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This paper introduces an evolutionary algorithm as a procedure to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem can be found in some industrial settings, mainly soft drink companies, where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot-sizing and scheduling of raw materials in tanks and soft drinks in bottling lines, where setup costs and times depend on the previous items stored and bottled. A multi-population genetic algorithm approach with a novel representation of solutions for individuals and a hierarchical ternary tree structure for populations is proposed. Computational tests include comparisons with an exact approach for small-tomoderate sized instances and with real-world production plans provided by a manufacturer.

Introduction

The production planning problem studied in this article was motivated by a real situation found in a Brazilian soft drink company. The production process in this kind of company usually has two interdependent levels. At the first level, it must be decided how many raw materials have to be prepared and stored in each one of the available tanks and when. At the second level, it must be decided how many products have to be produced in each one of the available production lines and when. A schematic view of the two-level production process is shown in Figure 1. A lot-sizing and scheduling problem has to be solved in each part of these two-levels. The product mentioned is defined by the flavor of the soft drink and the type of container, such as glass bottles, plastic bottles (PET), cans or bag-in-boxes of different sizes. Each line can not produce more than one product at a time, but various products can share a common production line and various lines can produce the same product in parallel. There is a sequence-dependent setup time of up to several hours whenever a different product switches in a line. However, if the production of the same product is paused for a while and continued after some idle time, then no setup is required. The raw material is the soft drink that is bottled on a production line. This soft drink comes from storage tanks with a limited storage capacity. A tank is only filled up again when it is empty. Therefore, a sequencedependent setup time occurs from time to time to clean and fill up a tank, even if the soft drink replaced is the same as before. Nothing can be pumped to a production line from that tank during the setup time. One tank can be connected to production lines which use the same raw material. Analogously, one production line can be connected with various tanks (containing the same raw material) at the same time. In general, weekly demands within a time horizon of four weeks have to be met. If an excessive number of products is produced at the end of each week, they are stored which incurs inventory costs. Moreover, there are also costs related to storing raw material in tanks, the production process of each product and the production process of each raw material. Sequence-dependent setup costs occur for products and raw materials which are proportional to the sequence-dependent setup times in lines and tanks, respectively. The challenging aspect of the problem addressed is the combination of all these issues in an interdependent two-level problem. For these reasons, the present problem is called the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem covers various lot-sizing and scheduling issues that have been dealt with in the literature before. The capacitated lot-sizing and scheduling problem (CLSP) is a topic of broad interest and has attracted many researchers. Models and algorithms are discussed in depth by [START_REF] Karimi | The capacitated lot sizing problem: a review of models and algorithms[END_REF] for the single-level lot-sizing problem with uncapacitated and capacitated constraints. A literature review for the single-level, the continuous time and the multi-level lot-sizing and scheduling problems can be found in [START_REF] Drexl | A, Lot-sizing and scheduling -survey and extensions[END_REF], where the differences on formal models are presented. A discussion of lot-sizing and scheduling with sequence-dependent setup costs or sequence-dependent setup times is reported by e.g. [START_REF] Clark | Rolling-horizon lot-sizing when set-up times are sequence-dependent[END_REF], [START_REF] Fleischmann | The discrete lot-sizing and scheduling problem with sequence-dependent setup costs[END_REF], [START_REF] Gupta | The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times[END_REF], [START_REF] Haase | Lot-sizing and scheduling with sequence dependent setup costs and times and efficient rescheduling opportunities[END_REF] and [START_REF] Meyr | Simultaneous lotsizing and scheduling by combining local search with dual reoptimization[END_REF]. Publications addressing multi-level lot-sizing (scheduling) problems are e.g. [START_REF] Berreta | Metaheuristic approaches for the multilevel resourceconstrained lot-sizing problem with setup and lead times[END_REF], [START_REF] França | A heuristic method for lot--sizing in multi--stage systems[END_REF], [START_REF] Kimms | Multi-level lot sizing and scheduling: methods for capacitated, dynamic and deterministic models[END_REF]. Studies regarding these problems with parallel machines are described in e.g. [START_REF] Clark | Rolling-horizon lot-sizing when set-up times are sequence-dependent[END_REF], [START_REF] Kang | Lotsizing and scheduling on parallel machines with sequence-dependent setup costs[END_REF], [START_REF] Kuhn | Lot sizing and scheduling in semiconductor assembly -A hierarchical planning approach[END_REF] and [START_REF] Meyr | Simultaneous lotsizing and scheduling on parallel machines[END_REF]. The planning of a canning line at a drink manufacturer is presented by [START_REF] Clark | Hybrid heuristics for planning lot setups and sizes[END_REF] where the author proposes various heuristic approaches. A first mixed-integer mathematical model for the SITLSP is described in [START_REF] Toledo | Integrated two-stage lot sizing and scheduling problem[END_REF] and Toledo et al. (2006). The underlying idea to create a model for the SITLSP combines issues from the General Lot-sizing and Scheduling Problem (GLSP) and the Continuous Setup Lot-sizing Problem (CSLP). In the SITLSP model, a planning horizon is divided into T (macro-) periods of the same length. A maximum number of slots (S for each line and S for each tank) is fixed for each macro-period t = t1, t2, ..., tT. The limited number of slot assignments is an idea taken from the GLSP models presented in Fleischmann and Meyr (1997), [START_REF] Meyr | Simultaneous lotsizing and scheduling by combining local search with dual reoptimization[END_REF] and [START_REF] Meyr | Simultaneous lotsizing and scheduling on parallel machines[END_REF]. This enables us to determine in the SITLSP for which product (raw material) a particular slot in a particular line (tank) is reserved, and which lot size (a lot of size zero is possible) should be scheduled. As well as the assignment of raw material to tanks and products to lines in each macro-period, it is also necessary to synchronize the slots scheduled in a two-level problem like this. This is done by introducing the concept of micro-period, an idea found in the CSLP model [START_REF] Bitran | Approximation formulations for the single-product capacitated lot size problem[END_REF]Matsuo 1986, Drexl and[START_REF] Kimms | Multi-level lot sizing and scheduling: methods for capacitated, dynamic and deterministic models[END_REF], where each macro-period t is divided into T m micro-periods with the same length. According to the CSLP assumptions, the capacity of each micro-period can be totally or partially occupied and only one product type can be produced per micro-period. An example helps to understand these ideas. Consider T=2 macro-periods, 5 raw materials (RmA, RmB, RmC, RmD and RmE), 6 products (P1, P2,..., P6), 3 tanks (Tk1, Tk2 and Tk3) and 3 lines (L1, L2 and L3). Suppose that the raw material RmA produces product P1, RmB produces P2 and P3, RmC produces P4, RmD produces P5 and RmE produces P6. The total number of slots is S= S =2 and it can not be exceeded in each macroperiod. The same happens with the total number of micro-periods T m =5. Figure 2 shows how the slot assignments and micro-periods can help to synchronize and integrate the two-levels of the problem.

