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Abstract

This paper addresses a problem arising in the coordination between two consecu-
tive manufacturing departments of a production system, in which parts are processed
in batches, and each batch is characterized by two distinct attributes. Due to limited
interstage buffering between the two stages, the two departments have to follow the same
batch sequence. In the first department, a setup occurs every time the first attribute
of the new batch is different from the previous one. In the downstream department,
there is a setup when the second attribute of the new batch changes. The problem con-
sists in finding a common batch sequence optimizing some global utility index. Here
we propose a metaheuristic approach to a bi-criteria version of the problem considering
two indices, namely the total number of setups paid by the two departments and the
maximum number of setups paid by either department.

Keywords: bi-objective optimization, setup, sequencing, metaheuristic, manufacturing

1 Introduction

This paper addresses a coordination problem between two subsequent departments of a pro-
duction system, in which parts are processed in batches. Due to limited interstage buffering
between the two stages, the departments have to process the batches in the same order. Batches
to produce are characterized by two different attributes, say A; and Ay. In the first (the sec-
ond) department, a setup occurs when the attribute A; (attribute As) of the next batch to be
processed changes. Therefore, a sequence of batches results in a number of setups to be paid
by each department, and the problem is finding a batch sequence minimizing the costs related
to setups (called also changeovers).

In this paper, the case in which all the setups have the same cost is considered (such cases
arise in systems in which the activities involved in a changeover are very similar, regardless
of the particular changeover) and, hence, the problem consists in finding a batch sequence
which both stages will follow to minimize one or more objective functions depending on the
number of setups occurred in the two departments. In particular, two objectives have been
considered for the problem. Namely, the minimization of the total number of the setups in
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the two departments and the minimization of the maximum number of setups paid by either
department. While the first objective corresponds to the maximization of the overall utility,
the second captures more realistically the need to balance the changeover costs between the
departments. The problem is known to be A"P-hard even when only one of the above objectives
is considered [2].

Our study refers to the real industrial context addressed in [2], in which a large number
of different slabs of wood are cut, painted and assembled to build kitchen furniture. In this
system, two consecutive departments are considered and no resequencing is possible between
the two stages. The two departments are the cutting and the painting department and batches
are characterized by a shape and a color. In the cutting department, a setup occurs when
a batch has a different shape from the preceding one (cutting tools and machinery must be
reconfigured). Similarly, in the painting station a setup occurs when a new color is used (the
equipment and the pallets must be thoroughly cleaned in order to eliminate the residuals of
the previous color).

For the bi-objective problem, a metaheuristic algorithm able to find in a reasonable com-
putation time a good approximation of the Pareto-optimal front is proposed. In general, a
solution of the problem is a set of tradeoff solutions, i.e., non-dominated solutions. The paper
is organized as follows. In Section 2, literature results and applications are discussed. In Sec-
tion 3, a formal description of the problem is given. In Section 4, a metaheuristic algorithm,
based on an Iterated Local Search approach, is presented, and in Section 5 a large set of exper-
iments is reported showing the effectiveness of the proposed approach. Besides comparisons
with two algorithms from the literature are also performed. Finally, in Section 6 conclusions
are drawn.

2 Literature and applications

The complexity of the decision processes in the production management involving changeover
problems often falls in the class of multicriteria combinatorial optimization problems [30]. In
the last years, the topics on multicriteria planning and scheduling problems have been subject
to an increasing interest, see for example [5, 13].

Minimizing the impact of changeovers has been widely described as a main component of
modern production management strategies [33]. Pursuing high changeover performances is a
way to enable agile and responsive manufacturing processes by improving line productivity
and reducing downtime losses [23]. This aspect of the production management involving both
organizational and economic aspects has received an increasingly attention also in fields as
applied mathematics and operations research.

In particular, over the past few decades, there has been a significant effort associated with
reducing the time required to perform setups and developing suitable changeover modeling
processes. This process can be quite complicated, but yields important benefits in planning
and scheduling a production system [33] improving both its production capacity and its man-
ageability. An important survey on changeover problems is proposed in [6]; a wide discussion
on MIP models is given in [34]; while [27] offers a review of heuristics for setup problems in
serial systems. The models and algorithms presented in this paper particularly refer to the
furniture production case addressed in [2]. Recently, two genetic approaches for the problem
addressed in this paper have been independently developed. In [25] a genetic algorithm for
some bi-objective variants of the problem of sequencing production batches has been proposed,
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and in [24] a multi-objective genetic algorithm (MOGA) for the same problem addressed in
this paper is implemented, and a computational study is presented.

The studied problem can be also viewed as a special case of the tool-switch
problem in a flexible machine [31, 9] in which the tool magazine can accomodate
a limited number of elements of two different classes. Several variants on the
problem are presented in the literature [8] and different algorithmic approaches
are proposed to tackle them [3, 19].

The literature also presents other different real-world applications of some variants of the
problem addressed in this paper. As examples, we cite the optimization of the line scheduling
for production of components for catalytic converters considered in [29] where the authors
propose an hybrid approach based on the integration between Constraint Logic Programming
and Genetic Algorithm solving small size instances. The setup sequencing problems arising in
the weaving industry are addressed in [4] and a polynomial time algorithm is proposed under
some strong assumptions on the cost structure. In [32] a genetic approach for part loading
scheduling in a forging machine is addressed. In [10] a decomposition approach to the batching
and sequencing problem is considered, while a particular process selection and sequencing in
a multi-agent context is addressed in [1].

3 Problem formulation and notation

The problem we consider in this paper, hereinafter called bi-criteria Setup Coordination (bi-
SC), can be formulated as follows. Let E be a set of batches to be produced. The batches
must be processed by two departments, called D; and D», in the same order. Each batch is
characterized by two attributes, say for example shape and color. Let V] (V4) denote the set
of all possible shapes (colors). We denote the shapes as s;, with ¢ = 1,...,|V;|, and the colors
as ¢;, with j = 1,...,|V5|. Each batch is therefore defined by a pair (s;,c;). If batch (s;,¢;) is
processed immediately after batch (s;,c;), a setup is paid by department D, if s, # s;, and a
setup is paid by department D, if ¢; # c¢;.

