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Abstract 
 

A new forecast-based dynamic inventory control approach is discussed in this paper. 

In this approach, forecasts and forecast uncertainties are assumed to be exogenous 

data known in advance at each period over a fixed horizon. The control parameters 

are derived by using a sequential procedure. The merits of this approach as compared 

to the classical one are presented. We focus on a single-stage and single-item 

inventory system with non-stationary demand and lead-time uncertainty. A dynamic 

re-order point control policy is analysed based on the new approach and its 

parameters are determined for a given target cycle service level (CSL). The 

performance of this policy is assessed by means of empirical experimentation on a 

large demand data set from the pharmaceutical industry. The empirical results 

demonstrate the benefits arising from using such a policy and allow insights to be 

gained into other pertinent managerial issues.  

Keywords: Stock Control; Forecasting; Lead-time Demand; Simulation; Empirical Analysis  
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1. Introduction 
 

The efficient management of inventories is an important concern of all companies that 

deal with physical stock at any level of a given supply chain. Inventory control is 

viewed as an important task since it is the lever enabling significant cost reductions 

and/or higher customer service levels. This task becomes more complex in the context 

of highly variable customer demand and uncertain replenishment lead times.  

Many academic investigations have been performed since the 1930’s in order to 

develop or to analyze new inventory control policies that can be implemented in real 

inventory management systems. In the context of highly variable demand, the 

standard “static" control policies such as the static re-order point or the static order-

up-to-level policy are often inappropriate, since they are based on the stationary 

demand assumption. It is essential to develop dynamic inventory control policies 

considering non-stationary demand, since such policies account better for the variable 

patterns encountered in practical situations.  

In many real-world cases, companies are still using static policies to compute the 

ordering quantities and safety stocks for non-stationary independent demands. These 

quantities are often derived from histories of demand, and are rarely reviewed. This is 

the case even when demand forecasts are available. Hence, dynamic inventory control 

systems aiming to tackle this issue must be developed in order to help practitioners in 

their decision making process.  

Some academic research work has dealt with dynamic inventory control policies 

under non-stationary demand (with or without the use of forecasts). However, the 

methods developed in this work are either not easy to implement by practitioners (i.e. 

computationally intensive and/or not intuitively appealing, (e.g. Scarf, 1959; Karlin, 

1960; Hadley and Whitin, 1963), or they are based on restrictive assumptions which 

make their implementation strongly dependent upon specific underlying demand 

patterns and forecasting methods (e.g. Heath and Jackson, 1994; Graves, 1999; Chen 

et al., 2000; Strijbosch et al., 2000; Syntetos and Boylan, 2006).  

Furthermore, in addition to demand uncertainty, the uncertainty associated with 

replenishment lead-times significantly affects the performance of the inventory 

systems. Most relevant literature relies on the assumption of constant lead-times 

and/or stochastic lead-times, but also stationary demand. 
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In this paper, we discuss a new approach to forecast-based inventory control. Our aim 

is to develop a simple dynamic inventory control policy that can be easily 

implemented in practice, under a non-stationary demand pattern estimated by any 

forecasting procedure and under stochastic lead times. We assume that the forecasts, 

as well as the probability distributions associated with the forecast uncertainty and the 

lead-time, are exogenous data known in advance at each period over a fixed horizon. 

Our approach avoids the explicit reliance on specific forecasting methods. It allows 

the consideration of forecasts derived from ad-hoc methodologies, or from forecasts 

generated by specialised statistical forecasting software (in which case the exact 

updating algorithms are rarely known). Moreover, our approach enables 

experimentation with judgementally-adjusted or qualitative forecasts generated from 

relevant management and/or marketing intelligence.  

Babaï and Dallery (2007) conducted some preliminary work on the above dynamic 

inventory control approach. In this paper we extend their analysis by considering 

lead- time uncertainty and by assessing the performance of a stock control policy (the 

re-order point one), by means of empirical experimentation on a large demand data set 

from the pharmaceutical industry. Two models of forecast uncertainty are considered: 

an absolute model and a relative model. Experimentation with the latter model 

constitutes a contribution by itself, because not much work has been done in this area.  

The remainder of this paper is organised as follows: in Section 2 we overview first the 

stock control literature that deals with stochastic lead-times, and then, the dynamic 

approaches to inventory control, contrasting them with our own approach.  In Section 

3 we discuss the assumptions on which our approach is developed, along with the 

standard dynamic re-order point policy upon which we build our work. In Section 4 

we analyse the dynamic policy that considers the impact of lead- time uncertainty. In 

Section 5 we present the experimental structure of our empirical investigation. In 

Section 6 the empirical results are analysed, and in Section 7 we give our conclusions, 

along with some natural extensions for further work.  
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2. Research Background 

In this section we provide an overview of the stock control literature that deals with 

stochastic lead-times. Then we focus on dynamic inventory control policies, and 

discuss the relevant issues to give a background for the development of our approach. 