Fig. 2. Synchronization between lines and tank slots

The method proposed in this paper to solve the SITLSP is a multi-population genetic algorithm where each population is conceived as a hierarchical ternary tree structure. The Genetic Algorithm (GA) is a very popular search procedure inspired by biological evolution processes [START_REF] Goldberg | Genetic Algorithms in search, optimization, and machine learning[END_REF][START_REF] Holland | Adaptation in natural and artificial systems[END_REF][START_REF] Michalewicz | Genetic Algorithms + data structure = evolution programs[END_REF]. There is vast literature concerning the use of GAs to solve lot-sizing and scheduling problems. A lot-sizing and scheduling problem with sequence-dependent setup times is solved using GA by [START_REF] Sikora | A genetic algorithm for integrating lot-sizing and sequencing in scheduling a capacitated flow line[END_REF] tasks to be scheduled in a job shop scheduling problem. All the GA papers mentioned above have specific genetic operators (crossover, mutation, and selection) designed to deal with these individual representations (solutions) for lot-sizing and scheduling problems. A multi-population GA was developed in this paper because populations that evolve separately will have different characteristics according to the genetic drift idea (Weiner 1995). This can allow for a more effective exploration in the solution space of the problem. As reported by [START_REF] Mendes | The framework NP-Opt and its applications to optimization problems[END_REF] better results solving different optimization problems using a structured multi-population GA instead of a non-structured single population GA were attained. In addition, [START_REF] França | A memetic algorithm for the total tardiness single machine scheduling problem[END_REF] found better results solving the total tardiness single machine scheduling problem using GA with hierarchically structured populations. This paper is organized as follows. In Section 2, the GA approach with the individual representation and its decoding procedure are fully described, as well as the tailor-made genetic operators and the multi-population structure. Computational results using instances, whose data were provided by a soft drink company, are reported in Section 3. The conclusion follows in Section 4.