We can represent the input of the problem as a bipartite graph, G = (Vi, V5, E), in which
nodes in Vj correspond to shapes, nodes in V5 to colors and each edge of E corresponds to
a batch to be produced. The problem is to sequence the batches in a profitable way from
the viewpoint of the number of setups paid by departments. This means that we must find a
particular ordering o of the edges of G. If two consecutive edges (i, j) and (h, k) in ¢ have no
nodes in common, then both departments have to pay one setup when switching from batch
(i,7) to batch (h, k). We refer to this case as a global changeover. On the other hand, if i = h (if
j = k), only department D; (department D) pays a setup, and this is called local changeover.
Given a sequence o, we denote as Ni(0) and Ny(o) respectively the number of setups incurred
by department D; and D,, respectively. Nj(o) and No(o) can be computed as follows. Let
6., be equal to 1 if ¢ # h and 0 otherwise, let s(o(q)) denote the shape of the ¢-th batch in
the sequence o, and let ¢(o(q)) denote its color. Then,

Bl

Ni(0) =14 Y bso(e),s(o(ar1)) (1)
qg=1
|B|-1

No(0) =1+ D Seo(q))elolg+1)) (2)
q=1
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o ,={ (D,black), (D,red), (Ared), (Aorange), o ,={ (Aorange), (A,yellow), (A,white), (A red),
(A,yellow), (A,white), (C,green), (C,red), (B,red), (C,red), (D,red), (D,black), (C,green),
(B,red), (B,blue)} (B,blue)}
sizes colors sizes colors
white white
A yellow A yellow
B orange B orange
C red C red
D blue D blue
green green
black black

b2 2:{T1:{(Alred)l (D,red)};
T,={(B,blue)};
T,={(C,green)}}

(a) (b)

2 1 ={T,={(Ared), (B,red)}; T,={(C,red), (D,red)}}

Figure 1: Optimal solutions for a sample instance, with |V;| = 4, |V5| = 7 and |E| = 10, of
MINSUM (a) and MINMAX (b).

Given a bipartite graph G = (V1, V3, E), the two objectives that have been considered can be
formally defined as follows:

MINSUM = min{N; (o) + Na(o)}.
MINMAX = min{max{N;(c), No(0)}}.

Hereinafter, where it causes no ambiguities, we refer to MINSUM (MINMAX) to denote
both the objective function and the single objective problem of minimizing MINSUM (MIN-
MAX).

It is easy to see that the objectives MINSUM and MINMAX are not equivalent. In fact,
consider the example in Figure 1, where 10 batches have to be produced, with 4 shapes and 7
colors. In Figure 1(a), o is the optimal edge sequence for MINSUM, where Ni(o)+ No(o) = 12
and max{Ni(c), No(c)} = 8. In Figure 1(b) o9 is the optimal edge sequence for MINMAX,
where Ni(o) + Ny(o) = 13 and max{N;(0), No(0)} = 7. In Figures 1(a) and 1(b) the edge
of sequences o; and o, are also specified by the numbers associated to the edges. The two
optimal solutions have been found by complete enumeration of the solution space.

It is important to observe that, good solutions respect to the two objectives can be achieved,
in general, by minimizing the number of setups in the two departments, i.e., Ni(o) and Na(0).
In fact, the two considered criteria are strongly correlated since they both depend on the values
Ni(o) and Ny(o). Nevertheless, as shown by the above example there is not a unique function
suitable to be used as scalar optimization objective. However, the correlation between the two
criteria may yield to a low-cardinality set of Pareto optimal solutions, as observed, for example,
in [26] for the bi-objective quadratic assignment problem.

In the following, a graph characterization, of the MINSUM objective is introduced. Given
a graph H = (V, E), a trail is a sequence T := (vg, g, v1, €1,Va, €2, ..., €x_1, V), Where v; € V|
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t=0,....k, e;€FE j=0,...,k—1, v; and v;;; are the endpoints of ¢;, and the edges are all
distinct. A path is a trail in which all nodes are distinct. An edge is dominated by a trail T
if it either belongs to T or it is incident to a node of T'. A dominating trail Tp is a trail such
that each edge of H is dominated by Tp. Similarly, a dominating trail set 3 is a collection
of edge-disjoint trails such that each edge of H is dominated by a trail in . A Minimum
Dominating Trail Set (M DTS) is a dominating trail set of minimum cardinality. Observe that
a dominating trail set ¥ on the bipartite graph G = (Vi, Vs, E) completely specifies a batch
schedule o. In fact the dominated edges of a trail 7" in ¥ can always be scheduled between
two consecutive edges of T' with no global changeovers (recall that, if two edges of G have one
endpoint in common, we can switch from one to the other by means of a local changeover). If G
is connected, the number of global changeovers is given by |X|. Therefore, a schedule without
global changeovers exists if and only if there is a dominating trail on G. As a consequence,
we can express MINSUM as the problem of dominating the edges of G with the minimum
number of (edge-disjoint) trails, i.e., finding a M DT'S. In Figure 1, the edge sequences o; and
oy correspond, for example, to the dominating trail sets 3; and Y, respectively. Note that,
|¥1| =2 and |%s] = 3.

Harary and Nash-Williams [18] link the problem of finding a M DT'S of H and the problem of
finding the Hamiltonian Completion Number (HCN) of the line graph L(H) of H. They show
that L(H) has a Hamiltonian path if and only if H has a dominating trail. As a consequence,
if HON(L(H)) = k then the cardinality of M DTS of H is k + 1.

3.1 Lower bounds and ideal solution

In this section, lower bounds for the MINSUM and MINMAX objectives are presented. Such
bounds can be used to obtain an ideal solution for the problem [15]. In [12], an algorithm
for computing a lower bound on the cardinality of a M DTS, and, hence, for the
MINSUM objective, is proposed. Given a general connected graph, the algorithm
is based on a series of transformations that reduces the graph to a particular
tree, with the property that the cardinality of a M DTS on the tree (that can
be computed in closed form) is a lower bound to the cardinality of a M DTS on
the original graph. Recalling that a bridge in a graph is an edge whose removal
produces a disconnected graph, the tree is generated as follows. The nodes of
the tree are obtained removing all the bridges from the graph and collapsing into
single nodes all the remaining connected components, and the edges of the tree
are the bridges in the graph.

