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Disentangling causal relationships of a manufacturing process using genetic algorithms and Six Sigma techniques.

Introduction

'Six Sigma' is a series of statistical and analytical tools utilised to ensure breakthrough improvements within defective systems [START_REF] Breyfogle | Implementing Six Sigma: Smarter Solutions using statistical Methods[END_REF]. The aim of such a methodology is not only to improve systems but to also ensure that gains made are sustained. The measurement of improvement gains are considered with specific goals / metrics that have been under investigation during a six -sigma project. However, in highly complex systems such as the semiconductor industry there are known and unknown causal relationships that exist within a production process. Therefore, it is possible that actions undertaken within a six-sigma project to improve a primary metric may have an adverse effect on several other process parameters. If causal relationships are unknown then it is difficult to differentiate whether observed process effects coincide with planned project changes or simply natural process variation. A system that can identify all direct and indirect causal relationships with a system would be beneficial in determining what processing changes are natural variation or otherwise.

An additional advantage of such a system would be aiding advanced process control (APC) [START_REF] Ohshima | Quality control of polymer production processes[END_REF][START_REF] Werner | An integrated approach to process control[END_REF]. Controversy exists around the definition of APC, whether the purpose of such a system is to provide closed loop feedback for a process / system or the implementation of artificial intelligence to control systems (iaasiaonline 2005). However, an area of research within APC is the implementation of yield prediction algorithms i.e. the ability to predict what percentage of work in progress (WIP) will be within customer specifications at the end of processing. This is a valuable asset for process planning and time to market improvements within a manufacturing environment.

Therefore, there are several advantages in implementing a system that enables the user to identify causal relationships of a manufacturing process. Primarily, it will enable the user to identify appropriate primary and secondary metrics to gauge improvements made throughout a six -sigma project. This will subsequently enable the user to identify whether a project undertaken will adversely affect additional business improvements / process changes undertaken by other personnel. This would be beneficial in co-ordinating business improvement strategies within a complex manufacturing environment. The knowledge gained by identifying both direct and indirect causal relationships between processes will be invaluable for process engineers, not only to improve on the job training but to also aid process fault detection. This will in turn facilitate the reduction of time to volume production due to process learning from previous generations of product. This paper provides an introduction to some existing business improvement techniques utilised within a manufacturing environment. Disadvantages of some of these techniques are discussed and improvement methods proposed when integrated with intelligent systems. A manufacturing case study is presented to illustrate the requirement of such a system with the implementation of the intelligent technique examined. Validation of the system with subsequent results is presented with future work and conclusions also offered. 

Business Improvement Techniques

Irrespective of the area of manufacturing, it is evident that the primary objective of a supplier is to provide a service / product with high quality in the most cost effective approach. This may take the form of out sourcing areas of their core business, or as seen in recent times, moving production facilities to cost effective areas such as Asia.

To be as cost effective as possible manufacturers must ensure that they leverage any advantage over competitors to the highest level. The most common method of achieving this is to implement business improvement techniques to identify and improve critical to customer elements of the business. Widely used techniques within manufacturing include six-sigma, lean manufacturing and the theory of constraints.

Lean Manufacturing focuses on supply chain tools (such as TQM) with the ideology that delighting the customer is essential to business efficiency and customer satisfaction can be achieved by ensuring that 'value added' activities are the core objectives of an organisation. Therefore, value added is always defined by the customer's perspective, i.e. what would the customer be prepared to pay for? Thus understanding the customer's needs is a prerequisite of implementing lean practices.

A definition of a Lean Manufacturing unit is, 'A group of individuals, functions, and sometimes legally separate but operationally synchronised organisations.'

The main objectives of these lean 'synchronised organisations' are to identify the 'value' to the customer and ensure that anything that does not effect customer satisfaction is eliminated from the organisation. The expected results are fewer defects, while producing a greater and ever growing variety of products.

