
HAL Id: hal-00512984
https://hal.science/hal-00512984

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capacity and material requirement planning modelling
by comparing deterministic and fuzzy models

J Mula, R Poler, José Pedro Garcia-Sabater

To cite this version:
J Mula, R Poler, José Pedro Garcia-Sabater. Capacity and material requirement planning modelling
by comparing deterministic and fuzzy models. International Journal of Production Research, 2008,
46 (20), pp.5589-5606. �10.1080/00207540701413912�. �hal-00512984�

https://hal.science/hal-00512984
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Capacity and material requirement planning modelling by 

comparing deterministic and fuzzy models 
 
 

Journal: International Journal of Production Research 

Manuscript ID: TPRS-2007-IJPR-0229.R1 

Manuscript Type: Original Manuscript 

Date Submitted by the 
Author: 

13-Apr-2007 

Complete List of Authors: Mula, J; Polytechnic University of Valencia, Business Management 
Poler, R; Polytechnic University of Valencia, Business Management 
Garcia-Sabater, José; Polytechnic University of Valencia, Business 
Management 

Keywords: PRODUCTION PLANNING, FUZZY METHODS 

Keywords (user): Possibility theory, uncertainty modelling 

  
 
 

 

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research



For Peer Review
 O

nly

 

  1 

Capacity and material requirement planning modelling by comparing 

deterministic and fuzzy models
∗∗

 

 
J. Mula

1∗
, R. Poler

1
, J.P. Garcia-Sabater

2
 

 

1
CIGIP (Research Centre on Production Management and Engineering),  

Polytechnic University of Valencia, Spain 
2
Business Management Department. Polytechnic University of Valencia, SPAIN 

 

 
 

Summary 

A model for the capacity and material requirement planning problem with uncertainty in a multi-product, multi-level and 

multi-period manufacturing environment is proposed. An optimization model is formulated which takes into account the 

uncertainty that exists in both the market demand and capacity data, and the uncertain costs for backlog. This work uses the 

concept of possibilistic programming by comparing trapezoidal fuzzy numbers. Such an approach makes it possible to model 

the ambiguity in market demand, capacity data, cost information, etc. that could be present in production planning systems. 

The main goal is to determine the master production schedule, stock levels, backlog, and capacity usage levels over a given 

planning horizon in such a way as to hedge against the uncertainty. Finally, the fuzzy model and the deterministic model 

adopted as the basis of this work are compared using real data from an automobile seat manufacturer. The paper concludes 

that fuzzy numbers could improve the solution of production planning problems.   

 
Keywords: Production planning, Uncertainty modelling, Fuzzy methods, Possibility theory. 
 

 

1 Introduction 

Many possible forms of uncertainty could be present in the decision environment of a production 

planning system such as market demand, capacity data, cost information, etc. The consideration of 

uncertainty in manufacturing systems means a great advance, in terms of describing reality, but it 

may pose problems for solving the model. Models for production planning which do not recognize 
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uncertainty can be expected to generate inferior planning decisions as compared to models which 

explicitly take into account uncertainty. Over the years, many researches and applications aimed to 

formalize the uncertainty in production planning systems. Mula et al. (2006b) review some of the 

existing literature (82 citations from 1983 to 2004) about uncertainty modelling in production 

planning problems. 

Different stochastic modelling techniques based on probability distributions have been 

successfully applied to production planning problems with randomness, which comes from the 

random nature of events, and deals with uncertainty regarding membership or non-membership of 

an element in a set. Stochastic programming is appropriate if parameters are given as random 

variables. Bitran and Yanasse (1984) propose deterministic approximations to a non-sequential 

capacity planning model and analyze its effectiveness when the demand is characterized by 

standard probability distributions. Paraskevopoulos et al. (1991) use a robust approach to solve a 

production capacity planning problem with a stochastic demand. Escudero et al. (1993) analyze 

different modelling approaches for the production and capacity problem using stochastic 

programming. Gfrerer and Zäpfel (1995) present a multi-period hierarchical production planning 

model with two planning levels, i.e. aggregate and detailed, and with uncertain demand. Kira et al. 

(1997) propose a hierarchical approach to model the multi-period and multi-product production 

programming problem with a finite set of demands through stochastic linear programming. Gupta 

and Maranas (2003) and Sodhi (2005) address the problem of supply chain production planning 

under demand uncertainty using a stochastic programming based approach.  