Given an instance of bi-SC; let G = (V1, V4, E) be the associated bipartite graph. If G is
connected, let 3 be a M DTS on G. The number of global changeovers is given by [3| and an
optimal solution for MINSUM is |E|+|X|. In fact, given an edge sequence, a global changeover
occurs and two setups are paid (one in each department) for each two consecutive edges with
no endpoint in common, otherwise a local changeover occurs (one setup is paid). On the other
hand, if the graph G is not connected, then it is possible to apply the above discussion to each
connected component of G separately. The number of the global changeovers is, therefore,
given by the sum of the global changeover of each connected component.

Let LB be the lower bound of |X| computed as in [12]. A lower bound for the MINSUM
objective is then |F| + LB, and it can be improved by

max{|E| + LB, [Vi| + [Val}, (3)
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where the second term holds for sparse and disconnected graphs. In view of this observation,
it follows that a lower bound on the maximum number of setups occurring in one department
(MINMAX) is [(|E| + LB)/2]. This bound can be improved by the formula

max{[(|E] + LB)/2], [Vi],|Val}. (4)

Then, an ideal point (I P) for the bi-objective problem is the vector
(I Pyirnsunss I Paurnarax) where I Pypysua is given by Equation 3 and I Pyryarax is given by
Equation 4.

4 An algorithm for the bi — SC problem

In this section we propose a metaheuristic approach developed to tackle the b: — SC' problem.
A metaheuristic is an iterative solution procedure, combining subordinate heuristic tools into a
more sophisticated framework. Such methods cover a large family of techniques, varying from
rather simple to very sophisticated approaches [20, 14]. In particular, we consider the Iterated
Local Search (ILS) [22] metaheuristic which is a conceptually very simple metaheuristic able
to obtain state-of-the-art performance for several hard combinatorial problems [21, 7, 28].

This section is organized as follows. First, we introduce the neighborhoods for the MINSUM
and MINMAX search spaces, respectively. Next, we describe two local search procedures for
the two objectives and finally we combine these local searches in the Iterated Local Search
approach (ILS) framework.

4.1 Neighborhoods for the MINSUM objective

In this section we describe the two neighborhoods N; and N, first introduced in [11] for the
problem of finding a M DTS on a general graph H = (V, E). Given a dominating trail set
¥ on H, a neighborhood structure N (X) specifies which solutions are “close” to ¥ in some
sense. The solutions ¥/ € N (X) are called neighbors of ¥ and they can be reached from .
It is useful to introduce some notations about the structure of the dominating trail set . A
dominating trail set > has the property to partition the set of edges of H. In fact, each edge
e € E either belongs to a trail of ¥ or it is dominated by (at least) one of them. Without
loss of generality, we assume each edge dominated exactly by one trail of X, i.e., in the case
an edge is dominated by more than one trail we consider only one of them. In view of this
assumption we associate to each trail T' € 3 a sequence o(T') of edges in which subsequent
edges have always one node in common, i.e., o(T") contains the edges of the trail 7" and the
edges dominated by T'. Note that, different edge sequences can be associated to a trail 7. Each
sequence o(7T) has two ending nodes and two ending edges, referred to as left and right nodes
and edges, respectively. Let v, and e, denote the right ending node and the right ending edge,
respectively. By definition of o(7T'), the right ending edge e, = (v,,v,,) is adjacent to an edge
in the sequence o (7") sharing node v,, with it. We call right ending subsequence o,(T") of o(T)
the maximal subsequence of o(7") such that all edges in ¢,(7") contains node v,,. Obviously,
the right ending edge (v,,v,,) belongs to o,.(T). In Figure 2, the trail 7" = {(3,4),(4,6)}
and the (possible) sequence o(7T) = {(1,3),(2,3), (3,4), (4,5), (4,6), (6,7)} are reported. The
right ending node and the right ending edge are respectively 7 and (7,6) and node v,, = 6.
Then the right ending subsequence is o,.(T) = {(4,6),(6,7,)}. Given an ending subsequence
o,(T) = {e,,...,e,}, where e, is the right ending edge and e, the other terminal edge of
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the subsequence, we call right terminal subset the set of edges containing all edges in o, (7))
except the terminal edge e, i.e., E.(T) = o,(T) \ {e,}. E,(T) may contains a single edge. In
Figure 2, the right terminal subset of o,(7") = {(4,6),(6,7)} contains the single edge (4,6).
Any permutation of the edges in E,.(T), if more than one edge exists, yields a new sequence
o' (T) still representing the trail T, i.e., such that two subsequent edges in ¢’(7") have a node in
common. Similar definitions can be given when the left ending edge and the left ending node are
considered in o(7'), leading to the definitions of left ending subsequence o;(T) and left terminal
subset Ey(T), respectively. Hence, in the example of Figure 2, the left ending node and the
left ending edge are respectively 3 and (1,3) and node v,; = 3. The left ending subsequence is
a(T) ={(1,3),(2,3),(3,4)},e; = (1,3), and the left terminal subset is £,(T") = {(1,3),(2,3)}.
Note that, by permuting the edges in F;(T) a new sequence ¢'(T") still representing the trail
T is obtained, i.e., such that two subsequent edges in ¢/(7") have a node in common.
Therefore to each T' € ¥ we associate a sequence o (1) and a terminal subset S(T') = E,(T) U
Ei(T). As explained in the following, edges in S(7") can allow to link up the sequence associated
to another trail in 3.

q(T) a(T)
aT) =/(1.3),(23),(34)| (45),/(4.6),(6.7)
E(T) E(T)

Figure 2: Ending subsequences and terminal subsets.