 

2.1 Inventory systems with stochastic lead-times 

Early investigations demonstrated the economic implications of lead-time uncertainty 

and showed the importance of ameliorating its effects, regardless of the procedures 

used to compensate for demand uncertainty (e.g. Whybark and Williams, 1976; Speh 

and Wagenheim, 1978; Nevison and Burstein, 1984).  

A considerable amount of academic work has also been devoted to the analysis of 

periodic inventory control systems with deterministic demands and stochastic lead 

times (e.g. Kaplan, 1970; Tang and Grubbström, 2004). Erhardt (1984) took forward 

the work conducted by Kaplan (op. cit.) and studied the conditions of optimality 

related to the periodic (s, S) policy, where s is the re-order point and S is the order-up-

to-level, for both finite and infinite planning horizons. Johnson and Montgomery 

(1974) and Zipkin (2000) discuss periodic inventory control systems operating under 

both stochastic demands and lead-times. However, the focus has been on static 

inventory control policies that rely on the stationary demand assumption.  

Eppen and Martin’s (1988) work is very relevant to our own, given their consideration 

of non-stationary demand and lead-time uncertainty for the purpose of computing 

safety stocks (under a fill rate service level constraint).  

 

2.2 Dynamic Inventory Control Policies 

There are two main streams of literature dealing with dynamic inventory control 

policies for non-stationary demand. The first is based on the earlier work by Scarf 

(1959), Karlin (1960) and Hadley and Whitin (1963). This literature investigates 

optimal inventory control policies aimed at minimising total inventory costs, 

including backlog penalties. It considers non-stationary stochastic demands over 

periods of an infinite horizon. It shows that optimal control is obtained in the form of 

dynamic (s, S) policies. Nevertheless, the relevant parameters cannot be determined 

easily. That is to say, the proposed solutions are difficult to understand from a 
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practitioner perspective and difficult to implement (computationally 

intensive/demanding). Moreover, the optimal policies have been based on minimising 

the total inventory cost function under restrictive assumptions. Systems often operate 

under a service level constraint, and should this be the case, a different approach is 

needed.  

A body of literature has emerged more recently which studies forecast-based dynamic 

inventory control policies. Interested readers are referred to Heath and Jackson 

(1994), Lee et al. (1997), Graves (1999) and Chen et al. (2000). These authors 

consider auto-correlated non-stationary demand (often for fast moving items), for 

which forecasts are obtained using statistical forecasting methods. This work goes on 

to develop dynamic order-up-to-level policies where control parameters are computed 

under service level constraints. Nevertheless, there is an implicit exclusion of 

forecasts derived from ad-hoc methodologies and/or in a qualitative manner 

(judgemental forecasts). In addition, all the above work has been generated on 

restrictive assumptions, and does not take into account important practical concerns 

such as lead-time uncertainty.  

In this paper we propose a simple approach that addresses the practical needs of 

inventory managers in the context of non-stationary demand by considering lead-time 

uncertainty. The advance demand information is given by forecasts and the objective 

is to satisfy a target cycle service level. The new forecast-based inventory control 

approach addresses, at least partly, some of the drawbacks of the classical approaches 

cited above. In fact, we assume that forecasts and the probability distributions of the 

forecast uncertainties are exogenous data known in advance over a fixed horizon. In 

order to derive the parameters of a given control policy, say the re-order point policy, 

we use a sequential procedure under a service level constraint. This means that the 

value of the ordering quantity is computed ignoring the impact on the re-order point. 

In order to compute the re-order point, a target cycle service level (CSL) is set which 

represents the probability of no stock-out during a cycle (a cycle being the time period 

between two successive orders). The framework of our approach is summarised in 

Figure 1.  

 

 <<< Please insert Figure 1 about here >>> 
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This approach has three merits compared to the approaches cited above: i) it is 

generic, because the resulting control policy does not depend upon any forecasting 

procedure/parameters; ii) it takes lead-time uncertainty into account; and iii) it is less 

computationally intensive compared with other dynamic approaches proposed in the 

literature - such approaches deliver optimal results under very specific assumptions. 

Moreover, if forecasts are obtained using only statistical forecasting methods, and the 

probability distributions of forecast uncertainties are obtained using the forecast errors 

given by the underlying forecasting model, the classical approach of forecast-based 

inventory control collapses to our approach.  

 

3. System Description   

3.1. Demand Forecasts and Uncertainty 

We analyse a single-stage and single-item inventory control system under non-

stationary demand, information about which is provided through forecasting. The 

system is not capacitated and the inventory replenishment requires a lead-time, as 

presented in Figure 2.  

 

<<< Please insert Figure 2 about here >>> 

 

Two key elements must be available as exogenous data just before the beginning of 

the forecast horizon in order to estimate future requirements and to set the control 

parameters, as shown in Figure 3: i) the point forecasts over all periods in the forecast 

horizon, and ii) a Probability Distribution Function (PDF) for the forecast 

uncertainty. 