Genetic Algorithm

In this section a multi-population hierarchical GA procedure is developed. In [START_REF] França | A memetic algorithm for the total tardiness single machine scheduling problem[END_REF], [START_REF] Mendes | NP-Opt: An optimization framework for NP problems[END_REF] and [START_REF] Mendes | The framework NP-Opt and its applications to optimization problems[END_REF] similar and well succeeded approaches are reported. These findings have also been observed in the present work with the SITLSP. Moreover, the adoption of the multi-population approach has enhanced the convergence features of the GA, postponing premature convergence and improving its whole effectiveness [START_REF] Toledo | Integrated two-stage lot sizing and scheduling problem[END_REF]). The GA proposed here was implemented using the NP-Opt [START_REF] Mendes | NP-Opt: An optimization framework for NP problems[END_REF][START_REF] Mendes | The framework NP-Opt and its applications to optimization problems[END_REF] an objectoriented framework written in JAVA (Java Sun 2007) code which contains procedures based on evolutionary computation techniques to address NP-hard problems. The next pseudo-code (Figure 3) describes the multipopulation GA available in the NP-Opt. The algorithm executes a fixed number of crossovers in each population while there is no convergence. This process involves a parent selection (selectParents(individualA, individualB)), a new individual creation by crossover (crossover(individualA, individualB)), a possible mutation application to the new individual (mutation(newInd)), its fitness evaluation (evaluateFitnessIndividual(newInd)) and its insertion or not into the population (insertPopulation(newInd, pop(i)). The population convergence occurs when there are no new individuals inserted after a fixed number of crossovers has taken place. A migration among populations (executeMigration pop(i)) is executed when all populations have converged and the stop criterion has not been satisfied yet. In case a new initialization of the populations (initializePopulation(pop(i ))) occurs, the best individual and the migrated individuals are kept. Details on the constitution of populations and the migration policy will be presented later.

Individual

Two interdependent lot-sizing and scheduling problems have to be solved by the GA approach. An elaborate coding of solutions is proposed in this work. This representation is close to the one presented in [START_REF] Kimms | A genetic algorithm for multi-level, multi-machine lot sizing and scheduling[END_REF] The rows represent macro-periods t 1 , t 2 ,...,t T . The column represents the genes and there can be a different number of genes per macro-period. Each gene corresponds to a cell in the individual representation that contains the following data:  Pmn: product in gene n to be produced in macro-period m.  D mn : lot size of product P mn .  SL mn : sequence of lines where D mn can be produced.

 STkmn: sequence of tanks where the raw material of Dmn can be stored. The demand dit of product i in period t is divided into many lots (Dmn) and randomly distributed among the genes in periods t, t-1, t-2, ..., 1. The sequences SL mn and STk mn are randomly generated with length k. Sequence SL mn is defined below, where L is the number of lines:

F o r P e e r R e v i e w O n l y            L L L L j i i i i 2 1     SL mn =( 1 ,..., k ) with  i {1,.
..,L},  i is the line number in position i of the sequence. Sequence STkmn is defined below, where L is the number of tanks:

STk mn =( 1 ,...,  k ) with  i {1,2,...,2 L },  i tells where and how the raw material will be stored. The  i is taken from 2 L possible values and the reasons to do this will be explained next. The tank number j where the raw material will be stored is obtained from  i doing:

(1)

Let Rma be the raw material of lot size Dmn. The assignment of Rma to tank j obeys the following criteria:

 Criterion 1: If tank j stores lots of raw materials Rm b and Rm a Rm a , the Rm a lot will occupy the next assignment to j. Two different raw materials cannot be stored at the same time in j.  Criterion 2: If tank j is full, Rma will occupy the next assignment to j.  Criterion 3: If tank j is empty, it will be immediately occupied by Rma.  Criterion 4: If tank j is already occupied by other lots of Rm a and the minimum tank capacity is not filled yet, the new Rm a lot has to be assigned to j.  Criterion 5: If 1 iL , Rma occupies a new assignment to tank j =  i, as the previous conditions have been regarded.  Criterion 6: If L <  i 2 L , Rm a integrates the previous lot already assigned to tank j =  i -L , as the previous conditions have been regarded. Criteria 1 to 4 ensure that the problem constraints (such as different raw materials in the same tank, minimum tank capacity, etc) are not violated. They have priority over criteria 5 and 6 which allow for solutions with a partial (criterion 5) or total (criterion 6) tank occupation. The individuals in each initial population are generated following the pseudo-code next (Figure 5). There are T macro-periods, J products, L lines and L tanks. Individuals which are randomly generated make a certain level of diversity to the initial population possible. First, the variable Dem receives the total demand dPi,t of product Pi in the macro-period t. This demand is randomly divided and distributed among the genes. Of course, each piece of demand is not positioned after its demand's due date (macro-period t). The following example clarifies the solution representation as an individual. Suppose two products (P 1 and P 2 ) where each product has a demand of 100 units to be filled in macro-period t1 and another 100 units to be filled in macro-period t2. The products use different raw materials. Moreover, there are two lines available to produce both products and two tanks available to store both raw materials. Figure 6 gives us two possible representations, both based on the individual initialization algorithm. The demands are distributed in their respective macro-periods in individual 1. However, the demand of P2 in t1 is split between two genes. In individual 2, part of the P1 demand in t2 is produced in t1. Notice that the sequence of lines and tanks can repeat values of  i  {1,2} and  i  {1,2,3,4} for L= L =2 and length k = 4 in the sequences SL mn and STk mn .