An additional improvement technique is the theory of constraints. In a sense Lean Manufacturing is connected to the theory of constraints in the same way that the vision of the respective techniques is to reduce the 'critical to quality' aspects of an organisation to an acceptable level. Whereas the theory of constraints strives to rectify conflicting situations within an organisation, lean manufacturing tools' main driving criterion is customer satisfaction. Theory of Constraints is a management philosophy, introduced by Dr. E.M Goldratt [START_REF] Kusiak | Intelligent Manufacturing Systems[END_REF]) with the aim of achieving specific goals. It is based predominantly within the manufacturing environment and aims within this area to reduce inventory and operating expenses and thus increase productivity.

The final and primary improvement technique under investigation within this paper is the six-sigma methodology (isixsigma 2005). Six-sigma, as it is widely referred to, has been relatively controversial over the past number of years [START_REF] Flott | Six Sigma Controversy[END_REF] as it as not created any new analytical / statistical techniques, rather being a methodology / roadmap for analysis and tool usage to achieve a specific goal. As a methodology it uses problem-solving tools to eradicate system defects [START_REF] Pande | The six sigma way. An implementation guide for process improvement teams[END_REF]. The primary objective of the technique is to eradicate 99.99% of system defects or to achieve what is known as a "6 sigma" process. Six-sigma differs from conventional manufacturing techniques that are historically reactive processes, i.e. conventional processing monitors system outputs and reacts to any out of control processing e.g. defective material. However the six-sigma methodology identifies the key input variables (KPIV) of a process and subsequently controls them therefore ensuring that the process outputs will also remain in 'control'. This makes six-sigma a more proactive method of manufacturing control. The advantages of implementing a six-sigma strategy have already been demonstrated in a range of manufacturing environment [START_REF] Tong | A DMAIC approach to printed circuit board quality improvement[END_REF]. Figure 1 summarises the flow of this strategy when following the six-sigma approach. The theory of using such a strategy is to focus on the key process variables (KPIV) contributing to a defective process and reduce these to critical KPIV's that will enable a controlled process to be sustained. The philosophy behind such a process is that a defective system may have in excess of 30 or 40 input variables contributing to a process with the objective of reducing this throughout a series of project phases.

The measure phase of a project is labour intensive and uses tools such as process mapping, cause and effect tools [START_REF] Pande | The six sigma way. An implementation guide for process improvement teams[END_REF] etc. to gather collective process knowledge for a defective system. The 'Analyse' phase uses the conclusions or KPIV's identified from the measure phase to initiate investigation as to which (if any) of the process variables make a significant contribution to the project metric (key process output variable). Once KPIV's have been improved it is necessary to ensure that any project gains made are sustained. This is the primary objective of the control A critical element of any six-sigma project implementation is the 'Define' phase of a project. This is the primary step enabling the user to determine the scope of the project and identify a suitable charter that will enable successful completion of a project. Primary metrics are defined that will enable the project leader to gauge the success of each phase, while secondary metrics are identified to ensure adverse affects are not seen throughout project improvements. It is these metric selections that are critical to not only project success but also manufacturing stability.

Case Study

The process of metric selection for a six-sigma project can often be trivialised. It is relatively simple to identify a primary metric for a project as this is the gauge for project success and therefore the 'defect' that the engineer is seeking to improve.

However, secondary metrics are often misunderstood and not given due attention as they are not directly related to project success. The purpose of secondary metrics is to ensure that adverse process effects do not arise from project implementation. Therefore, it is advantageous to know causal relationships between the process under change and other processes within the facility. Doing so will enable the disentangling of effects of a six sigma project by identifying which process changes are due to natural process variation and which are due to project implementation. As figure 2 illustrates a manufacturing process is a sequential number of steps (total N) that change a number of raw materials to a final product. It should be noted however that sequential processing does not necessarily mean that each sequential process has causal relationships. For example process step 4 may have a direct causal relationship to process step 1. In addition, indirect causal relationships may exist which need to be identified to fully understand process associations, i.e. Process step 4 may not have a direct relationship to process step 1; however, process step 4 has a direct relationship to process step 2 that in turn has a direct relationship to process step 1. Therefore, an indirect causal relationship between process step 4 and process step 1 exists that was previously unknown.

