
solution for T=3,4

T=3 – Dev(%) T=4 – Dev(%)Comb.
Avg. Min. Max. Avg. Min. Max.

1 0.39 0.37 0.43 1.77 1.32 2.27
2 -0.40 -0.43 -0.39 0.10 0.03 0.13
3 -0.73 -0.83 -0.53 -1.63 -1.64 -1.62
4 2.26 1.52 2.95 2.61 1.68 3.71
5 -0.96 -1.27 -0.48 -2.41 -3.34 -1.51
6 0.06 -0.74 0.70 -2.56 -3.34 -1.75
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7 5.01 3.90 6.13 8.12 6.57 9.50
8 -3.62 -4.14 -3.01 -2.22 -3.31 -1.13
9 -0.56 -0.81 -0.34 -3.59 -4.54 -2.63

The evolutionary approach reveals itself to be a good alternative to solve more complex instances.
Considering all instances and all average results (Avg, Min and Max), the conclusion is that in 103 out of 108
results, the GA deviations differ less than 5% from GAMS/CPLEX solutions. Similarly, in 37 out of 108
average results, the GA outperforms GAMS/CPLEX best feasible solutions (31 out of 54 for T=3,4 and 6 out
of 54 for T=1,2).

3.2 Computational results: industrial instances

This section reports computational results that were obtained solving some industrial instances. These
instances were provided by a Brazilian soft drink manufacturer whose production planning problem motivated
this work. The data of instances are based on the schedules executed by the company in their lines and tanks
during different time periods. The parameters which define each instances are presented in Table 8.

Table 8. Parameters of industrial instances
Comb. L/L /J/ J /T Comb. L/ L /J/ J /T

A1 5/9/33/11/1 B1 6/10/52/19/1
A2 6/9/49/14/2 B2 6/10/56/19/2
A3 6/9/58/15/3 B3 6/10/65/21/3

Notice that each combination represents now only one instance. The demands must be met at the end of each
period. In the A instances, each planning covers 7 days with 24 hours of available capacity per day. In the B
instances, each period covers 10 days with 24 hours of available capacity per day. Table 9 presents the setup
values.

Table 9. Setup values
Meaning Value Meaning Value

Line setup time (hours)









ji
ji

ijl 0.0
5.0


Line setup cost ($/u)









ji
ji

s ijl 0.0
3000

Tank setup time (hours









ji

ji
ijl 5.0

1


Tank setup cost ($/u)









ji
ji

s ijl 0.6000
12000

The inventory cost of products (hj), the production costs for products (v jl) and raw materials ( v jk ) keep the

values as used in the small-to-moderate sized instances. There is no inventory cost of raw material ( h j =0).

All these costs values were used to evaluate the production plan elaborated by the company. The value
achieved is the cost of the company schedule (ZI) in Table 10. The GA ran 3 times over each instance with
3600 seconds assigned to each run. The GA parameters are the same used to solve the small-to-moderate
sized instances. Table 10 compares the cost (in 106 monetery units) of the company schedule (ZI) with the
better GA final solution (GA-Min), the average GA solution (GA-Avg), and the worst GA final solution (GA-
Max) returned after three executions. The corresponding relative deviations of the GA solutions from ZI are
also shown.
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Table 10. GA solutions compared to solutions provided by a manufacturer

Solutions Deviation – Dev(%)Comb.
ZI GA–Min GA-Avg GA-Max GA-Min GA-Avg GA-Max

A1 1692098 1662098 1667098 1671098 -1.8 -1.5 -1.2

A2 3511910 3381357 3388059 3398510 -3.7 -3.5 -3.2

A3 5002677 4837433 4847207 4859924 -3.3 -3.1 -2.9

B1 3378205 3303500 3317500 3345500 -2.2 -1.8 -1.0

B2 4278521 4174522 4199463 4222860 -2.4 -1.8 -1.3

B3 7943402 7735818 7796636 7839039 -2.6 -1.8 -1.3

The GA solutions are always better than the solutions found by the company. As many metaheuristics, the GA
might find better results in more than 1 hour of execution time. Needless to say the company’s solution made
use of the experience of the scheduler, but not the GA’s solution. Viewed as a toll to support decision making,
the GA seems to provide a good starting point from which the scheduler can improve lot sizes and schedules
for line and tanks. It is worth mentioning that a scheduler normally takes two days to conclude a production
plan.

4. Conclusion

In this paper we present a two-level production planning problem where, on each level, a lot-sizing and
scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and
times have to be solved. Two instance sets were used for comparisons: small-to-moderate sized and
industrial instances. All these instances are based on data provided by a real soft drink company in
Brazil. In the first part of the computational experiments, the software GAMS/CPLEX was used to obtain
optimal solutions or the best feasible solution at least. This exact solution approach was able to return an
optimal solution only for small-to-moderate sized instances with 1 and 2 macro-periods. Only the best feasible
solutions were returned at the end of the time limit for small-to-moderate sized instances with 3 and 4 macro-
periods T=3,4. The main contribution of this article is a multi-population genetic algorithm which seems to
be the only alternative for the exact method in order to solve real world instances. The GA approach
has a new representation of solutions and deals with a hierarchically structured multi-population. A
tailor-made decoding procedure is used to evaluate the solution encoded in the gene of each individual.
Moreover, a tailor-made recombination is carried out on population clusters. Migrations between
different populations are allowed. In the small-to-moderate sized instances, the GA found many optimal
solutions or yielded small mean deviations from the best feasible solutions returned by GAMS/CPLEX.
Furthermore, GA returned better final solutions for various small-to-moderate sized instances where
GAMS/CPLEX returned only a best feasible solution (not optimal) within the time limit. In the
industrial instances, after 1 hour of CPU time, the GA was able to return a better solution than the
production plan generated by the industry. These results show that the proposed GA can help the
decision maker to generate improved schedules.
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