Decoding and fitness

The decoding procedure is responsible for determining a solution from the data encoded in each gene of an individual. The procedure starts from the first gene in the last macro-period up to the last gene in the first macro-period. This backward procedure allows us to postpone setups and processing time of products and raw materials in lines and tanks. However, there is no guarantee that all demands will be produced at the end and a penalty in the fitness is taken into account for that. An example illustrates the decoding procedure. Consider the same data used in the example of section 2.1 and individual 2 shown there. The process begins by the first gene in the last macro-period. A lot of product P 2 (D 21 = 30) has to be produced using the first pair ( 1 ,  1 ) = (2, 4) from sequences SL 21 and STk 21 (Figure 7). Product P 2 is produced in line 2 because  1 = 2 and let's assume that its processing time takes 1 micro-period. The other processing times used in this example are suppositions as well. According to equation (1) of section 2.1, raw material Rm2 of P2 has to be stored in tank j = 4-2 = 2 because  1 = 4 and 2< 1 4 with L =2. Given the criteria defined in section 2.1, criterion 3 has priority over the others in this case because tank j = 2 is empty and must be occupied immediately. A tank should be ready at least one micro-period before the production starts in lines. Therefore, the setup time of Rm2 occurs in Figure 7 one micro-period before the P2 production starts in L2. Let us suppose that the setup time of raw materials will take 1 micro-period in any tank in this example. The demand of this gene has been completely scheduled, so the next gene in t 2 is decoded (Figure 8). The first pair of rules ( 1,  1) = (2,3) is selected to schedule 55 units of P1 which are also produced in L2 ( 1 = 2). There is a setup time because P 2 is scheduled next. Value  1 = 3 means j = 3-2 = 1 (2< 1 4) by equation ( 1). Tank j = 1 is empty and, according to criterion 3, must be occupied immediately by Rm1 of P 1 . Figure 9 presents the third gene decoding in t 2 . The lot size of P 2 has to be produced in L1 ( 1 =1) and its raw material has to be stored in tank j = 2 (= 4 implies j = 4-2 = 2). There is a lot of Rm2 in j = 2 (criterion 1 does not apply) and we are supposing that there is available capacity in this tank (criterion 2 does not apply as well). This tank is not empty and, according to criterion 6, the Rm2 must integrate the lot of Rm2 already stored in j=2. The insertion of the new lot in j = 2 causes a setup time anticipation. The tank now has to be ready one micro-period before the P2 production starts in L1. The decoding process continues in the first gene in t1 (Figure 10). Product P2 is produced in L2 ( 1 = 2) and Rm2 is assigned to tank j = 2 ( 1 =2). Let's suppose that the minimum tank capacity has already been filled. In this case, criterion 4 does not apply as well as the criteria 1 to 3. Therefore, criterion 5 can be applied ( 1 =2 with 1< 1  2), and a new lot is scheduled for tank j = 2. The next gene decoding is shown in Figure 11. Line L1 ( 1 =1) is selected to produce D 12 = 100 units of P 1 . Raw material Rm1 is assigned to j = 4-3 =1 ( 1 = 3) and it must occupy the previous lot already assigned to this tank (criterion 6). However, we are supposing at this point that there is available capacity in tank j = 1 to store raw material sufficient to produce only 45 units of P1. In this case, the setup time of Rm1 is anticipated for the third micro-period and part of D12=100 is scheduled in line L1. Thus, the next pair ( 2, .Fig. 11. Decoding of the second gene in in t 1 .

The next gene decoding is illustrated in Figure 12. Line L2 produces P 2 ( 1 =2) and there is no setup time because the same product is scheduled next. Raw material Rm2 is integrated into the lot already stored in tank j = 4-2 = 2 ( 1 = 4), so there is anticipation in the setup time of this tank. Figure 13 has the last gene decoding.

Product P 1 is scheduled in L2 ( 1 = 2) and we have a setup time because P 2 is produced next. Rm2 will integrate the lot previously stored in tank j = 3-2 = 1 because  1 = 3 and the conditions of criterion 6 are satisfied. and inventory costs for products and raw materials in lines and tanks, respectively. If some demands are not satisfied, a high penalty cost per unit also occurs in the objective function. The best individual of the population is the one whose decoding process determines a final schedule with a minimum cost value.