Given a solution X, we consider the neighborhood N;(X) obtained by merging two trails
having two adjacent edges in their terminal subsets, i.e., sharing a common node. More
formally, given two trails 77 and 75, let e, € S(T1) and e, € S(Ts) be two edges sharing a
node v;. By definition, the two terminal subsets S(77) and S(73) can be sequenced in such a
way that the correspondent ending edges are e, and e, respectively. Hence, the trails 77 and
T, can be merged in a single trail leading to a decrease of the MINSUM objective function. In
Figure 3(a), a graph H is represented showing a dominating trail set ¥, containing four trails
(the bold edges). Moreover for each trail 7; the set S(7;) is indicated. Note that a node shared
by the two terminal subsets S(73) and S(7y) exists. Hence a move in the neighborhood N is
possible. In Figure 3(b) the same graph is shown after the move has been done in A, where
the trails 75 and Ty are now merged.

Given a solution X, the neighborhood N3(X) is obtained by splitting a trail into two trails
and merging them with two different pre-existent trails. More precisely, let ¥ = {7y, Ty, ...,T,}
and let us suppose that two consecutive edges e; and e;,1 in 0(71}) share a node with an element
of S(T1) and S(75), respectively. Then it is possible to split trail T into two trails and merge
them with trails 77 and T5. Clearly, after applying a move in the neighborhood N3, the
MINSUM objective function decreases by one, since three trails are rearranged in two trails.
In Figure 3(c), an example of a move in A5 applied to the graph in Figure 3(b) is shown.
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Figure 3: A move in N; and N,

In this case, trail 7} is split and merged with 73 and T;. Now we discuss neighborhoods
Ni and N; in terms of scheduling terminology. Recall that a node of the bipartite graph
represents an attribute on a department and an edge in the graph corresponds to a batch to
be produced. A trail 7; is represented by a sequence of edges (batches) o(7;) to be processed
by the manufacturing system. A trail set ¥ = {7y, 71,...,T,} can be represented by any
sequence of the trail sequences o(7}), ie., 0(X) = {o(1y),0(T1),...,0(T;)}. Hence, a move
in NV; corresponds to the insertion of a subsequence o(7;) into a specified position in o(X),
whereas a move in Ay performs two subsequence insertion operations.

4.2 Neighborhood for the MINMAX objective

In this section, a neighborhood for the MINMAX objective called Np(Y) is intro-
duced. Given a trail set X, the neighborhood N3(Y) is an insertion neighborhood
in which each neighbor of the sequence ¢(X) is simply obtained by moving a single
edge ¢; from its position in the sequence to another position. In other words, given
O'(E) = {61, €2, ... ,6i—1,€i,€i41,---,€5,€541,..., €|E\}a then a neighbor Y in NB(E) is the
sequence o(X') = {e1,e2,...,€i_1,€i41,-..,€5,€i,€j11,...,€g}. Such insertion neighbor-
hood, in general, admits O(|E|?>) possible moves, since each edge can be inserted
in O(|E|) positions. However, an efficient neighborhood pruning scheme is pro-
posed in order to reduce the computational effort of exploring Np(X). In particular,
we consider only those edges that would lead to improvements of the MINMAX objective
function.

If the edge e = (7,j) is dominated by a trail passing in ¢ (), where i (j) represents an
attribute related to department D; (D), then a local changeover is paid by the department
Dy (Dy). Given a trail set X, we restrict our attention to the edges e = (7, j) not laying on a
trail and that can be dominated by both their nodes 7 and j. More formally, we only consider
in Mg those edges e = (i, ) such that e ¢ T,, VT, € ¥, 1 €T}, and j € Ty, where T}, and T}, are
trails of X, possibly h = k. For example, if e is currently dominated by a trail 7}, passing in ¢
and another trail T}, passing in j exists, then it is possible to dominate e by the trail T} passing
in 7. Hence, e may be moved from its current position in the sequence to another position, in
such a way that it is dominated by the trail T}.

Note that a move in N does not affect the MINSUM objective function, since moving edge
e splits no trail. In fact, removing e from its current position in o(7},) does not split trail 7},
since edge e is only dominated by trail 7},. On the other hand, it is possible to suitably insert
e in o(7},) without affecting the cardinality of the set X.
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2-Neighborhood Descent (2ND)
begin
k=1
while k£ < 3 do
if k& = 1 search for a move in A
else search for a move in N,
if a move is found then apply the move
else k . =k+1
end
end

Figure 4: Algorithmic scheme of 2ND.

4.3 A Local Search algorithm for the MINSUM objective

Based on the definition of the neighborhoods N; and A, for the MINSUM objective, we
describe a fast local search procedure first introduced in [11]. In particular we implement a
2-Neighborhood Descent (2ND) algorithm, see Figure 4. The 2ND procedure falls in the well
known Variable Neighborhood Descent (VND) framework [17], when only two neighborhoods
are defined.

The heuristic performs a first-improvement exploration of the neighborhood N; until a local
minimum is reached. Once a local minimum in N is reached, moves are performed using a
first-improvement exploration of the neighborhood A5 until a new local minimum (in N53) is
reached. The 2-Neighborhood Descent procedure stops when no moves in N, are possible.
Since the 2ND accepts only strictly improving moves this algorithm converges towards a local
minimum in a small number of iterations. Recall that every improving move reduces MINSUM
objective by one. Once a local minimum in N is found the successive local search in N
produces a solution which is a local minimum for both the neighborhoods N; and N5. In fact,
the trail splitting move in N5 does not produce any new terminal subset, since no new ending
subsequences are generated. Therefore no move in A can be performed.

Neighborhoods N; and N; can be visited in the worst case O(|E|) times. At this aim,
a particular data structure is used, in which for each node we store if the node belongs to a
terminal subset and its position in the sequence. Whether an edge belongs to a terminal subset
of a trail can be checked in constant time. Once a terminal subset edge (i,7) is found, the
algorithm verifies if a terminal subset containing either 7 or j has already been found. If 7 (j)
does not belong to a terminal subset then the data structure is updated to store information on
i (j), otherwise a move in N has been found. In fact, two terminal subset sharing a common
node have been identified. Since this operation can be performed in constant time at most
O(|E|) operations are required to explore neighborhood Nj.