The manufacturing environment described within this study is the construction of hard disk drives (HDD). This is a highly complex semi-conductor processing environment, spanning multiple countries to manufacture and assemble HDD components. These components consist of, but are not limited to, magnetic media, head gimble assembly and a magneto resistive element (figure 3). It is the magneto resistive or read write element which is under investigation for this study. The manufacturing of the magneto resistive element is a complex series of operations to manufacture (in simplex terms) a horseshoe magnet as shown in figure 4 that enables the reading and writing of digital bits to the magnetic media.

[INSERT FIGURE 3 ABOUT HERE]

[INSERT FIGURE 4 ABOUT HERE]

Depending on the technology used, manufacturing can be a series of over 500 processing steps. This provides the possibility for a vast number of operations that may have both direct and indirect relationships with each other. It is relatively straightforward to determine whether there is a direct relationship between certain operations. A specific tool that can be used for such analysis is regression. This is a common tool used within six-sigma implementation to determine initially if a significant relationship exists between variables under investigation and secondly to construct a model to explain this relationship. i.e. Y = f(X) where Y is a function of X. [START_REF] Kiemele | Basic statistics. Tools for continuous improvement[END_REF]. The most common method of regression is simple linear regression. Supposing that the relationship between Y and x is a straight line then the model can be denoted by equation 1. Where the intercept B0 and slope B1 are unknown regression coefficients. The subsequent regression model can be described by equation 2.

(2

)
Where e is an unknown error coefficient for each expected observation. Therefore, providing deviation from the estimated regression line. These errors have an adverse effect on the measure or strength of the relationship established by the model. This measure is given by a correlation coefficient or R The higher the correlation coefficient, the stronger the relationship between the variables under investigation.

For example an R value of 0.75 demonstrates that the regression model can explain 75% of the variation between the variables in the study. Therefore 25% of the variation is still unexplained [START_REF] Montgomery | Applied statistics and probability for engineers[END_REF] It is this method that is utilised to identify if causal relationships exist between various processing steps.

System Implementation

The manufacturing of RW heads is a complex combination of both physical changing operations and metrology steps to ensure processing is within customer specification.

Each of these metrology steps can report multiple parameters, thus providing the opportunity for a vast number of variables for investigation. In fact this study has approx 450 variables to examine. It would be an extremely laborious to manually extract and analyse data for each of these processing steps and subsequent parameters. Therefore, a software program was designed to control data extraction and analysis.

[ INSERT FIGURE 5 ABOUT HERE] This processing flow was designed to ensure all up to date data was extracted for current product types and therefore remain generic and self-updating. The system would identify the product type under investigation and determine the processing flow, similar to figure 5 for that product type. In addition all parameters for every processing step are obtained; this provides a matrix similar to table 1. Each lot that has completed production has its data queried from each appropriate database for each required parameter and the values entered into table 1. The results stored in Table 1 are then used to calculate the correlation coefficient (R).

These values are then constructed in a table similar to table 2. The statistical analysis for constructing this matrix is integrated within the software and is fully automated.

Simple linear regression is utilised to compute the R values for each parameter combination and subsequently modelled within the software application (3).

(

) It is possible to 'eyeball' table 2 for strong relationships between parameters as there are a minimal number of entries. However, this matrix was in excess of 1500 rows and columns to accommodate all parameter relationships. This is a vast array to scrutinize, therefore a system needed to be developed to extract causal relationship data from the matrices.
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There are several methods of achieving this. One method is to utilise data mining techniques to extract knowledge from a data set based on patterns within the data [START_REF] Subramaniam | Job Shop scheduling with Dynamic fuzzy selection of dispatching rules[END_REF]. This has proven to be a useful technique in obtaining useful information from such problems with large quantities of data such as genetic algorithm matrices [START_REF] Koonce | Using data mining to find patterns in genetic algorithm solutions to a job shop schedule[END_REF]. An additional technique that may be implemented is the use of dynamic programming. Dynamic programming is a method of obtaining an optimal solution to a problem based on mathematical rules (programming) [START_REF] Chentsov | The Dynamic Programming Method in the Generalized Traveling Salesman Problem[END_REF]). An example often used to describe this technique is the travelling salesperson, where the salesperson must visit a number of cities once while optimising his travelling distance. Once again the data is presented in a matrix similar to table 2 and therefore this is appropriate for a dynamic programming application. This would enable the software to derive a causal relationship path through the matrix to identify direct and indirect associations. However, the technique utilised within this paper to identify these relationships is genetic algorithms (GA). GA systems evaluate a population of chromosomes or solutions to a known standard in order to obtain an optimal solution. This is one advantage that GA had over dynamic programming for this study.