Crossover and mutation

Previous computational experiments with several crossover operators revealed that the best behavior was attained by the uniform crossover. In this recombination operator, genes of two different parents that occupy the same position in the individuals have some probability of being inherited by the child. Individuals 1 and 2 (Figure 6) are used to show how the uniform crossover operator works. Sequences SLmn and STkmn are not relevant because the new individual (Child) will inherit these sequences without changes. Figure 14 illustrates the crossover of Ind1 and Ind2. For each gene in the same position in Ind1 and Ind2, a random value   [0,1] is generated. If  <0.5, Child inherits the gene of Ind1; otherwise, Child inherits the gene of Ind2. The genes selected following this procedure are shaded in Figure 14. Notice that there are more genes in macro-periods t 1 and t 2 of Ind2 than in the same macro-periods of Ind1. In this case, the procedure continues in Ind2 selecting those genes where 0.5. We do not allow excessive demands in a new individual. For example, the gene of Ind1 marked by a circle in Figure 14 is not inherited because it would exceed the total demand of P1 in Child. If there is a gene in the same position in Ind2, this gene must be inherited by Child if the same problem does not occur. On the other hand, a lack of demand can occur at the end of the crossover. For this reason, a repair procedure is necessary and the demand deficits in some macro-period are inserted (Figure 15). Mutation aims to keep diversity in a population avoiding premature convergence. A mutation rate determines the number of individuals that will be changed. The mutations adopted in this paper basically swap gene positions. Figure 16 shows an example of the three mutation operators used. The first type swaps the positions of two selected genes in the same macro-period. In the second type, the selected gene is removed and inserted into another position which is also randomly selected. The third type swaps the positions of two chosen genes that are in different macro-periods. The new gene positions have to respect the macro-period demand of each product. A product swap will not take place if it can violate the demand satisfaction. The mutation procedure randomly chooses which mutation type will be applied to the individual. 

Populations and migration

A multi-population genetic algorithm is proposed here where each population is constituted by a hierarchical two-level ternary tree structure. Each structure is formed by 4 clusters of 4 individuals and arranged in two levels (1 cluster in level 1 and 3 clusters in level 2). The cluster has a node leader and 3 other nodes called supporters (Figure 17). Fig. 17. A population as a hierarchical ternary tree structure.

Note that the leader of the whole population is called the best individual. In the algorithm MultiPopulationGeneticAlg explained in the beginning of this section, the parameter numberOfCrossover is used to determine the maximum number of recombination executed in each population. This parameter is provided by the equation: numberOfCrossover =  *PopulationSize (2) where is the crossover rate. A crossover is carried out over a cluster (selected at random) and always selects a supporter node as parents, also randomly chosen, and its respective leader node. If better than some parents, the new individual (Child) will replace the parent with the worst fitness value (Figure 18). Otherwise, the new individual is not inserted into this population. After every crossover, adjustments are necessary to keep the cluster structure well ordered where the best is the leader (Figure 19). The populations converge when no new individuals are inserted in any population after the numberOfCrossover executions are reached. In this case, a copy of each best individual is inserted into the next population replacing some individual randomly selected -except the best one. This is the migration process and only one new individual is inserted into each population. New initialization of the population occurs after the migration process. However, the best individuals and the individuals that have just migrated are kept (Figure 20). 

Computational Results

In this section, computational results for a set of instances are presented. These instances are based on data provided by a soft drink company.

Computational results: small-to-moderate size instances

The parameters adopted to create small-to-moderate size instances are in Table 1. Some parameter values are fixed and others are chosen from a set of values. A certain combination of parameters L, L , J, J defines a set of instances. Table 2 presents A total of 9 parameter combinations per macro-period (T={1,2,3,4}) were chosen, limiting the simulations to 4x9=36 possible set of instances. These sets are considered of small-to-moderate size if compared to the industrial instances found in soft drink companies and also in terms of the number of variables and constraints in the related mathematical model (see Table 4). In each set of instances, 10 replications are randomly generated resulting in 4x9x10 = 360 instances in total. The other parameters used to create instances are shown in Table 3. The conversion factor rji determines how many liters of raw material i are necessary to produce one unit of product j. These parameters are generated from a uniform distribution in the interval [a,b]. The setup costs in lines and tanks are calculated as:

 ijk ijk f s  (3) ijk ijk f s  (4) 
respectively, where s ijl is the setup cost when one shifts from product i to j in line l and sijk is the setup cost when one shifts from raw material i to j in tank k. These setup costs are proportional to the setup times as determined by parameter f in equations ( 3) and (4). The same approach is used in [START_REF] Haase | Lot-sizing and scheduling with sequence dependent setup costs and times and efficient rescheduling opportunities[END_REF], where a similar procedure establishes setup costs from setup times in a lot-sizing and scheduling problem for a single-stage and single-machine production system. According to the results reported in [START_REF] Toledo | Integrated two-stage lot sizing and scheduling problem[END_REF] and Toledo et al. (2006), the most adequate value for f is 1000 given that it provides a suitable trade off between the different terms of the objective function.