 

<<< Please insert Figure 3 about here >>> 

 

For the purposes of this research, the uncertainty associated with the provided 

forecasts is referred to as the ‘forecast uncertainty’, whereas other authors often refer 

to it as the ‘forecast error’. We adopt this terminology since we assume that the 

relevant information is an exogenous indicator of the uncertainty involved in the 

provided demand forecasts, and that it is not only the error resulting from a statistical 

forecasting method. 
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Generally, the random forecast uncertainty can be absolute (or additive), relative (or 

multiplicative), or mixed. The forecast uncertainty is absolute if it is independent of 

the forecasts. It is relative if it is proportional to the forecasts, and it is mixed if it 

consists of both an absolute and a relative component. In this paper, we assume that 

the forecast uncertainty may be either absolute or relative. Hence, for a period k, if Fk 

denotes the forecast produced for the demand in that period and FU denotes the 

random forecast uncertainty associated with that estimate, a representation of the 

actual demand, denoted by Dk, is given by:  





+

+
=

relative isy uncertaintforecast   theIf)1(

absolute isy uncertaintforecast   theIf

k

k

k
FFU

FUF
D  

At this point it is important to mention that if the forecast uncertainty is relative, the 

PDF is given in percentages (i.e. the mean and the standard deviation of the forecast 

uncertainty as well as the realisations are expressed in percentages).  

To the best of our knowledge, most of the literature that deals with forecast-based 

inventory control policies was developed by considering absolute forecast 

uncertainties. However, in many cases encountered in practice, the forecast 

uncertainty for some SKUs may be better represented by a relative or a mixed model. 

In inventory control, the safety stock covers the cumulative forecast uncertainty over 

the protection interval, which in periodic review systems is equal to the lead time plus 

one review period. Therefore, the PDF of the cumulative forecast uncertainty over the 

protection interval is needed. The literature suggests that the common way to do this 

is by aggregating the PDFs of the forecast uncertainties associated with each period 

over the protection interval (cf. Armstrong, 2001). For example, assume that at the 

end of period k, the PDFs of the forecast uncertainty are known for all periods i of a 

protection interval R (i.e. i = k+1, k+2, .., k+R-1), that is respectively PDF(k+1), 

PDF(k+2),…, PDF(k+R-1). In this case, the forecaster usually creates at the end of 

period k an Aggregate PDF (say APDF(k)) with mean and variance given by:  

)1()2()1()( .. −+++ +++= RkPDFkPDFkPDFkAPDF µµµµ   and  

2

)1(

2

)2(

2

)1(

2

)( .. −+++ +++= RkPDFkPDFkPDFkAPDF σσσσ  respectively
1
. 

                                                 
1
 Those expressions of the mean and the variance are available only in the case of an absolute model of 

the forecast uncertainty. 
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Although common in practice, however, this approach is not intuitively appealing, as 

it does not allow the consideration of autocorrelations of forecast uncertainties over 

the protection interval. This could only be achieved via a true Cumulative PDF, and 

that is what we suggest should be adopted. In Appendix A we provide a simple method 

for determining the parameters of the Cumulative PDF of the forecast uncertainty. 

Empirical results showing the numerical supremacy of this approach are presented in 

section 6. For the moment we conclude that a PDF that could handle an interval R 

composed of multiple periods as one ‘large’ period should lead to lower inventories, 

and is therefore regarded as a more cost-effective solution. 

Let us assume now that forecasts and the PDF of the cumulative forecast uncertainty 

over any interval R (interval composed of R periods) are known at each period of the 

horizon. For the remainder of our paper, we denote by:  

jkF , : the forecast given at the end of period k for period j ( j  ≥ k + 1) 

RCFU : the random cumulative forecast uncertainty over an interval R 

(.)
RCFUΦ : the probability distribution function of RCFU  

RCFUµ : the mean of the cumulative forecast uncertainty RCFU  

RCFUσ : the standard deviation of the cumulative forecast uncertainty RCFU  

kI : the inventory position at the end of period k 

L: the replenishment lead-time 

CSL: the target cycle service level 

A: the fixed ordering cost 

h: the unit holding cost 

H: the number of periods in the horizon of forecasts. 

 
3.2. The (rk,Q) Policy   

In this subsection, we consider the system described above for the dynamic periodic 

re-order point (rk,Q) control policy. Under this policy the system is controlled at the 

end of every review period. At the end of each period k-1, if the inventory position 

falls below the re-order point rk, a quantity Q is ordered. The quantity ordered is 
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received after L periods. The inventory level evolution in the (rk,Q) policy is 

graphically presented in Figure 4.  