When considering uncertainty in models, some difficulties can arise to estimate parameters such 

as high cost in acquiring data information and lack of statistical observations. Since sufficient data 

are not always available for predicting uncertain parameters, the choice of the fuzzy set theory is 

more logical and convincing for the expression of the uncertainty by the expert knowledge. Also, 

probability distributions derived from evidences recorded in the past are not always reliable 

because of market changes, which influence demand or backlog costs, or technological innovation, 

which in turn has an influence on capacity data. In such situations, the fuzzy set theory has been 
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used to model systems that are difficult to define accurately (Bellman and Zadeh, 1970; Dubois and 

Prade, 1980; Zimmermann, 1996). This theory represents an attractive tool to support the 

production planning research when the dynamics of the manufacturing environment limits the 

specification of the model objectives, constraints and parameters. Guiffrida and Nagi (1998) provide 

an exhaustive literature survey on the fuzzy set theory applications in production management 

research.  

It is necessary to distinguish between the fuzziness or flexibility in constraints and goals and the 

uncertainty of the data or epistemic uncertainty. Flexibility is modelled by fuzzy sets and may reflect 

the fact that constraints or goals are linguistically formulated; their satisfaction is a matter of 

tolerance and degrees, or fuzziness (Bellman and Zadeh, 1970). Epistemic uncertainty is 

concerned with ill-known parameters modelled by fuzzy intervals in the possibility theory setting 

(Zadeh 1978; Dubois and Prade 1988).  

A few research works have been carried out in the area of fuzzy production planning. Some 

applications of flexible programming in production planning problems can be found in Miller et al. 

(1997), Pendharkar (1997), Itoh et al. (2003), Melian and Verdegay (2005) and Mula et al. (2006a). 

Other applications of possibilistic programming in production planning problems can be found in 

Gen et al. (1992), Inuiguchi et al. (1994), Hsu and Wang (2001), Wang and Fang (2001), Lodwick 

and Bachman (2005) and Wang and Liang (2005). 

With the aim to demonstrate the usefulness and significance of the fuzzy programming, in this 

paper a possibilistic approach is applied to a capacity and material requirement planning problem 

with uncertain data. The main contribution of this paper is that it shows an example where fuzzy 

numbers could improve the solution. This work uses a fuzzy linear programming approach based on 

the possibility theory to generate an optimal fuzzy solution. In this context, the survey works by 

Kacprzyk and Orlovsky (1987), Delgado et al. (1994), Rommelfanger (1996) and Zimmermann 

(2000) show some possibilities of how the fuzzy set theory can be accommodated within linear 

programming. 
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This paper is arranged as follows: firstly in Section 2, we present a linear programming (LP) 

model for production planning with a deterministic structure. In Section 3, the LP model is 

transformed into a fuzzy model for production planning with uncertain data. Section 4 uses a real-

world application to illustrate the potential savings which can be attained by using fuzzy models in a 

fuzzy decision-making environment. Section 5 offers some conclusions. 

2 Formulation of the linear programming model 

This linear programming (LP) model, originally proposed by Mula et al. (2006a), is adopted as 

the basis of this work. It is a model for the optimization of the production planning problem in a 

capacity constrained, multi-product, multi-level and multi-period manufacturing environment. The LP 

model is formulated as follows.  

Decision variables and parameters for the model are defined in Table 1. 

 
 

Table 1. Decision variables and model parameters. 
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0,,,, ≥ititititit TovTunBINVTP , i = 1,…,I, r = 1,…,R, t = 1,…,T                                  (5) 

 
Equation (1) shows the total costs to be minimized: the costs of the inventories cii, the costs of 

the extra time used by resources, ctovrt, and the costs of the idle time of resources, ctunrt. The LP 

model includes a plan to satisfy the backlogs penalized with a cost, cbi. It is assumed that this cost 

is linear to the number of backlogs in every period. 
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The balance equations for the inventory are given by the group of constraints (2). These 

equations take into account the backlogs which behave as a negative inventory. It is important to 

highlight the consideration of parameter SRit that guarantees the continuity of the production plan 

throughout the successive runs carried out during a given planning horizon.  