The mathematical model developed in [START_REF] Toledo | Integrated two-stage lot sizing and scheduling problem[END_REF] and Toledo et al. (2006), and the instances generated wherein were coded using the modelling language GAMS IDE, version 2.0.10.0, and solved by the solver CPLEX, version 7 [START_REF] Gams | Web site[END_REF]. The CPLEX handles mixed integer problems using a branch & cut algorithm which solves a series of LP subproblems [START_REF] Hoffman | Improving LP-representations of zero-one linear programs for branch-andcut[END_REF]. GAMS/CPLEX ran on each instance only once during the time limit of 1 hour. Two kinds of problem solutions can be returned: the optimal solution or the best feasible solution achieved up to the time limit. The other series of experiments involving the small-to-moderate size instance set was to find heuristic solutions using the multi-Population genetic algorithm (GA). In the combinations where the GAMS/CPLEX spent up to 0.5 hour (CPU time) on average to find the optimal solution (see Table 4), the GA ran during 360 seconds and this execution was repeated 5 times over each instance. Taking this into account, the GA had a total execution time of 0.5 hour per instance. In the combinations where GAMS/CPLEX spent more than 0.5 hour on average to return a solution (see Table 6), the GA ran on each instance during 1200 seconds. This GA execution was repeated 3 times over each instance, that is, a total execution time of 1 hour per instance. The GA consists of 3 populations structured in ternary trees of 13 individuals each, which means a total of 39 individuals. The crossover rate was set to 1.5 which leads the procedure to execute 19 crossovers over each population. The mutation rate is fixed at 0.7. A number is randomly chosen in the interval [0,1] with uniform distribution. If  < 0.7, the mutation operator is executed on the new individual.

All the computational tests were executed on a Pentium IV microcomputer with 2.8 GHz. For each combination of parameters (Comb.), Table 4 presents the number of constraints (Const.) and binary (Bin.) and continuous (Cont.) variables of the mathematical model generated by GAMS/CPLEX with T=1,2. The number of optimal solutions (Opt.) returned by the solver and the average CPU time (seconds) are presented as well. The GAMS/CPLEX solved most of the problem instances with T = 1 (77 out of 90 instances) optimally. However, GAMS/CPLEX had problems to solve instances with T=2 optimally within the time limit (25 out of 90 instances). This was expected, because of the increasing number of constraints and variables of the model for each instance with T = 1 and T = 2. The following relative deviation was used to compare the GA and GAMS/CPLEX solutions:

          Z Z Z Dev 100 (%)
where, Z is the final solution returned by GA and Z is the final solution returned by GAMS/CPLEX. The average (Avg), maximum (Max) and minimum(Min) deviation values are listed for T=1,2 in Table 5. The Avg determines an average deviation of the final GA solution from the solution returned by GAMS/CPLEX. This average considers the final solutions of all (three or five) GA ran on each instance. Max is the same average deviation, but it considers only the worse solution found by GA in its runs in each instance. Min is the average deviation considering only the best solution found by GA, after the executions in each instance. The GA was able to solve most of the problem instances with T=1 optimally. For T = 2, notice that some of the deviation values are negative, meaning that the GA was able to find better solutions than the (non-optimal) solutions returned by GAMS/CPLEX. In the sets where GA did not outperform GAMS/CPLEX, its average deviations were less than 1% in most of the cases. Table 6 shows the model dimensions, the number of optimal solutions and the average CPU time for the instance sets with T=3,4. GAMS/CPLEX was unable to find optimal solutions in most of these problem instances within 1 hour. The GA deviations regarding GAMS/CPLEX final solutions for T=3,4 are shown in Table 7. GA was able to find better final solutions than the best feasible solutions provided by GAMS/CPLEX in many sets of instances. In the other instance sets, the GA deviation was less than 5% in most of the cases. 5.01 3.90 6.13 8.12 6.57 9.50 8 -3.62 -4. 14 -3.01 -2.22 -3.31 -1.13 9 -0.56 -0.81 -0.34 -3.59 -4.54 -2.63 The evolutionary approach reveals itself to be a good alternative to solve more complex instances. Considering all instances and all average results (Avg, Min and Max), the conclusion is that in 103 out of 108 results, the GA deviations differ less than 5% from GAMS/CPLEX solutions. Similarly, in 37 out of 108 average results, the GA outperforms GAMS/CPLEX best feasible solutions (31 out of 54 for T=3,4 and 6 out of 54 for T=1,2).

Computational results: industrial instances

This section reports computational results that were obtained solving some industrial instances. These instances were provided by a Brazilian soft drink manufacturer whose production planning problem motivated this work. The data of instances are based on the schedules executed by the company in their lines and tanks during different time periods. The parameters which define each instances are presented in Table 8. Notice that each combination represents now only one instance. The demands must be met at the end of each period. In the A instances, each planning covers 7 days with 24 hours of available capacity per day. In the B instances, each period covers 10 days with 24 hours of available capacity per day. Table 9 presents the setup values. 

      j i j i ijl 0 . 0 5 . 0  Line setup cost ($/u)       j i j i s ijl 0 . 0 3000 Tank setup time (hours       j i j i ijl 5 . 0 1  Tank setup cost ($/u)       j i j i s ijl 0 . 6000 12000
The inventory cost of products (hj), the production costs for products (vjl) and raw materials ( v jk ) keep the values as used in the small-to-moderate sized instances. There is no inventory cost of raw material ( h j =0).