Dynamic programming must assume that as future processing R values are unknown the average expected value must be the benchmark for optimisation. With a normal distribution the average R value will be 0.5. This is an unacceptable value for a good correlation. Therefore, an optimal R value of 0.7 must be the benchmark for successful solutions. GAs can evaluate solutions against this value. Therefore, this target was used to construct the fitness function as shown below. The engineer will determine the parameter to which the causal relationships are to be investigated. This will be presented to the software to enable effective evaluation of the fitness function above. It is evident that there will be several desirable solutions within the result matrix (table 2). Therefore, the result matrix is presented to the GA on multiple occasions to ensure that all the optimum solutions are determined. These optimum solutions are also utilised within the fitness function (equation 3). During every generation each solution within the GA population is evaluated against previously established solutions ( 1B ). This is to ensure that new solutions are created from each run of the GA. The process engineer must evaluate each converged solution to determine whether the R values within the solution are acceptable. If the solution is acceptable it is added to the best solution matrix and the GA is re-run, otherwise the GA has revealed all relevant solutions. For example if a solution 78, 56, 32, 17 is established with respective R values of 0.9, 0.87, 0.76 then this solution is acceptable.

If the solution R values are 0.9, 0.3, 0.23 then the solution is deemed unacceptable and the GA has completed convergence on all optimal solutions. 

Results

The GA was constructed using MATLAB in conjunction with the GEATBX genetic algorithm toolbox (GA toolbox 2005). The initial population size was set at 50 chromosomes; the user however initialised the chromosome length i.e. Chromosome length is dependant on the process step under investigation.

The fitness of each solution was evaluated with respect to optimum R values for each relationship. Each solution is initially evaluated to ensure that the first gene of each chromosome represents the processing step under investigation. If not the solution is penalised accordingly. The penalty factors utilised within the evaluation were based on the importance of the evaluation to the overall fitness of the solution.

For example if the first gene of the chromosome did not match the parameter under investigation ( 1 P ) it was penalised more than if the solution did not maximise the number of genes in the optimum solution ( 1 N ). The purpose of each evolution is to converge on an optimal path through a series of processing steps. Therefore, each solution is evaluated to determine if the succeeding gene of a chromosome is a subsequent process step. This is not possible and the solution must be penalised. In addition to ensuring that solutions tend towards the beginning of the manufacturing process, the GA must ensure that optimal relationships are established. Therefore, relationships were penalised for poor R; this was exponentially weighted as the value tended to zero, (Figure 6) i.e. to aid convergence towards solutions with desirable R values > 70%. Again, each solution would be penalised if this were not the case. It is evident with a large number of processing steps under investigation that there will be a number of optimal solutions. This is illustrated in figure 7, which highlights several causal paths discovered. Each number in figure 7 represents a process step / parameter identified by the GA as having a strong correlation to subsequent process steps on the chain, i.e. Process step 64 correlates to process step 62 which correlates to step 60 etc.

[ Previous studies conducted by the author [START_REF] Johnston | Using business improvement techniques to inform the optimisation of production cycle time: an industrial case study[END_REF]) have informed the choice of parameters used to develop the GA (Table 5). The remainder of GA parameters were set to the default, as defined by the GA toolbox (GA Toolbox parameters 2005).