Production in each period is limited by the availability of a group of shared resources. Equation 

(3) considers the capacity limits of these resources. This equation has been thought in a similar way 

to the model proposed by Billington et al. (1983), although the fixed costs/setup times have been 

ignored since we are performing an aggregate production planning. The decision variables Tunrt and 

Tovrt are not limited by any established parameter but are penalized with the corresponding costs in 

the objective function. This is to provide the model with the best generality possible. The constraint 

of these variables for specific applications could be easily considered taking into account that if 

those constraints are exceeded, the solution of the model might not be feasible. 

A constraint has also been added (4) to finish the backlogs in the last period, T, of the planning 

horizon. 

The model also contemplates the non negativity constraints (5) for the decision variables. 

Finally, the decision variables Pit, INVTit and Bit will be defined as continuous or integer variables, 

depending on the manufacturing environment where the model is applied. 

The LP model includes a small number of constraints with the objective of providing a model that 

is as generic as possible. Other types of more specific constraints from the manufacturing 

environment where the model is applied can be easily added, such as, alternative production 

processes for some products, recruiting variables and manpower discharges for resources planning 

and production, overtime or stock levels, etc. Some of these constraints are included in the model 

proposed by Escudero (1994).   

The solution that satisfies the constraints and minimizes the objectives specified previously 

should be used dynamically, i.e. only decisions related to the first periods of the planning horizon 

will be executed. Then, when new information on demand, availability of resources, bill of materials, 

lead times, costs, etc. arrive; the model should be upgraded and re-executed.  
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3 A possibilistic programming approach 

When the backlog costs, the market demand, the required capacity or the available capacity are 

uncertain data for the planner, the deterministic model becomes insufficient to describe the situation 

and we try to model and solve the mid-term production planning problem with a possibilistic 

programming approach. 

This model adopts the fuzzy numbers comparison approach proposed by Negi and Lee (1993). 

The authors use the concept of possibilistic programming to compare fuzzy numbers and overcome 

the difficulties to obtain the possibility distribution due to the non-linearity by assuming a level of 

attainment of the possibility. Therefore the problem becomes linear. 

We consider fuzzy technological coefficients, fuzzy cost coefficients and fuzzy right-hand-side 

numbers represented by a trapezoidal fuzzy number (TrFN), although different types of fuzzy 

numbers might be used. 

A TrFN, b �, is defined as follows, },,,{
~

21 bbbbb = , where b is the smallest possible value, b1 

and b2 are the main values and b is the largest possible value (Negi and Lee, 1993).  

The so-called membership function associated with b� is µb� (b, θ), θ ∈ [0, 1], where θ is the 

maximum value of the membership function, thus when b2 ≥ b ≥ b1 , then: 
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where θ ≥ µb� (b, θ) ≥ 0 (see Figure 1). 
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Figure 1. Trapezoidal fuzzy number. 
 
 

 

The comparison of two fuzzy numbers depends on the type of fuzzy number. Iskander (2002) 

uses the comparison of two triangular fuzzy numbers (TFNs): TrFN and TFN. Here, the comparison 

approach is used for two TrFNs according to Negi and Lee (1993).  
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We include TrFNs, i.e. ibc
~

, itd
~

, irRA
~

and rtPCA
~

, representing the fuzzy backlog cost, market 

demand, required capacity and available capacity, respectively, in Equations (1), (2) and (3) as 

follows:   
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The crisp objective function to minimize in the LP model (1) has become the fuzzy objective 

function to maximize (9). 

The equality equation of the inventory balance of the LP model (2) has become Equations (10) 

and (11) in the fuzzy model. In the same way, the equality equation of the available capacity of the 

LP model (3) has become the two inequality Equations (12) and (13) in the fuzzy model. 

The non fuzzy constraints (4) and (5) should be incorporated into the fuzzy model, remaining 

unalterable. 

In accordance with the fuzzy numbers comparison approach proposed by Negi and Lee (1993), 

and using the concept of the α-level by Zadeh (1965), i.e. the ordinary set (non fuzzy) Aα of 

elements that belong to the fuzzy set Ã at least with the α grade, is denominated the α-level set of 

Ã, or α-cut: 
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In order to solve the problem, α settles down parametrically to obtain the value of the objective 

function for each of these α ∈ [0, θ]. The result is, however, a fuzzy set and the planner has to 

decide which pair (α, z) considers the optimum if a crisp solution is to be obtained. Let α be 

determined by the planner for any given value of θ, θ ∈ [0, 1]. The equivalent crisp model is 

represented as follows: 
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Additionally, the non fuzzy constraints (4) and (5) should be incorporated into this model, 

remaining unalterable. 