 

<<< Please insert Figure 4 about here >>> 

 

Under this policy the protection interval is equal to the sum of the replenishment lead-

time L plus the review period
2
. The single period must be added due to the discrete 

nature of the time review. Thus, the re-order point rk is equal to the cumulative 

forecast and the cumulative forecast uncertainty over L+1 periods for the specified 

cycle service level. The re-order point is given by:  

















 Φ+

Φ+

=

∑

∑

+

= +−+−

+

= +−+−

−

−

relative isy uncertaintforecast   theIf)(1

absolute isy uncertaintforecast   theIf)(

1

1 1
1,1

1

1 1
1,1

1

1

L

j LCFUjkk

L

j LCFUjkk

CSLF

CSLF

kr  

In the case of an absolute forecast uncertainty, the safety stock which corresponds to 

the term )(1

1
CSL

LCFU
−

+
Φ  is constant over time. In the case of a relative forecast 

uncertainty, the safety stock given by ∑
+

=
−+−+

−Φ
1

1
1,1

1
)(1
L

j
jkk

LCFU
FCSL  is variable over 

time. 

The ordering quantity Q can be set based on the constraints and characteristics of the 

inventory system. It may also be computed once and for all (at the beginning of the 

horizon) by balancing the inventory holding costs and the ordering costs by using, for 

example, Wilson's formula: 

hH

FA

Q

H

i

i∑
== 1

,02

 

where F0,i denotes the forecast given at the beginning of the horizon for a period i.  

 

 

                                                 
2
 Correspondingly in real continuous/transaction reporting applications of re-order point policies, the 

requirements are calculated over the lead-time. 
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The quantity Q can also be dynamically optimized based on more complex methods 

such as the Wagner-Whitin method (Wagner and Whitin, 1958), or more recent 

alternatives (e.g. Wagelmans et al., 1992; Aggarwal and Park, 1993). Another more 

simple but not optimal method is the Silver-Meal heuristic (Silver, 1978).  

It is easy to show that if demand is stationary and the forecasts are constant, the (rk,Q) 

policy is equivalent to the standard static (r,Q) policy. Thus, the latter policy can be 

considered as a particular case of the former one. Furthermore, for a single stage 

inventory system and in the case of an absolute forecast uncertainty, the (rk,Q) policy 

is equivalent to the single stage MRP policy using a constant safety stock and a fixed 

order quantity Q (Babai and Dallery, 2007).  

 

4. The (rk,Q) Policy with Lead-Time Uncertainty  

The system discussed in the previous section is further analysed here under the 

realistic assumption that the replenishment lead-time L is a random variable. Our aim 

is to provide a simple method that can be used to compute the control parameters of 

the (rk,Q) policy under these circumstances.  

In the remainder of this section we derive the parameters of the (rk,Q) policy when 

demand and lead-time uncertainties are considered simultaneously. The parameters 

are derived using a sequential procedure to satisfy a cycle service level.  

Since we analyse a discrete time control system, we assume that the lead-time random 

variable L is given by a discrete probability distribution with a mean and standard 

deviation denoted by Lµ  and Lσ   respectively (i.e. L takes on the values Li, such as 

1)( =∑ =
i

i
LLP ).  

Using the sequential procedure described above, the ordered quantity is computed 

independently of the lead-time uncertainty. However, under the lead-time uncertainty, 

the expression of the re-order point rk changes.  

Proposition 1  

The re-order point rk can be computed numerically, at the end of period k-1, by 

resolving the equation:  
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CSLΦLLP
k

r
i,Lk

CFDi
i

==
+−

∑ )(
11

)(  

where 
1,1 +− iLk

CFD  denotes the sum of the cumulative forecasts plus cumulative 

forecast uncertainty over Li +1 periods, estimated at the end of period k-1 (i.e. 

∑
+

=
−+−++− +=

1

1
1,111,1

iL

jkkiLiLk
j

FCFUCFD ) and (.)
1,1 +−

Φ
iLk

CFD
 its cumulative probability 

distribution.  

The proof of Proposition 1 is given in Appendix B.  

The parameters of the (rk,Q) policy are given as follows: 

• The re-order point rk can be computed numerically by resolving the following 

equation (for example with a fixed-point algorithm):  

CSLΦLLP
k

r
i,Lk

CFDi
i

==
+−

∑ )(
11

)(  

where 
1,1 +− iLk

CFD  denotes the sum of the cumulative forecasts plus cumulative 

forecast uncertainty over Li+1 periods, estimated at the end of period k-1, and 

(.)
1,1 +−

Φ
iLk

CFD
 its cumulative probability distribution. 

• The quantity to order Q, if it is computed, for example, by using the Wilson's 

formula, is given by: 
hH

FA

Q

H

i

i∑
== 1

,02

 

 

5. Empirical investigation  

In this section, we present a brief description of the demand data set available for the 

purposes of this research, along with the experimental structure of our empirical 

investigation.  

 

5.1. Empirical Data  

The empirical investigation is based on data relating to monthly demand forecasts for 

the UK branch of a major international pharmaceutical company. The company relies 
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upon  commercially available software to produce system forecasts per SKU for each 

time period (i.e. month). Final forecasts are produced at a later stage through the 

superimposition of qualitative judgements based on marketing intelligence given by 

the company forecasters.  