Neighborhood N3 can be explored in O(|E|) too. In fact, a move in N, is found when two
consecutive edges sharing a node in any terminal subset are detected. This can be done in
O(|E|) operations using the previously described data structure.
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4.4 A Local Search algorithm for the MINMAX objective

Now, we introduce a fast local search procedure called LSyrvarax, based on the neighborhood
Np(X) described in Section 4.2. The local search performs a first-improvement exploration
strategy of the neighborhood Ng(X) until a local minimum is reached.

Given a trail set 3 and an edge e that does not belong to any trail in X, a move in Ng(X)
corresponds to change the position of e in the sequence o(X). Note that, by definition of Nz(X),
this move does not modify X. In other words a move in Nz(X) does not affect the MINSUM
objective, while it may modify the MINMAX objective. In the local search LSy rnarax, a move
in N is performed only if it leads to a more balanced solution, i.e., if it causes a decrease of
the MINMAX objective. In practice, for each edge, the procedure checks if moving it leads to
an improvement of the MINMAX objective. Once a profitable edge is detected the algorithm
looks for a suitable position in the sequence. Checking whether an edge belongs to Np(X)
and where it must be inserted in the sequence can be done in constant time, by accessing a
suitable data structure, in which for each node it is stored the trail containing it (if any) and
its position in the sequence o, and for each edge it is stored its position in the sequence o and
if it belongs or not to any trail of 3. Given an edge (¢, j) it can be checked in constant time if
it does not lie on a trail of ¥. In this case (4,7) € Np(X) if the two nodes ¢ and j belong to a
trail. Hence, a move in N(X) can be performed in costant time knowing the position in the
sequence o of edge (i, j) and of nodes 7 and j. This data structure can be built in O(|E|) time
by simply scanning the trail set ¥ and the sequence o. Hence, from a computational point of
view, the neighborhood Nz(X) can be explored in O(|E|) time. Moreover, note that the order
in which the moves are performed is independent. Hence, LSy yarax requires O(|E]) time in
total.

4.5 The Iterated Local Search algorithm

The basic scheme of an Iterated Local Search is given in Figure 5. The main idea behind the
ILS is to perturbate the incumbent solution and to apply a new local search starting from the
perturbated solution. When a new local minimum is obtained, an evaluation criterion decides
whether to accept the new solution as a new incumbent solution or to discard it.

Due to the peculiar properties of the objective functions MINSUM and MINMAX of the
bi-SC problem it is possible to extend the ILS framework to tackle our bi-objective problem.
As already observed, the two objective functions (1) and (2) are correlated, since they both
depends on the setup number in the departments D; and D,. As a consequence reducing
the MINSUM objective function may also lead to a reduction of the MINMAX objective.
Moreover, as shown in Section 4.2, the local search for the MINMAX objective does not
modify the solution value of the MINSUM objective, i.e., it does not vary the cardinality
of the dominating trail set. These observations justify to design a procedure in which the
MINSUM and MINMAX local searches are performed in cascade. Moreover, since our aim
is to find a set of non-dominated solutions, i.e., the solution front, we propose a modified
acceptance criterion to store in an archive the Pareto Set, that we call Archive Better.

In the remaining of this section we describe in details all the parts of the proposed ILS
algorithm.

e As Initial Solution we consider the solution obtained by two simple greedy algorithms.
The Maximum Degree Greedy algorithm (MaxDG) and the Minimum Degree Greedy
algorithm (MinDG). At each step, the algorithm MaxDG (MinDG) identifies the node
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Iterated Local Search (ILS)
Given an initial solution
begin
Local Search
while Stopping Criterion = false do

Perturbation
Local Search
Acceptance Criterion

end

end

Figure 5: Algorithmic scheme of ILS.

i with maximum (minimum) degree d(7), and a new trail 7" is generated. The new trail
is composed of a single edge adjacent to the selected node i, and it is added to ». In
these algorithms only the edges incident to node i are considered dominated by the new
trail 7. The dominated edges are “removed” from the graph and the node degrees are
updated correspondingly. This process is repeated until all the edges of the graph are
dominated.

The Perturbation phase applies random moves to the incumbent solution. A perturbation
move splits randomly a trail. A perturbation is characterized by a parameter p € (0, 1)
called perturbation strength which indicates the maximum number of random moves that
can be applied to the incumbent solution. The actual number of perturbating moves is
randomly drawn in the [1, p * | F|] interval.

In the Local Search phase, we perform the two local search procedures previously intro-
duced. As mentioned before, the solution found by the MINMAX local search does not
affect the MINSUM solution value. Hence, first, the 2ND (Figure 4) is applied in order
to improve the MINSUM objective, and then, starting from the local minimum of MIN-
SUM, the MINMAX local search is performed, thus reducing the MINMAX objective,
without affecting the MINSUM value.

The Acceptance Criterion evaluates the new solutions generated by the local search phase
and decides whether to discard or to store them. Since our aim is to find a good approx-
imation of the Pareto front, we propose the Archive Better acceptance criterion able to
store the current solution front, i.e., the set of non-dominated solutions. In particular,
the algorithm collects in an archive all the not dominated solutions found during the
search process. When a new incumbent solution is obtained, it is compared with the so-
lutions stored in the archive. If the incumbent solution is non-dominated by any archived
solution it is added to the archive. Moreover all the solutions in the archive dominated
by the incumbent solution are removed from it, i.e., the archive is constantly updated to
store the Pareto front found so far. The subsequent iteration of the ILS starts from the
last archived solution.

The Stopping Criterion of the ILS algorithm is established in a given number of iterations
without adding a non-dominated solution to the archive. Moreover, if during the search
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process the ideal point is reached the algorithm stops. In this case the optimal Pareto
front contains only a single point.

Besides ILS, in the next section, we also evaluate a straightforward local search algorithm
(called LS) consisting of the Local Search phase of the ILS. Clearly, this procedure will obtain
only a single solution since it is a simple local search and it is not modified to deal with a
bi-objective problem.