[INSERT The regression matrix was subsequently presented to the GA for investigation, a convergence path can be seen in Figure 8. The parameter to have its causal relationships investigated was unknown to the author; therefore experiential process knowledge could not be attributed to identifying known causal relationships.

A function for developing a system such as this was to aid in the successful selection of primary and secondary metrics of a six-sigma project. Therefore, a project was identified that had been successfully completed to determine if the correct metrics had been identified. 

System Validation

A six-sigma project was investigated within a read write head-processing environment to highlight the effectiveness of this system. The project in question was established to improve downstream yield when the read write head is attached to the gimble arm (Figure 3). The primary metric for the project was inevitably gimble arm assembly yield. The secondary metrics were chosen as transactional type metrics e.g. to ensure that process cycle time does not increase. The head gimble assembly plant is a separate production facility to the read write head plant. Therefore, the engineer had chosen to focus on metrics external to their sphere of influence / control. The engineer subsequently implemented the six-sigma roadmap to identify the key process input variables that would require controlling to improve assembly yields. In summary the engineer identified an in-house electrical test that could be utilised to aid prediction of gimble assembly yields. Figure 4 illustrates a simplistic magnetic element model. Obviously this element produces magnetic flux, subsequently the reading element of the head changes resistance when presented with magnetic flux. Therefore, the two elements must be isolated from one another to function appropriately. The engineer identified a machine recipe in this 'isolation' process that was contributing to process defects and therefore impacted downstream yields. This tool was subsequently rectified and the downstream yields improved by 6.7%. The project was deemed successful, as the primary metric had been improved while the secondary metric had not been adversely affected.

Several weeks later another unrelated read / write head process yield declined, causing considerable process downtime and factory yield impact. Several weeks' investigation ensued that subsequently highlighted that the process improvements made through the six-sigma project had an adverse affect on additional processing steps. Engineers were unaware that a relationship existed between these operations.

The GA results were reviewed to determine if this relationship had been identified by the system developed within this study. Figure 9 illustrates the causal relationships identified from multiple implementations of the GA, i.e. process step 45 correlates to process step 43 which subsequently correlates to 32 etc. 

NB (Due to data table query, parameter 1 represents the last process step parameter)

Process step number 45 represents the primary metric as stipulated by the six-sigma project. Four relationship paths were identified from the R matrix. The number of passes that the GA was presented with the R matrix was determined by the correlation coefficient values attributed to the last converged relationship path run. For example the 5 th GA pass produced a solution of processing steps 45, 43 and 19. The R value for the 45 43 relationship was 0.999. However, the R value for the 43 19 relationship is -0.1318, a very week correlation.

In addition the GA took longer to converge to an optimal solution on each pass through the result matrix. The second GA run converged during the 127 th generation (Figure 10). However, the primary pass of the GA converged to an optimal solution during the 53 rd generation. It was not until the third solution that the GA discovered a relationship that would identify parameter 11 as a KPIV. Parameter 11 represents the unknown parameter not identified by the engineer as a KPIV that later resulted in adverse changes to the manufacturing process. The initial design of the GA had a population of 50 chromosomes. However it was determined that such a small sample size did not provide adequate variation between chromosomes to converge to an optimal solution. (NB investigating process parameter 45 has the possibility of 45 45 = 74 48 . 2 e results, a chromosome of 45 genes in length with each gene between 1 and 45.) The GA population was therefore increased in size to 200 chromosomes. In addition to this the number of generations the GA would run was set to 500 with a high mutation rate. This would provide adequate confidence that the GA had converged on an optimal solution while using an elitist selection scheme. While implementing this system it became evident to the authors that another 'real life' problem may benefit from this method. The causal knowledge obtained by this system may be used to train inexperienced process personnel, however, the author identified that the information may be utilised to aid experienced engineers in process fault detection.

For example a yield parameter is a metric of how well a process is performing, i.e. a process yield of 90% stipulates that 90% of material in production is within customer specification. The longer material is along the process line the larger the impact a scrap event will have on both the process line yield and process planning.