The database consists of the individual demand histories of 829 SKUs. Distinct 

demand patterns are included in the sample, i.e. lumpy, intermittent and smooth 

demand patterns. Demand is recorded monthly and the available history covers 36 

consecutive periods from January 2003 to December 2005 (three years inclusive).  

System forecasts are available for all time periods and over a horizon of 36 periods 

(36 steps ahead forecast). The judgemental adjustment is also available, where 

applicable (with a sign, i.e. plus or minus). The statistical forecast provided by the 

software plus the judgemental adjustment give the final forecast, i.e. the one used for 

decision making purposes.  

Not all series were considered for experimentation purposes. The following series 

were excluded from our empirical investigation:  

� Series with missing demand data (i.e. blank cells in the spreadsheet - when 

that was the case there was a series of blank cells) or invalid recording of data 

(e.g. decimals, text, etc.)  

� Intermittent demand series (i.e. series with some streaks of zeroes)  

� Series consisting of a streak of zeroes followed by a streak of non-zero 

demands or the other way around (new SKUs or re-coded ones respectively).  

It is important to note that there have been series containing some negative values 

(returns). We have opted for retaining the relevant information by replacing the 

negative values with zero (see also Syntetos et al., 2007).  

The screening process resulted in 135 files being considered for our simulation 

purposes. All of them are fast moving products. More details on the demand 

characteristics across all SKUs are given in the following table: 

 

<<< Please insert Table 1 about here >>> 
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5.2. Simulation Details  

We used the demand data set described above to empirically assess the performance 

of the dynamic (rk,Q) policy against that of the commonly employed static re-order 

point policy (r, Q). In the former case the computed re-order points vary over the 

forecast horizon, depending on the relevant forecasts (which are available for the 

purposes of our research), whereas in the latter case one single re-order point is set, 

once and for all, to control inventories. We split the demand history available (i.e. 36 

periods) into two parts. The first part, referred to as ‘within-sample’, is composed of 

N1 periods, and is used as the history of demand required to determine the probability 

distributions of forecast uncertainties for the (rk,Q) policy, and to determine both r 

and Q in the (r, Q) policy. The second part, referred to as the ‘out-of-sample’, is 

composed of N2 = 36-N1 periods, and it is used to evaluate performance for both 

policies. For example, if N1 = 21, we use a within-sample of 21 periods from January 

2003 to September 2004 to determine the probability distributions of forecast 

uncertainties. This information in conjunction with the forecasts available for the 

remaining N2 = 15 periods is used to determine the subsequent 15 re-order points (for 

the dynamic policy) and to evaluate performance over that time period. Performance 

is evaluated by means of the achieved cycle service level and the total average 

inventory cost (average holding inventory cost + average ordering cost + average 

back-ordering cost). In the latter case we report the aggregate (across all SKUs) 

inventory cost (in £) per period (i.e. month). 

Different scenarios of the widths of the within-sample/out-of-sample and lead-times 

are considered in our simulations in order to evaluate their impact on the performance 

of the (rk,Q) policy. In the case of the particular company that provided the empirical 

data, lead-times generally do not exceed twelve weeks (i.e. 3 months). In addition, we 

treat time as a discrete variable (months) and we introduce some variability on the 

lead-time length. Three discrete probability distributions are considered and the 

relevant details are summarised in the following table.  

 

<<< Please insert Table 2 about here >>> 
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Results are generated by considering two models of forecast uncertainties: the 

absolute and the relative (assuming normally distributed uncertainties). Moreover, 

four target cycle service levels are considered in our experiments: 0.8, 0.85, 0.9, 0.95. 

The different scenarios and parameter values considered in our simulations are 

summarised in Figure 5. 

 

<<< Please insert Figure 5 about here >>>   

 

In order to compute the (r,Q) parameters: if 
D

µ  and 
D

σ  denote the mean and the 

standard deviation of the demand respectively and if 
L

µ  and 
L

σ  denote the mean and 

the standard deviation of the lead-time respectively, then approximations of the  

parameters of the discrete time (r,Q) policy, derived from the sequential procedure, 

are as follows:  

h

A
Q Dµ2
=   and  222

)1()(
1

)1(
DLDLLD

CSLr µσσµµµ ++−++ Φ=  

For initialisation purposes, we assume that the initial stock in both the (r,Q) policy 

and the (rk,Q)  policy (stock at the end of the within-sample period) is given by: 

222
)1()(

1
)1(stock Initial

DLDLLD
CSLr µσσµµµ ++−++ Φ==  

The unit holding cost used in our experiments is h = 0.1 £/unit/period whereas the 

back-ordering cost b = 1 £/unit/period, i.e. h/b = 10%, an assumption which covers a 

wide range of real-world scenarios. The ordering cost is A = 200 £/order. Since the 

results in each scenario are dependent on the random realisation of lead times, many 

replications need to be performed in order to ensure the ‘stability’ of the results given 

by simulation. The results reported in the following section have been obtained after 5 

replications of each scenario. 