When applying the modifications proposed by Iskander (2002) to the approach developed by 

Negi and Lee (1993), Equations (24) and (25) are eliminated and the objective function (15) is 

replaced by Equation (26) as follows: 
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The approach by Iskander (2002) reduces the number of decision variables. Furthermore, a 

sensitivity analysis of the values θ and α can be carried out. If the planner does not participate in 

the definition of θ and α, these values can be fixed at 1, eliminating the redundant constraints. 

Finally, the adopted approach can be applied if different values of α (different levels of possibility) 

are given to different constraints. The main disadvantage of this model in relation to the LP model is 
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that it requires the planner to specify more data , such as the values of θ and α. Nonetheless, it 

allows the uncertain data (backlog cost, demand, required capacity and available capacity) to be 

formalized through the definition of the TrFNs: ibc
~

, itd
~

, irRA
~

, and rtPCA
~

. 

4 Application in an automobile seat manufacturer 

The proposed models have been evaluated using data from an automobile seat manufacturer. 

The company is an assembly plant for car seats belonging to a multinational group leader in the 

supply of seats in the automobile sector. Currently, the company uses a production planning system 

that is integrated in an ERP system based on a standard MRP II. Nevertheless, the company only 

uses the MRP II module for material supply planning. The company considers it has no capacity 

problems given that the car seat assembly plant is a flexible plant, designed according to 

automobile assembler requirements and with the possibility of using extra capacity from other plants 

of the industrial group. Therefore, the main objective of the generation of a production plan is to 

supply material at the minimum cost which is subordinated to the constraint of avoiding stock 

shortages. 

The company receives the demand information from the automobile assembler on a weekly 

basis (every Monday) with a planning horizon for six months. However, these demand forecasts are 

rarely accurate (Mula et al. 2005). Therefore, in this section we will validate if the fuzzy model for 

production planning that we propose in this paper can be a useful tool for the decision-making 

process of the production planners in an uncertain decision environment. 

4.1 Assumptions 

The assumptions to carry out the computational experiment are summarized as follows: 

• The study considers a representative single part called RPN (Representative Part Number). 

The research of this representative part allows us to generalize its behaviour to any item in 

the system. Moreover, it is important to understand the behaviour of a single part as the 

basis for additional research of the proposed model.  

• The decision variables, Pit, INVTit and Bit are considered integer. Despite this being a mixed 

integer linear programming problem, the mathematical relationships established in the 
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section between the fuzzy model and the equivalent linear programming models are the 

same as if it were a linear programming problem. 

• Only the final product has external demand.   

• A six-monthly planning horizon with a weekly period planning has been considered. 

• Firm orders from the automobile maker cannot be rejected. 

• Backlog for the final product RPN are considered but with a high penalization cost, since 

the required service level for a sequenced and synchronized supplier of seats for 

automobiles is 100%.    

• The company, which has implemented a JIT philosophy, officially states it does not use 

safety stocks but uses safety times for some of the components to be supplied to them. 

• Once the seat assembler sends the purchase orders to its suppliers, these cannot reject 

them. Moreover, all the materials are supplied according to the production program, so lead 

times for supplied materials are assumed as constant values. 

• The production stage is considered to be single, i.e. all the materials are supplied based on 

demand forecasts and the final assembly of seats begins after receiving firm orders, in 

other words, a production strategy denominated Assembly-to-Order (Fumero and Vercellis, 

1994).  

• A single productive resource restricts production: the assembly line.   

• The decision variable of overtime (Tovrt) for the RPN part refers to the hours of assembly to 

be subcontracted externally, rather than the overtime used to carry out this work at the 

factory itself. Therefore, overtime limits are not considered. It is assumed that the 

subcontracted products will be ready just when required without lead time changes. 

• The unit costs of undertime (ctunrt) are considered null.  