A large scrap event did occur within the manufacturing line which had an adverse effect on process line yield that reduced from > 70% to approximately 50%. This had a major impact on process planning and required rapid action to improve process yields. Due to time constraints a six-sigma project could not be implemented to run trials, analyse data etc. Therefore, the process engineer ran the software to populate the R matrix to determine the causal relationships for the parameter impacted (parameter 386). Table 7 illustrates the results obtained by the GA.

[INSERT TABLE 7 ABOUT HERE]

The results obtained from the GA enabled various process engineers to perform additional analysis on the process steps identified. This enabled the root cause analysis into which processes were contributing to the yield impact. It was determined that there were a number of parameters responsible with one of the processes (parameter 22) being at the beginning of the product build. Therefore, controlling this process ensures that defective product is detected at the beginning rather than near the end of the process. It also ensures that engineers will be aware whether their processes may contribute to a potential yield impact and therefore be proactive in error proofing their processes.

Additional Advantages of causal knowledge system.

The vision of the six-sigma methodology is to obtain a defect free system. An advantage of obtaining such a manufacturing system is the ability to minimise process variation and therefore improve the possibility of constructing predictive models. The benefit of such a model will aid manufacturing efficiency by predicting how a product may perform later processing stage. Defective product maybe removed from production planning schedules early, thus improving manufacturing predictability and striving towards a 'controlled' system and the six sigma vision. This will ensure time to market; time to volume and customer satisfaction is achieved with vast financial leverage.

A recent development in manufacturing predictive systems is the area of yield prediction. Therefore, enabling an engineer to determine what quantity of a product will conform to customer specifications at the final stages of production. The causal system developed in this study could be utilised to provide a yield predictor by identifying the causal relationships coupled with the outgoing quality test for a given manufacturing process. The parameters discovered may be used to develop a predictive model of outgoing product yield / quality. An additional advantage of developing a causal system is an extension of the primary target for implementing this application. For instance, identifying causal relationships between operations would be effective in training inexperienced engineers to understand how processing steps under their control may affect other processes. This knowledge is normally gained through experience, however a high level of engineering inaccuracies can be accounted to inexperience and lack of appropriate training. This system would aid this knowledge acquisition significantly.

Conclusion and Further Work

This paper has reported on the integration of six sigma business improvement techniques and intelligent systems to improve manufacturing efficiency and planning.

Business improvement techniques are utilised to eradicate defects from a system, however, this paper has shown that ill informed decisions made when identifying metrics can lead to adverse effects on manufacturing. The research highlights that intelligent systems may be successfully used to identify appropriate metrics to gauge project success. Therefore understanding whether process shifts are due to project improvements or natural process variation. The system analysis will identify where process relationships exist between parameters. However, it will not identify to what extent parameters variables will change one another. The data should be used as an aid to process control / fault detection.

The regression models within this study are based on simple linear regression techniques. However, it may be possible that more complex process relationships exist. Therefore, it may be possible to expand the system to determine higher order or polynomial relationships within the system. Additional complexity may also be accounted for by using hybrid technology with the integration of neural networks (NN) with a genetic algorithm. This would enable the NN to model the relationships identified by the regression analysis. This however, would require a large amount of networks for a system as complex as the one reported in this paper.

In addition, the system in this study uses regression models to identify relationships between continuous variables. The system may also be expanded by identifying if differences exist between processing tools of processes with strong relationships. In addition the strength of these relationships can be verified. For example figure 11 illustrates a regression model demonstrating a strong relationship. This however, is forced due to the binomial population that is created by one processing tool producing different measurement values than the other. It is evident that tool A is producing different product than tool B; this has therefore produced a strong regression model with a R value of 0.81. However, it is apparent that this is not an appropriate prediction model. This is a failing of regression modelling that unless models are reviewed graphically then the user must assume the R value is correct. A method of testing for this would be to use an additional statistical tool such as ANOVA [START_REF] Montgomery | Applied statistics and probability for engineers[END_REF] to determine if a statistical difference exists between processing tools with strong causal relationships.