 

6. Empirical Results  

The empirical results for the case of the absolute forecast uncertainty are summarised 

in the following tables for the various within-sample/out-of-sample combinations. 
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<<< Please insert Table 3 about here >>> 

 

<<< Please insert Table 4 about here >>> 

 

<<< Please insert Table 5 about here >>> 

 

The results indicate that as the lead-time increases, the achieved CSL decreases and 

the inventory cost increases. This is true for both policies considered in our 

experiment and is in accordance with theoretical expectations. That is to say, higher 

lead-times (coupled with their stochastic nature, as simulated for the purposes of our 

experiment) imply higher uncertainty that is reflected in increased backlog and 

correspondingly increased inventory costs. Moreover, the results indicate that as the 

target CSL increases, the achieved CSL increases as well (at the expense of a higher 

inventory cost). However, it becomes more difficult to meet the actual target. For 

target CSL = 0.8, 0.85 both policies offer CSL over and above the targets. When the 

CSL = 0.90, the static policy continues to exceed the target; the same is true for the 

(rk,Q) policy when its performance is evaluated on short lead-times. For longer lead-

times, the latter policy slightly under-achieves the target. Finally, for CSL = 0.95, both 

policies are found to be ‘unable’ to meet the target. Overall, the average cost of the 

(rk,Q) is lower than that of the static policy, whereas the CSL is slightly higher in the 

latter case.  

Individualised attention was given to each of the SKUs considered in our experiment; 

the dynamic policy is consistently ‘good’ for each individual scenario whereas the 

performance of the static policy is highly variable. Consider for example a demand 

pattern characterised by a negative trend. In this case, the static re-order point set for 

that policy at the end of the N1 period will always exceed the true requirements, 

resulting in CSLs that exceed the targets. Correspondingly, should a positive trend be 

present in the data, the opposite will be the case. Similar comments can be made in 

the case of step-changes (up or down) in the underlying demand structures. Since 

results are reported across all SKUs, considerable differences cancel out, favouring 

the performance of the static policy. On the other hand, as discussed above, the 

performance of the dynamic policy is consistently ‘good’ for each single SKU.   
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At this point we must remark that the performance of the dynamic policy is dependent 

upon the quality of the forecasts produced. High forecast uncertainty during the 

within-sample block of time and/or poor forecasts for the out-of-sample period render 

the performance of the (r,Q) policy marginally better than that of the (rk,Q) policy in 

terms of achieved service level, whereas the cost-related results still favour the 

dynamic policy. However, it is natural to assume that if better forecasts had been 

provided (resulting in a smaller forecast uncertainty), the (rk,Q) policy would have 

out-weighted the (r,Q) policy in terms of both costs and service level. This is what 

Babai and Dallery (2007) have shown, using theoretically generated data for one 

SKU. 

The simulation results for the case of the relative forecast uncertainty are given in 

Appendix C. They are, overall, consistent with those reported for the absolute forecast 

uncertainty case. The performance of the (rk,Q) policy under this experimental 

structure is slightly worse in terms of costs, compared with the results obtained for the 

absolute uncertainty case.. However, the achieved service level is higher in the 

majority of cases.  

Finally, ‘few’ periods in the within-sample lead to a poor representation of the PDF 

of the forecast uncertainty. Correspondingly, ‘few’ periods in the out-of-sample 

evaluation do not allow us to gain sufficient insight into the performance of the 

policies. Therefore, as expected, the empirical results show that performance of both 

policies is better for the scenario N1 = 18 and N2 = 18  periods which represents the 

best trade-off between the width of the within-sample and out-of-sample blocks of 

time.  

Overall, when all scenarios are considered, and when average results are computed 

across all parameter combinations, there is little to choose between the two policies in 

terms of the CSL achieved. Nevertheless, the dynamic policy results in inventory cost 

reductions as high as 8.3%, which constitutes a considerable difference for any real-

world system. Our analysis suggests that the adoption of the dynamic policy proposed 

in this paper should offer tangible benefits to manufacturers dealing with the problem 

of setting re-order points over a long horizon.  
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7. Conclusions 

In this paper a new approach to dynamic forecast-based inventory control has been 

proposed. The approach has three merits: i) it is generic, since the determination of 

the control parameters does not depend upon any underlying demand structure and 

thus a corresponding ‘optimal’ forecast procedure; ii) it takes lead-time uncertainty 

into account; and iii) it is not computationally intensive compared with other dynamic 

approaches proposed in the literature. In particular, implementation of our approach 

implies that the policy parameters can be easily computed using Excel (or any other 

spreadsheet package). As such, we feel that its practical value is considerable since it 

can be easily integrated into a given inventory management solution. 

Following this approach, a periodic dynamic re-order point control policy was 

developed, referred to as the (rk,Q) policy. The parameters of this policy are provided 

under both demand and lead-time uncertainty (variability) and for a cycle service 

level constraint. We showed that the re-order point rk can be computed numerically by 

using, for example, a fixed point algorithm. Results are provided for both an absolute 

and a relative forecast uncertainty model. 