• For the fuzzy model, the parameter θ has been established at 1 while the parameter α is an 

aspiration level (0 ≤ α ≤ θ) with a step of 0.1. In this particular case, we will select the α 

value whose best results provide most of the evaluated indicators (see the next section). 
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• Moreover, the fuzzy cost coefficient, },,,{
~

21 iiiii cbcbcbcbbc = , the fuzzy right-hand-side 

number, },,,{
~

21 ititititit ddddd = , and the fuzzy technological coefficients, 

},,,{
~

21 iririririr ARARARARRA = and },,,{
~

21 rtrtrtrtrt CAPCAPCAPCAPPCA =  required 

by the fuzzy model, have been defined following the company’s criteria. For instance, in the 

case of the demand information: 

o dit2 is considered to be the demand information received by the company, 

o dit1 is obtained by decreasing the value of dit2 by 5%, 

o itd is obtained by decreasing the value of dit2 by 10%, and 

o itd is obtained by increasing the value of dit2 by 10%. 

• Production variations due to quality or machine failures are not considered. 

• Planned orders are recalculated for every planning period, while the scheduled receipts of 

the components are considered to be ‘firm’.   

• The execution measures for each model (LP model and fuzzy model) performance are: 

production, inventory, backlog and overtime costs.    

• The technical and economic information of the part RPN are considered, as is the demand 

information for a planning horizon of 30 weeks, from 11/11/2002 to 02/06/2003. 

Given the importance of production planning and the existing models with deterministic 

approaches, the experiment compares the performance of the deterministic approach proposed in 

Section 2, the LP model, with the possibilistic approach proposed in Section 3. The aim to this 

comparison is to demonstrate the usefulness and appropriateness of these fuzzy models operating 

in an uncertain decision-making environment. Thus, each model is executed for every period (t = 

1…30) at a rolling horizon of initially 30 periods and later on 29, 28, 27,...,1, updating the demand 

values, the inventory, the backlog and the scheduled receipts of components. The main difference 

between the foreseen performances of both models is that the LP model will generate a production 

plan for every period and will assume certain values of all the model parameters, while the fuzzy 
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model will do this by incorporating the existing uncertainty in demand, backlog costs and capacity 

data. This is precisely the algorithm base we are comparing to.  

The experiment has been carried out on a PC, with an AMD Athlon processor at 2600 MHz and 

with 256 MB of RAM memory, as follows (see Figure 2): 

 
 
 

Figure 2. Computational experiment. 
 
 

 

4.2 Implementation and resolution 

The dynamic character of the production planning problem and the integrity requirements on 

some variables are taken into consideration through the architecture developed for the production 

planning of the proposed models, as illustrated in Figure 3. 

The models have been implemented with the modelling language MPL V4.11 (Maximal Software 

Co. 2000). MPL can use different relational databases to manage the model data with only minor 

adjustments. This provides very good data validation and data integrity tools, and is capable of 

handling a large amount of data. Moreover, it provides easy access to the corporate data, which at 

the same time facilitates the process of updating the data required by the models. The problem is 

then solved by the mixed integer programming problem solver CPLEX 6.6 (CPLEX Optimization Co. 

1994), and the solution is imported back into the database.  

 
 
 
 
 

Figure 3.  Models architecture. 

 

The detailed data of this computational experiment and the MPL models can be found in Mula 

(2004). 
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4.3 Evaluation method  

To evaluate the models, the following indicators have been defined to be measured: (i) the 

average service level; (ii) number of minimum inventory levels; (iii) planning nervousness respect to 

the planned period and the planned quantity; (iv) total costs, and (v) computational efficiency. 

These indicators have been selected in order to evaluate the model outputs given by the activity of 

the decision variables.  

4.3.1 Average service level 

The average service level, expressed as a percentage, is determined only for the final product 

RPN as follows:   

Average service level (%) = RPNi
T

d

B

T

t

t

t

it

it

=∀

×



















−

∑
∑

=

=

1

1'

'

1001

                                      (41)   

4.3.2 Minimum inventory levels 

In order to evaluate the number of minimum inventory levels, the average total quantity of 

inventory of products (final product, raw materials and components) is determined for each period in 

the planning horizon. Then, we count the number of times that a model yields the lowest inventory. 

4.3.3 Planning nervousness 

Here we explain criterion (iii) in detail. A "nervous" or unstable planning is referred to a plan 

which undergoes important variations when incorporating the demand changes between what is 

foreseen and observed in successive plans, as defined by Sridharan et al. (1987). Whybark and 

Williams (1976) noted a difference between: (i) demand timing uncertainty, that is reflected by 

timing changes; and (ii) demand quantity uncertainty, that occurs when the demand quantities are 

increased or decreased. Therefore, the planning nervousness can be measured according to:   

The demand changes in the planned period. The number of times that a planned order is 

rescheduled irrespectively of the planned quantity (Heisig, 1998). This case is directed to minimize 

disruptions in the production sequence, since this would imply extra setup time. Van Donselaar et 
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al. (2000) propose a measure of the planning nervousness focused on the setup costs for a 

manufacturing company of trucks in an MRP environment. The rule is summarized as so:   

At time t we check for each period t + x (x = 0, 1, 2, …, T-1):   

• If there is a planned order in t + x and this order is not planned in the next planning run, we 

increase the number of reschedules by 1. 