5 Computational experiments

In this section we describe the experiments carried out to evaluate the behavior of the proposed
algorithms.

5.1 Instance description

The ILS and the LS algorithms have been tested on a set of real-life instances and two sets of
randomly generated bipartite graphs presented first in [2].

The set of real world instances (Set RW) consists of 32 instances arising in a kitchen
furniture manufacturer production line. These instances have an high density of the graph
(d > 50%), and the resulting bipartite graphs are not balanced, in fact, in Set RW department
D; has about 30 product classes (shapes), while department Dy has about 15 different classes
(colors).

The first set of randomly generated instances, denoted as Set 1, consists of balanced bipar-
tite graphs G = (Vi, Vs, E), i.e., graphs in which the sets V; and V5 have the same cardinality.
The instances in this set are generated, varying the cardinality of the node sets n = |V;| = |V4|
from 10 to 100 and the graph density from 5% to 40%. The values 10, 30, 60, 80, 100 have
been considered for n, and 5, 10, 20, 30, 40% for the density d. For each pair (n,d) a set of 20
connected instances has been generated.

The second set of instances (Set 2) consists of randomly generated bipartite graphs in which
a dominating trail does exist. In these instances N = |V;| + |V3| varies from 10 to 100 and 90
instances for each value of N are generated. Note that these graphs are not balanced, i.e., in
general |V;| # V3.

In a preliminary test phase we tuned the proposed algorithms. We tested the influence of
the initial solution and the perturbation strength p. The best configuration found for the ILS
algorithm is with maximum perturbation strength p = 0.15, the Archive Better acceptance
criterion and MinDG heuristic as initial solution. All the experiments have been performed
on a 1.5 GHz Pentium M laptop equipped with 632 MB ram, and the algorithms are coded in
standard C language.

5.2 Performance measures

Appropriate metrics must be selected in order to evaluate the behavior of an algorithm. The
literature offers different metrics to measure the performance of algorithms for multicriteria
combinatorial optimization problems. Nevertheless, no single metric is able to entirely point
out the total algorithmic performance. In what follows, the metrics adopted in this study are
reported. Clearly, these metrics should not be considered as a complete list of all the possible
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metrics. For instance, in our computational experiments, we do not consider particular tem-
poral metrics, limiting our analysis only to the computation times required by the algorithm.
Although presented in a bi-objective context, the considered metrics can be applied also in the
case with an higher number of objectives.

More in details, we measure how far the non-dominated solutions obtained by the algorithm,
i.e. the solution front (SF'), are from the ideal point (/P) known on the basis of theoretical
bounds on the objectives. We use also the concept of nadir point. A nadir point (N P) is defined
as a point characterized by worst values for each objectives. In particular, in the problem
under study, the nadir point is trivially determined as the point with NPy vsua = 2 * |E|,
and NPMINMAX = |E|
We consider a first set of measures of performance D;, Dy and D, based on the [y, ls and [
norms, respectively. Hence, we calculate

1 & SEi() = 1P 1
Dy = O e 7, ) (5)

1=

where SF;(j) is the i-th component of the j-th vector contained in SF. Note that as nadir and
ideal points limit the interval of values assumed by each objective, they are used to normalize
the measures D,,.

We adopt other two measures of performance. The first measure is given by the number
of solutions that can potentially dominate the solutions in SF', from now on we refer to this
metric as potentially dominating solutions (PDS). PDS is determined counting the potential
solution points between the I P and the SF able to strictly dominate the solutions in SF.
Note that multiple potential solutions mapping the same point are considered once. Moreover,
a potential solution point may not correspond to a real solution of the problem.

*  Objective 2

| NP

— O PDS

AR = A /A,
M A,
B A

Objectiverl
Figure 6: The potentially dominating solutions (PDJS) and the area ratio (AR).

The second measure is given by an area ratio. This metric requires to know an ideal point
(IP) and a nadir point (N P) for the problem. The ideal point and the nadir point can be
viewed as vertices of an regular polytope defining an hypervolume A;, i.e. the total area,
in the space of the objectives (a rectangle in the two objective case). The area ratio (AR)
performance measure is defined as AR = %j, where Ay indicates the dominated area between
the nadir point NP and the solution front SF', as proposed in [16]. In Figure 6, the ideal point
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[Time [ D; | D, | Dn | PDS | AR [[SF]]
[ <0.01 [ 0.0001 | 0.0001 | 0.0001 | 0.0313 | 0.9999 | 1.00 |

Table 1: Set RW: LS’s results on the real world instances.

(IP), the nadir point (NP), the solution front (SF = {SP;,SP,, SP;}) and the potentially
dominating solutions (PDJS) are shown. The dominated area A, (the dark grey area) and the
total area A; (the light grey area plus the dark grey area) are also represented in the figure.

5.3 Performance analysis

In Tables 1-3 we report on the performance of LS algorithm on the three test sets; whereas
Tables from 4 to 6 reports on the results of the ILS algorithm. Finally in Table 7 we show
a comparison between the two proposed approach. In each table, the results obtained by the
algorithms are presented taking into account the performance measures previously described.
In particular, the computation time in seconds (Time), the iterations required by the algorithm
(Iter), the average distance value of the SF from the I P for [y, Iy and [ norms (Dy, Do, D)
are shown, respectively. Moreover, we also report on the number of potentially dominating
solutions (PDS), the area ratio (AR) and the cardinality of the solution front (|]SF'|). In Tables
2 and 5 the first three columns report on the cardinality of the node sets (n = |V1| = |V4|), the
graph density d and the average number of edges in the instance set (|F|), respectively. On
the other hand Tables 3 and 6 report in the first column the total cardinality of the node set
(N = [V| + [Va)).