Additional improvements may also be made with the functionality of the system. For example at present the system is updated as and when the process engineer deems necessary. However, the system could be dynamic by updating the R matrix as wafers are shipped or finished overall processing. The implementation of the GA however would remain under engineering control to enable validation of causal relationships identified etc. 
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The subsequent R values that correspond to each of the causal paths of the solutions determined by the GA are shown in table 4. These values were examined by the process engineer to ensure each solution was acceptable. It should be noted that the average R value for each solution decreased with each run of the GA.

TABLE 5

 5 Table6illustrates a sample of the regression matrix obtained from the application. R
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  Table 4 Optimal solution R matrix

	Generation						Process Step	Average R
	1	45	43	10		9		6	3
			0.999	-0.48702 0.96686 0.95264 -0.60397	0.801898
	2	45	43	38	37 Parameter	1	Value
	3 4	0.999 43 Data Type 45 0.999 Mutation Algorithm 0.47863 0.94171 0.61722 32 19 18 -0.5384 0.6077 0.61053 0.96133 8 45 43 32 19 11 10 Selection Algorithm	Integer Integer Mutation 6 3 Truncation Selection	0.75914 0.743392
		0.999 Recombination Algorithm -0.5384	0.6077	-0.45098 0.96595 0.91621 -0.60397 Single Point Crossover	0.712406
	R Sq	Generation Gap Selection Pressure				0.9 * 1 **
		Migration Rate (per 20 Generations
		F o r F o r F o r				
			P P P			
			e e e		
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	Process								
	Step /									
	Parameter	1	2	3	4	5	6	7	8	9
	1			-0.02 0.02 0.06 0.28 -0.22 0.00 0.14 0.08
	2		-0.02		-0.63 -0.13 0.16 0.08 0.00 -0.06 0.32
	3		0.02 -0.63		-0.09 -0.02 -0.11 0.00 -0.01 -0.29
	4		0.06 -0.13 -0.09		-0.19 -0.05 0.00 -0.11 -0.11
	5		0.28 0.16 -0.02 -0.19		-0.16 0.00 0.17 0.19
	6		-0.22 0.08 -0.11 -0.05 -0.16		0.00 0.18 0.74
	7 8 F 9 10 o 11 r 0.00 0.00 0.00 0.00 0.00 0.00 0.14 -0.06 -0.01 -0.11 0.17 0.18 0.00 0.08 0.32 -0.29 -0.11 0.19 0.74 0.00 -0.06 0.00 0.00 -0.06 0.04 0.25 -0.26 -0.07 0.11 0.80 0.00 -0.04 0.97 0.08 0.31 -0.29 -0.09 0.19 0.74 0.00 -0.06 1.00 12 0.18 -0.04 -0.04 -0.15 0.15 0.08 0.00 0.97 -0.13
	13	P -0.29 0.05 0.07 -0.42 0.17 0.25 0.00 0.38 0.12
			e						
			e r					
				R				
					e				
						v i e		
							w		
								O n l
										y
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  Table 7 Yield Impact Causal relationships

											Page 44 of 44
	Generation				Process Step				Average R
	1	386	318	211	202	169	167	165	140	10
			0.54	0.7738	0.6516	-0.6055	0.7749	0.9989	-0.727	0.5703	0.70525
	2	386	366	306	301	289	58	57	56	55
			0.6154	-0.8188	0.9762	0.5594	0.5441	-0.9041	0.7132	0.626	0.66965
	3	386	385	265	261	200	138	84	83	81
			-0.4227	-0.4226	-0.9173	0.5253	0.4129	-0.4847	-0.9976	-0.9316 0.6393375
	4	386	318	303	138	84	79	78	22	
			0.54	-0.6737	-0.657	-0.4847	-0.68	-0.6834	-0.5493		0.6097286
	5	386	385	261	200	199	198	67	38	37
			-0.4227	0.3379	0.5253	0.4597	0.6496	0.5293	-0.4243	0.9997	0.5435625
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