• If there was no planned order in t + x and there is one in the next planning run, we increase 

the number of reschedules by 1. 

The demand changes in the planned quantity. The number of times that the quantity of a 

planned order is modified (De Kok and Inderfurth, 1997). This case focuses on minimizing the stock 

shortages or excesses, since this would imply higher costs of backlog and a holding of inventories. 

The rule is described as follows:   

In the period t =1,…,T, where T is the number of periods that forms the planning horizon,  t + x (x 

= 0,1, 2,…, T - 1) is checked for every period:   

• If a planned order exists in the period t + x, and if the quantity of the planned order is not 

the same as in the next planning run, we increase the number of reschedules by 1. 

While computing planning nervousness, we measure the number of changes. Another way to 

compute would be to take into account the rate of the changes.  

4.3.4 Total costs 

Total costs are the sum of all the costs generated in each period of the considered planning 

horizon, derived from the production plans provided by the model.  

4.3.5 Computational efficiency 

The parameter computational efficiency measures the computational effort needed to resolve 

each model. After solving the model, MPL automatically creates a standard solution file with the 

following statistics: The number of barrier iterations before reaching the solution; the number of 

variables; the number of variables that are integer; the number of constraints; the number of 

nonzero elements for the full matrix that was stored; the matrix density of constraints; the CPU time 

it takes to obtain the solution. 
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4.4 Evaluation of the results 

Table 2 presents the quantitative results of our application in terms of the indicators previously 

described. In the case of the fuzzy model that provides a fuzzy solution, the fuzzy set of the 

decision has been obtained. Then, it has been chosen as a crisp solution which obtains the best 

results in the highest number of the evaluated indicators. Only the selected crisp solution will be 

considered for this model throughout this section, where the parameter α was established at 0.9. 

 

Table 2. Evaluation of the results for all planning horizons. 
 
 
 

Both models present an average service level of between 99.44 and 99.49%. The fuzzy model 

provides a slightly better value at the service level (99.49%). Conversely, the fuzzy model generates 

a higher number of minimum inventory levels, i.e. 35 of the 46 evaluated items present lower 

inventories with the production plans obtained by the fuzzy model in contrast with the 8 items with 

lower inventories provided by the LP model. 

The models presented a similar nervousness in relation to the planned time period. On the other 

hand, the fuzzy model presents the best value of nervousness in relation to planned quantity.  

The fuzzy model also generates lower total costs than the LP model. These differences in the 

total costs are mainly due to two aspects: 

i) The consideration of possible future variations on the demand which may lead to a 

larger production and/or inventories with the objective of avoiding the strongly 

penalized backlogs.    

ii) The strict constraints of the deterministic model, where the required capacity and the 

available capacity of the assembly line are rigidly fixed. 

 
 

Table 3. Efficiency of computational experiments for only one execution (first week). 
 

 

With regard to the computational efficiency, both models can obtain the optimal solution of the 

mixed integer linear programming with no iterations in the first production plan execution. Obviously, 
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the number of iterations can change in the rest of production plan executions, depending on the 

input data. On the other hand, both models have the same number of variables and integer 

variables, but the fuzzy model requires more non zero elements (thus, a larger array density) and 

more constraints than the LP model, which could imply greater requirements of information storage. 

Finally, the LP model uses less CPU time than the fuzzy model. 

Therefore, the fuzzy model has provided freedom of action with regard to problems where 

uncertain values appear with a minimum increment of information storage requirements and a 

moderate increase of the required CPU time. 

From the empirical research carried out, we can draw the following conclusions: 

• Neither model behaves worse or better for all the evaluation criteria. 

• The fuzzy model behaves better than the LP model in four of the evaluation criteria. 

• The fuzzy model displays the best behaviour in relation to Service Level and Total Costs, 

two of the most important evaluation criteria for the company. 