We then conducted an empirical investigation to compare the performance of the 

dynamic (rk,Q) policy (relying upon advance demand information in terms of 

forecasts) with the static (r,Q) policy often employed in practical applications. Results 

have been generated for 135 SKUs from the pharmaceutical industry, under a wide 

range of experimental conditions. The results indicate a similar performance of the 

two policies in terms of service level achieved. However, the considerable inventory 

cost reductions obtained from the dynamic policy render its application preferable in 

any corresponding real-world application. 

An interesting line of further research would be to consider more elaborate models for 

representing the forecast uncertainty, such as the mixed model, as well as the 

possibility of more regularly updating the demand information available. One might 

also extend the analysis provided in this paper to other inventory control policies such 

as order-up-to-level. This in fact constitutes the next step of our research. 
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Appendix A. Parameters of the PDF of the Cumulative Forecast Uncertainty  
 

The method described in this Appendix can be used to compute the parameters of the 

probability distribution function of the cumulative forecast uncertainty over any 

interval R. Consider a history of demands and forecasts composed of N periods (R < 

N), denoted respectively by:  

Dj: the demand at a period j, 

Fi-1,j: the forecast given at the end of period i-1 for a period j (j ≥ i).  

We consider two models in order to represent the forecast uncertainty: an ‘absolute’ 

model and a ‘relative’ one. We compute, for each period i in the demand history (1 ≤ i 

≤  N – R+1), the value of the cumulative forecast uncertainty over the forward interval 

R, which we denote by RiCFU ,1−  as follows
3
:  
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Using RiCFU ,1− , we compute the mean and standard deviation of the cumulative 

forecast uncertainty over the interval R, denoted by 
RCFUµ and 

RCFUσ  respectively, as 

follows:  

1

1

1

,1

+−

∑
+−

=
−

=
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i

Ri
CFU

RCFU
µ   and 2

)(
1 1

1
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i
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RNR
µσ −= ∑

+−

=
−−

 

Note that in the case of the relative model, the mean and standard deviation of the 

cumulative forecast uncertainty are given in percentages. Thus, in order to compute 

the actual cumulative forecast uncertainty, the value given by the distribution has to 

be multiplied by the cumulative forecast over the same interval R.  

                                                 
3
 The end of period 0 (i.e. i = 0) corresponds to the beginning of the demand history, so that F0,1  is the 

forecast made at the beginning of the history for the period i = 1. 
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Appendix B. Proof of Proposition 1  
 

The re-order point rk may be derived based on:  

P(Cumulative forecasted demand over L+1 ≤ rk) = CSL  

Since the lead time L is a discrete random variable, and by considering the Total 

Probability Theorem and the equation above, we have:  

CSLrLoverdemandforecastedCumulativePLLP ki

i

i ==+=∑ )1()(  

We denote by 
1,1 +− iLk

CFD  the sum of the cumulative forecasts plus cumulative 

forecast uncertainty over Li + 1 periods estimated at the end of period k-1, and by 

(.)
1,1 +−

Φ
iLk

CFD
 its cumulative probability distribution function. At the end of each 

period k-1:  

∑
+

=
−+−++− +=

1

1
1,111,1

iL

jkkiLiLk
j

FCFUCFD  

The random variable 
1,1 +− iLk

CFD  is distributed with a mean and a standard deviation, 

denoted by 
1,1 +− iLkCFD

µ and 
1,1 +− iLkCFD

σ  respectively. They are given by:  
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The re-order point rk is then given by:  

CSLΦLLP
k

r
i,Lk

CFDi
i
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+−

∑ )(
11

)(  

which completes the proof of Proposition 1.  
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Appendix C. Simulation Results for a Relative Forecast Uncertainty  

 

<<< Please insert Table 6 about here >>> 

 

<<< Please insert Table 7 about here >>> 

 

<<< Please insert Table 8 about here >>> 
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Figure 1. A new dynamic control approach 
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Figure 4. The (rk,Q) policy 

 

 

Figure 5. Simulation scenarios 
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List of Tables 

 

135 SKUs Demand history 

January 2003 – December 2005 

 Mean Standard Deviation Coefficient of Variation 

Min. 15.03 13.59 0.14 

25%ile 219.36 107.89 0.25 

Median 605.56 252.68 0.49 

75%ile 1503.33 481.95 0.74 

Max. 4366.17 3099.14 1.97 

 

Table 1. Demand data descriptive statistics (across all SKUs) 
 

 

µL = 1, σL = 0.81 µL = 2, σL = 0.81 µL = 3, σL = 0.81 
Value Probability Value Probability Value Probability 

0 0.25 1 0.25 2 0.25 

1 0.5 2 0.5 3 0.5 

2 0.25 3 0.25 4 0.25 

 

Table 2. Lead-time distributions 

 

 