In Tables 1-3, the results of the LS algorithm are shown. On Set RW, the LS algorithm
is able to solve to optimality, i.e., reaching the ideal point, almost all the industrial instances.
Regarding Set 1 (Table 2) we observe that the PDS index is often smaller than 1, thus it
shows that the LS algorithm is able to provide good quality solutions close to the ideal point.
In particular, for the dense instances of Set 1 the algorithm is always able to reach the ideal
point, and consequently AR = 1 and PDS = 0. The covered area is always greater than 80%,
and the number of solutions that potentially dominate the solution found is rarely greater than
5. Considering Set 2 (Table 3) as the size of the instances grows, we observe a reduction of the
average distances (D1, Do, Dy,) and an increase of the area ratio (from 89% to 95%), due to
the normalization effect of these metrics. On the other hand, as the size of the instances grows
the PDS index grows (from 1 to 14) due to the fact the the PDS is an absolute measure and
no normalization is taken into account. Moreover we observe that the LS algorithm performs
better on Set 1 than on Set 2. As expected, |SF| = 1.00, hence the solution front always
contains only one solution. The computation times required by the LS are negligible, since
they never exceed 0.01 second. Therefore the LS algorithm is able to attain reasonable quality
solutions within very strict computation times.

In Tables 4-6, the results of the ILS are presented. Since the perturbation phase of the
ILS algorithm is random, the results of the ILS are average values related to 10 runs of the
algorithm. Also for the ILS, in Set 1 (Table 5), the sparse instances result more difficult to
solve when compared with more dense instances. In fact, the number of iterations required and
PDS values are greater, and the area ratio is smaller, when compared to the same values for
more dense instances. Regarding the computation times, we observe that rarely the algorithm
requires more than 1 second of CPU time. The area ratio AR is always greater than 98%, and
frequently the optimal Pareto front, i.e., the ideal point, is reached. The PDS value never
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1

2

3

4

5

? [(n [ d [ [E] [Time | D, [ D, | Do | PDS | AR [[SF]]
8 10 0.1 21.0 <0.01 | 0.1100 | 0.1698 | 0.1282 | 4.1000 | 0.8386 | 1.00
9 10 0.2 24.9 <0.01 | 0.1115 | 0.1645 | 0.1266 | 4.8000 | 0.8441 | 1.00
10 10 0.3 29.6 <0.01 | 0.0493 | 0.0796 | 0.0590 | 2.7500 | 0.9230 | 1.00
11 10 0.4 37.1 <0.01 | 0.0203 | 0.0302 | 0.0235 | 1.1500 | 0.9704 | 1.00
12 30 0.1 97.9 <0.01 | 0.0166 | 0.0283 | 0.0211 | 3.2500 | 0.9720 | 1.00
13 30 0.2 177.1 <0.01 | 0.0011 | 0.0014 | 0.0012 | 0.2500 | 0.9986 | 1.00
14 30 0.3 266.4 |[ <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
15 30 0.4 355.9 <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
16 60 | 0.05 | 197.1 <0.01 | 0.0165 | 0.0303 | 0.0216 | 9.0000 | 0.9700 | 1.00
17 60 0.1 360.5 <0.01 | 0.0021 | 0.0034 | 0.0025 | 1.4000 | 0.9966 | 1.00
18 60 0.2 713.7 || <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
19 60 0.3 | 1065.3 || <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
20 60 0.4 | 1418.0 || <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
21 80 [ 0.05 | 324.0 <0.01 | 0.0076 | 0.0134 | 0.0097 | 5.9500 | 0.9867 | 1.00
22 80 0.1 641.4 |[ <0.01 | 0.0008 | 0.0011 | 0.0009 | 0.7500 | 0.9989 | 1.00
23 80 0.2 | 1272.6 || <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
24 80 0.3 | 1900.0 || <0.01 | 0.0000 | 0.0000 { 0.0000 | 0.0000 | 1.0000 | 1.00
25 80 0.4 | 2529.1 || <0.01 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.00
26 100 | 0.05 | 499.5 <0.01 | 0.0035 | 0.0053 | 0.0041 | 3.3500 | 0.9947 | 1.00
27 100 | 0.1 | 1000.5 || <0.01 | 0.0002 | 0.0002 | 0.0002 [ 0.2000 | 0.9998 | 1.00
28 100 | 0.2 | 1990.6 || <0.01 | 0.0000 | 0.0000 | 0.0000 [ 0.0000 | 1.0000 | 1.00
29 100 | 0.3 | 2981.8 || <0.01 | 0.0000 | 0.0000 | 0.0000 [ 0.0000 | 1.0000 | 1.00
32 100 | 0.4 | 3959.8 || <0.01 | 0.0000 | 0.0000 | 0.0000 [ 0.0000 | 1.0000 | 1.00
gg Table 2: Set 1: LS’s results on bipartite instances.

34

35

36

37

38

39

40

41

42

43 [ N [ Time | Di | Do | Di [ PDS | AR [I[SF]

44 10 <0.01 | 0.0878 | 0.1089 | 0.0921 | 1.1461 | 0.8956 | 1.00

45 20 <0.01 | 0.0566 | 0.0784 | 0.0623 | 2.0556 | 0.9248 | 1.00

46 30 <0.01 | 0.0350 | 0.0489 | 0.0392 | 2.3333 | 0.9531 | 1.00

47 40 <0.01 | 0.0346 | 0.0501 | 0.0394 | 3.4111 | 0.9521 | 1.00

48 50 <0.01 | 0.0292 | 0.0454 | 0.0344 | 4.3667 | 0.9565 | 1.00

49 60 <0.01 | 0.0276 | 0.0438 | 0.0326 | 5.5333 | 0.9581 | 1.00

50 70 <0.01 | 0.0290 | 0.0469 | 0.0350 | 8.4111 | 0.9556 | 1.00

51 80 <0.01 | 0.3778 | 0.0434 | 0.0327 | 9.8667 | 0.9589 | 1.00

52 90 | <0.01 | 0.0271 | 0.0439 | 0.0325 | 12.3778 | 0.9585 | 1.00

gj 100 |[ <0.01 | 0.0266 | 0.0434 | 0.0322 | 14.2778 | 0.9589 | 1.00

52 Table 3: Set 2: LS’s results on instances with dominating trail.

5

57

58

59

60
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|Time|Iter| D, | Do | Do |PDS| AR ||SF||
| <0.01 | 0.28 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00 |

Table 4: Set RW: ILS’s results on the real world instances.