All these costs values were used to evaluate the production plan elaborated by the company. The value achieved is the cost of the company schedule (Z I ) in Table 10. The GA ran 3 times over each instance with 3600 seconds assigned to each run. The GA parameters are the same used to solve the small-to-moderate sized instances. Table 10 compares the cost (in 10 6 monetery units) of the company schedule (Z I ) with the better GA final solution (GA-Min), the average GA solution (GA-Avg), and the worst GA final solution (GA-Max) returned after three executions. The corresponding relative deviations of the GA solutions from Z I are also shown. The GA solutions are always better than the solutions found by the company. As many metaheuristics, the GA might find better results in more than 1 hour of execution time. Needless to say the company's solution made use of the experience of the scheduler, but not the GA's solution. Viewed as a toll to support decision making, the GA seems to provide a good starting point from which the scheduler can improve lot sizes and schedules for line and tanks. It is worth mentioning that a scheduler normally takes two days to conclude a production plan.

Conclusion

In this paper we present a two-level production planning problem where, on each level, a lot-sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times have to be solved. Two instance sets were used for comparisons: small-to-moderate sized and industrial instances. All these instances are based on data provided by a real soft drink company in Brazil. In the first part of the computational experiments, the software GAMS/CPLEX was used to obtain optimal solutions or the best feasible solution at least. This exact solution approach was able to return an optimal solution only for small-to-moderate sized instances with 1 and 2 macro-periods. Only the best feasible solutions were returned at the end of the time limit for small-to-moderate sized instances with 3 and 4 macroperiods T=3,4. The main contribution of this article is a multi-population genetic algorithm which seems to be the only alternative for the exact method in order to solve real world instances. The GA approach has a new representation of solutions and deals with a hierarchically structured multi-population. A tailor-made decoding procedure is used to evaluate the solution encoded in the gene of each individual. Moreover, a tailor-made recombination is carried out on population clusters. Migrations between different populations are allowed. In the small-to-moderate sized instances, the GA found many optimal solutions or yielded small mean deviations from the best feasible solutions returned by GAMS/CPLEX. Furthermore, GA returned better final solutions for various small-to-moderate sized instances where GAMS/CPLEX returned only a best feasible solution (not optimal) within the time limit. In the industrial instances, after 1 hour of CPU time, the GA was able to return a better solution than the production plan generated by the industry. These results show that the proposed GA can help the decision maker to generate improved schedules. 
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Fig. 1 .

 1 Fig. 1. The two-level production process.

  , where an individual is represented as a string of paired values (type of product and lot size) in each scheduling period. The capacitated lot-sizing and loading problem with setup times, parallel facilities and overtime, proposed by Özdamar and Birbil (1998), uses another direct representation of solutions for individuals in GA. An individual is also a string of paired values, where the first value is the lot size and the second is the facility. A more elaborate representation of a solution is proposed in Dellaert et al. (2000), where a binary matrix PxT (P products and T periods) represents an individual for the multi-level lot-sizing problem. Each binary entry y i,t is set to 1 if a setup for product i occurs in t; otherwise y i,t =0. Another elaborate representation is given by Dorndorf and Pesch (1995) where the genes in the GA are rules to select

  which uses assignment rules in a multi-level proportional lot-sizing and scheduling problem with multiple machines. An individual in Kimms (1999) is a matrix with M lines and T columns and each matrix entry (gene) is a rule  m,t used to select the setup state for machine m at the end of period t. Figure 4 introduces the individual representation proposed for the SITLSP.

Fig. 4 .

 4 Fig. 4. Individual representation

  Fig. 5. Individual initialization algorithm

Fig. 6 .

 6 Fig. 6. Two possible individuals

Fig. 7 .

 7 Fig. 7. Decoding of the first gene in t 2 .

Fig. 8 .

 8 Fig. 8. Decoding of the second gene in t2 Fig. 9. Decoding of the third gene in t2.

Fig. 10 .

 10 Fig. 10. Decoding of the first gene in t1.

Fig. 12 .

 12 Fig. 12. Decoding of the third gene in t 1 . Fig. 13. Decoding of the last gene in t 1 . The final schedule established by the decoding procedure for lines and tanks is a possible solution for the problem which is evaluated using the fitness function. The objective function of the mathematical formulation described in Toledo (2005) and Toledo et al. (2006) is the fitness function in the GA. To sum up, this value is determined adding up all costs that happen in the final schedule: setup, production
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 14 Fig. 14. Uniform crossover example.

Fig. 15 .

 15 Fig. 15. Repair in Child.

  Fig. 16. Mutation types.

Fig. 18 .

 18 Fig. 18. Population before and after Child insertion.

Fig. 19 .

 19 Fig. 19. Adjustments in the population.

Fig. 20 .

 20 Fig. 20. Migration between populations.

  the values used in each combination.These particular parameter combinations were chosen because most of the variables and constraints in the mathematical model (see Toledo 2005, Toledo et al. 2006) are indexed by these parameters. Increments in these parameter values may result in the exact approach to failing in solving the instances.