Within-Sample = 21 periods / Out-Of-Sample = 15 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 72012.51 69039.08 72433.09 69364.64 72796.03 69549.09 73349.05 69993.77 µL = 3 
SL 0.882 0.860 0.891 0.869 0.909 0.889 0.927 0.908 

Cost 66834.21 63922.25 67015.99 64112.31 67105.52 64126.22 69133.11 64213.24 µL = 2 
SL 0.884 0.865 0.898 0.882 0.912 0.902 0.931 0.920 

Cost 63275.04 60007.35 63305.58 60131.41 63616.42 60470.75 65979.29 61066.15 µL = 1 
SL 0.899 0.884 0.906 0.904 0.923 0.919 0.937 0.932 

 

Table 3. Empirical results for N1 = 21/ N2 = 15 

 

 
Within-Sample = 18 periods / Out-Of-Sample = 18 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 69639.51 66099.07 70110.30 66246.50 71111.18 66874.04 73052.52 67024.82 µL = 3 
SL 0.882 0.869 0.891 0.870 0.911 0.891 0.927 0.909 

Cost 64147.04 62575.88 64696.40 62793.40 65554.37 62994.08 67965.90 63050.72 µL = 2 
SL 0.892 0.869 0.904 0.887 0.916 0.903 0.933 0.922 

Cost 61304.38 59078.31 61401.35 59078.31 61895.51 59489.99 63645.84 59896.49 µL = 1 
SL 0.899 0.884 0.911 0.905 0.923 0.920 0.939 0.933 

 

Table 4. Empirical results for N1 = 18/ N2 = 18 
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Within-Sample = 15 periods / Out-Of-Sample = 21 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 68204.81 66108.25 69022.35 66470.99 70164.15 66938.57 71629.93 67933.48 µL = 3 
SL 0.874 0.850 0.889 0.867 0.906 0.887 0.924 0.908 

Cost 64076.61 63063.17 64861.05 63120.22 65266.22 63913.67 67636.55 64766.66 µL = 2 
SL 0.884 0.863 0.901 0.883 0.912 0.901 0.929 0.917 

Cost 60306.88 59697.47 60514.40 59715.24 61814.88 59893.07 63731.51 61401.86 µL = 1 
SL 0.899 0.886 0.906 0.903 0.923 0.916 0.937 0.932 

 

Table 5. Empirical results for N1 = 15/ N2 = 21 
 

Within-Sample = 21 periods / Out-Of-Sample = 15 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 72012.51 70534.77 72433.09 70747.81 72796.03 70952.70 73349.05 71137.62 µL = 3 
SL 0.882 0.858 0.891 0.874 0.909 0.894 0.927 0.908 

Cost 66834.21 66318.31 67015.99 66389.13 67105.52 67078.6 69133.11 67154.56 µL = 2 
SL 0.884 0.873 0.898 0.887 0.912 0.904 0.931 0.924 

Cost 63275.04 63270.25 63305.58 63310.69 63616.42 63592.165 65979.29 64328.13 µL = 1 
SL 0.899 0.887 0.906 0.903 0.923 0.920 0.937 0.932 

 

Table 6. Empirical results for N1 = 21/ N2 = 15 (Relative Forecast Uncertainty) 

 

 
Within-Sample = 18 periods / Out-Of-Sample = 18 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 69639.51 67105.28 70110.30 67511.52 71111.18 67954.17 73052.52 69103.53 µL = 3 
SL 0.882 0.858 0.891 0.879 0.911 0.894 0.927 0.909 

Cost 64147.04 64001.89 64696.40 64654.22 65554.37 65318.58 67965.90 66171.56 µL = 2 
SL 0.892 0.877 0.904 0.892 0.916 0.907 0.933 0.924 

Cost 61304.38 61118.66 61401.35 61303.90 61895.51 61423.65 63645.84 62923.28 µL = 1 
SL 0.899 0.890 0.911 0.906 0.923 0.921 0.939 0.935 

 

Table 7. Empirical results for N1 = 18/ N2 = 18 (Relative Forecast Uncertainty) 

 

 
Within-Sample = 15 periods / Out-Of-Sample = 21 periods 

CSL = 0.8 CSL = 0.85 CSL = 0.9 CSL = 0.95 

Stock control 

results across 

all 135 SKUs (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) (r,Q) (rk,Q) 

Cost 68204.81 67045.04 69022.35 67649.46 70164.15 68294.50 71629.93 69484.50 µL = 3 
SL 0.874 0.859 0.889 0.872 0.906 0.890 0.924 0.908 

Cost 64076.61 64096.74 64861.05 64466.32 65266.22 64723.67 67636.55 67634.86 µL = 2 
SL 0.884 0.877 0.901 0.890 0.912 0.907 0.929 0.918 

Cost 60306.88 61103.26 60514.40 61312.52 61814.88 61634.67 63731.51 62962.38 µL = 1 
SL 0.899 0.886 0.906 0.903 0.923 0.917 0.937 0.932 

 

Table 8. Empirical results for N1 = 15/ N2 = 21 (Relative Forecast Uncertainty) 
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