[(w [ d [ B [ Tme] Ttee | Dy | D, | Do [PDS| AR [ISF[]
10 0.1 21.0 <0.01 | 1016.30 | 0.0140 | 0.0169 | 0.0147 | 0.28 | 0.9834 | 1.00
10 0.2 24.9 <0.01 | 337.80 | 0.0047 | 0.0069 | 0.0052 | 0.15 | 0.9933 | 1.00
10 0.3 29.6 <0.01 25.86 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
10 0.4 37.1 <0.01 26.44 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
30 0.1 97.9 0.02 514.03 | 0.0007 | 0.0009 | 0.0007 | 0.08 | 0.9991 | 1.00
30 0.2 177.1 <0.01 11.65 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
30 0.3 266.4 <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
30 0.4 355.9 <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
60 | 0.05 | 197.1 0.44 | 1965.64 | 0.0020 | 0.0029 | 0.0022 | 0.56 | 0.9972 | 1.00
60 0.1 360.5 0.06 50.12 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
60 0.2 713.7 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
60 0.3 | 1065.3 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
60 0.4 | 1418.0 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
80 | 0.05 | 324.0 0.98 | 1145.01 | 0.0005 | 0.0007 | 0.0006 | 0.22 | 0.9993 | 1.00
80 0.1 641.4 0.54 87.49 | 0.0000 | 0.0000 | 0.0000 [ 0.00 | 1.0000 | 1.00
80 0.2 | 1272.6 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
80 0.3 | 1900.0 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
80 0.4 | 2529.1 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
100 | 0.05 | 499.5 1.54 462.26 | 0.0000 | 0.0000 | 0.0000 [ 0.01 | 1.0000 | 1.00
100 | 0.1 | 1000.5 0.07 6.37 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
100 | 0.2 | 1990.6 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
100 | 0.3 | 2981.8 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
100 | 0.4 | 3959.8 || <0.01 0.00 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00

Table 5: Set 1: ILS’s results on bipartite instances.

exceeds 1, showing that the algorithm, on average, either attains the ideal point or a solution
close to it. Also the instances of Set 2 (Table 6) are easily solved by the ILS algorithm, since
only a small number of iterations is required to solve the instance to the optimality. Besides
we observe only one case with |SF| > 1, that is for one instance more than a single solution is
stored in the archive.

The sparse instances are, in general, harder to solve compared with dense instances. When
comparing instances having same density but different size, we observe that the larger instances
seem to be easier to solve. Consider the following cases. Given a sparse and small instance
with 20 nodes and 21 edges, a node has on average only one edge adjacent to it. On the other
hand, given a large and dense instance, say with 200 nodes and 4000 edges each node has
20 adjacent edges. Hence a dense instance, even if it is larger, is easier to solve because the
algorithm has a lot of degree of freedom while building a solution. Finally we observe that the
differences between the distance values (Dy, Do, Do) are always negligible.

Table 7 summarize the behavior of the two proposed algorithms on the three considered
test sets. It turns out that both the algorithms are fast enough to solve industrial scheduling
problems in real time, and that the ILS is able to improve the solution quality found by the
basic LS requiring a small additional computation time.

Moreover, we compare our algorithms with the genetic algorithms independently proposed
in [25, 24]. In [25] different versions of this problem with general setup costs are presented and
a multi-objective genetic approach is proposed. ILS and LS outperform the genetic algorithms
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N || Time | Iter | D, | Dy | D | PDS | AR | |SF| |
10 || <0.01 | 4.33 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
20 || <0.01 | 66,55 | 0.0009 | 0.0009 | 0.0009 | 0.01 | 0.9983 | 1.01
30 || <0.01 [ 8.08 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
40 || <0.01 | 14.25 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
50 || <0.01 | 17.21 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
60 || <0.01 [ 25.48 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
70 || <0.01 | 24.75 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
80 || <0.01 | 34.53 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
90 || <0.01 | 38.44 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00
100 [ 0.02 | 79.98 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 1.0000 | 1.00

Table 6: Set 2: ILS’s results on instances with dominating trail.

LS ILS
Set | Instances || Time | PDS | AR Time | PDS | AR
RW 32 <0.01 | 0.0313 | 0.9999 || <0.01 | 0.0000 | 1.0000
1 460 <0.01 | 1.6065 | 0.9987 0.16 0.5652 | 0.9987
2 900 <0.01 | 6.3779 | 0.9472 || <0.01 | 0.0012 | 0.9998

Table 7: Comparisons between LS and ILS.

both in terms of quality and computation time. In fact, the genetic algorithms needs several
minutes to obtain a sub-optimal solution for a real world instances from Set RW, whereas
the proposed algorithms require less than 0.01 seconds to reach the ideal solution. Recently,
Mansouri [24] developed another genetic algorithm (MOGA) for the bi — SC problem. In the
computational experiments carried out on one real-world instance (Set RW) and on randomly
generated instances up to 80 nodes for each department, MOGA is able to achieve good quality
solutions in few minutes. In particular, when evaluating the performance of LS, ILS and MOGA
algorithms on comparable instances (similar to the instances of Set 1 with n = 30 and n = 80),
LS and ILS are able to solve them to the optimality requiring less than 0.5 seconds, whereas
MOGA is not able to reach the optimal solution within two minutes of computation.

6 Conclusions

In this paper, we considered a scheduling problem arising in a two—stage industrial plant with
no intermediate buffer. The problem consists in finding a batch common sequence optimizing
both the total number of setups and the maximum number of setups paid by a single stage. A
generalization of the ILS metaheuristic to the bi-objective problem is proposed for this problem,
and it is tested on a wide set of instances. Due to the particular problem structure and to
the correlation between the two objective functions the proposed approach results effective.
In fact, the computational results show the effectiveness with respect to both the quality of
the solutions and the computation times. In particular, over the 1300 considered instances,
the ILS is able to attain solutions extremely close to the theoretical bound. Future research
directions include the study of improved algorithmic schemes and the extension of the approach
to problems with a more general cost structure.
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