Table 1 .

 1 Parameter values and meanings

	Param.	Values	Meaning	Param. Values	Meaning
	L	{2;3;4}	Number of lines	h j	1($/u)	Unity inventory cost of product j
	L	{2;3}	Number of tanks	h j	1($/u)	Unity inventory cost of raw material j
	J	{2;3;4}	Number of products	vjl	1($/u)	Unity production cost of product j in
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						line l
	J	{1;2}	Number of raw materials	vjk	1($/u)	Unity production cost of raw material j in tank k
	T	{1;2;3; 4}	Number of macro-periods	Qk	5000l	Maximum capacity of tank k (liters)
	C	5	Capacity of each macro-period	Q k	1000l	Minimum capacity of tank k (liters)
		F o			
			r			
			P			
			e e r			
			R e v i e w	
					O n
						l y

Table 2 .

 2 Combination of parameters per macro-period for small-to-moderate sized instances

	Comb.	L/ L /J/ J	Comb.	L/ L /J/ J	Comb.	L/ L /J/ J
	1	2/2/2/1	4	3/3/2/1	7	4/4/2/1
	2	2/2/3/2	5	3/3/3/2	8	4/4/3/2
	3	2/2/4/2	6	3/3/4/2	9	4/4/4/2

Table 3

 3 

			. Parameter ranges
	Param.  ijl ijk	Ranges U[0.5; 1] U[1; 2]	Meaning Setup time (hours) from product i to j in line l Setup time (hours) from raw material i to j in tank k
	p jl	U[1000; 2000]	Processing time (units/hour) of product i in line l
	djt	U[500; 10000]	Demand (units) of product j in period t.
	r ji	U[0.3; 3]	Conversion factor

Table 4 .

 4 GAMS/CPLEX model sizes and optimal solutions for the sets of instances with T=1,2

	T=1

Table 5

 5 

		. GA deviation values from GAMS/CPLEX
		solutions for T=1,2
	Comb.	T=1 -Dev(%)	T=2 -Dev(%)
		Avg. Min. Max. Avg. Min. Max.
	1	0.00 0.00 0.00 0.27 0.23 0.31
	2	0.00 0.00 0.00 0.18 0.11 0.28
	3	0.34 0.34 0.34 0.65 0.38 0.83
	4	0.00 0.00 0.00 0.79 0.66 1.03
	5	0.00 0.00 0.00 -0.11 -0.27 0.16
	6	0.00 0.00 0.00 0.04 -0.08 0.10
	7	0.00 0.00 0.00 1.30 1.01 1.72
	8	0.00 0.00 0.00 1.84 0.86 2.53
	9	0.00 0.00 0.00 -1.86 -1.88 -1.82

Table 6 .

 6 GAMS/CPLEX model sizes and optimal solutions for the sets of instances with T=3,4

	T=3

Table 7

 7 

		. GA deviation values from GAMS/CPLEX
		solution for T=3,4
	Comb.	T=3 -Dev(%)	T=4 -Dev(%)
		Avg. Min. Max. Avg. Min. Max.
	1	0.39 0.37 0.43 1.77 1.32 2.27
	2	-0.40 -0.43 -0.39 0.10 0.03 0.13
	3	-0.73 -0.83 -0.53 -1.63 -1.64 -1.62
	4	2.26 1.52 2.95 2.61 1.68 3.71
	5	-0.96 -1.27 -0.48 -2.41 -3.34 -1.51
	6	0.06 -0.74 0.70 -2.56 -3.34 -1.75

Table 8 .

 8 Parameters of industrial instances

	Comb.	L/ L /J/ J /T	Comb.	L/ L /J/ J /T
	A1	5/9/33/11/1	B1	6/10/52/19/1
	A2	6/9/49/14/2	B2	6/10/56/19/2
	A3	6/9/58/15/3	B3	6/10/65/21/3

Table 9

 9 

			. Setup values	
	Meaning	Value	Meaning	Value
	Line setup time (hours)			

Table 10 .

 10 GA solutions compared to solutions provided by a manufacturer

	Comb.		Solutions		Deviation -Dev(%)	
		Z I	GA-Min	GA-Avg	GA-Max GA-Min	GA-Avg GA-Max
	A1	1692098	1662098	1667098	1671098	-1.8	-1.5	-1.2
	A2	3511910	3381357	3388059	3398510	-3.7	-3.5	-3.2
	A3	5002677	4837433	4847207	4859924	-3.3	-3.1	-2.9
	B1	3378205	3303500	3317500	3345500	-2.2	-1.8	-1.0
	B2	4278521	4174522	4199463	4222860	-2.4	-1.8	-1.3
	B3	7943402	7735818	7796636	7839039	-2.6	-1.8	-1.3
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