From an economic point of view, the fuzzy model obtained the best marks, i.e. it generates the 

least Total Costs and, therefore, it would be selected as the most appropriate model for application. 

On the other hand, if the company is looking for a model which behaves best in all the evaluation 

criteria, the fuzzy model would also be selected.  

5 Conclusions  

In this paper, a linear programming (LP) model has been presented in order to solve the mid-

term production planning problem in a capacity constrained, multi-product, multi-level and multi-

period manufacturing environment. The LP model assumes that demand is known and that 

production will follow the generated plan to a great extent. In many manufacturing environments 

however, such as the automobile industry, these decisions have to be made under conditions of 

uncertainty in parameters as important as costs, market demand or capacity data.    

A model based on fuzzy mathematical programming for production planning under conditions of 

uncertainty has been proposed. It is important to highlight that the objective of the fuzzy model for 

production planning proposed in this research is not to replace deterministic models, rather to 
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provide a solid and efficient option for its application in environments with conditions of uncertainty 

where the use of deterministic models are not completely realistic. 

The proposed models have been applied to a company dedicated to the assembly of car seats. 

It is important to clarify that the decision makers from the company accept and understand the 

models and the differences between them, but only from the point of view of users; that is, they can 

not build them up or modify them. 

Generally speaking, the fuzzy model structure has been able to increase group satisfaction 

(level of service, inventory levels, planning nervousness and total costs) without causing an 

explosive growth of computational effort. Thus, this research work demonstrates that models based 

on fuzzy mathematical programming are sound for modelling production planning processes, and 

that an economic benefit can exist when these are used in comparison with traditional deterministic 

models. Fuzzy models can also be reformulated as equivalent crisp models that can be solved 

efficiently with standard software, such as CPLEX.   

Finally, the literature approaches to cope with different forms of uncertainty in production 

planning systems is considerable. Nevertheless, new approaches for production planning and 

control are still necessary to manage uncertainty. Our position is that the fuzzy sets theory is 

generally an adequate methodology that can mean a great advance in production planning 

research. Future plans are related to: (i) capacity, material and transport requirement planning 

modelling; (ii) supply chain production planning problems under uncertainty; and (iii) evolutionary 

algorithms for fuzzy optimization in production planning. 
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Figure 1. Trapezoidal fuzzy number. 
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Figure 2. Computational experiment. 
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Figure 3.  Models architecture. 
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Table 1. Decision variables and model parameters. 

Sets of Indices 

T   Number of periods in the planning horizon (t = 1…T) 

I   Number of products (i = 1…I) 

J   Number of the parent products in the bill of materials (j = 1…J) 

R   Number of resources (r = 1…R) 

Decision Variables Data 

Pit Quantity of  product i to be produced in 

period t  

dit Market demand of product i in period t 

INVTit Inventory of product i at the end of period t 

Bit Backlog of product i at the end of period t 

αij Required quantity of i to produce one unit 

of  product j 

Tunrt Undertime hours of the resource r in period 

t 

TSi Lead time of  product i 

Tovrt Overtime hours of the resource r in period t INVTi0 Inventory of  product i in period 0   

Objective Function Cost Coefficients Bi0 Backlog of product i in period 0   

cpi Variable cost of production of a unit of  

product i 

SRit Scheduled receipts of product i in period t   

cii Inventory cost of a unit of  product i Technological Coefficients 

cbi Backlog cost of a unit of product i ARir Required time of the resource r  for one unit 

of production of product i 

ctunrt Undertime hour cost of the resource r in 

period t 

CAPrt Available capacity of the resource r in 

period t 

ctovrt Overtime hour cost of the resource r in 

period t 
  

 

 

 

 

 

 

 
Table 2. Evaluation of the results for all planning horizons. 

Model 
Service 

Level (%) 

Number of 
Minimum 
Inventory 

Levels 

Planning 
Nervousness 

(period ) 

Planning 
Nervousness 

(quantity) Total costs (€) 

LP model 99.44 8 0.35 14.05 3,988,276.07 

Fuzzy model 99.49 35 0.35 13.05 3,635,616.82 
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Table 3. Efficiency of computational experiments for only one execution (first week). 

Model Iterations Variables Integer Constraints 
Elements 
non zero 

Array  
Density 

(%) 
CPU Time 
(seconds) 

LP model 0 4237 5612 2797 8239 0.07 0.86 

Fuzzy model 0 4237 5612 2977 8953 0.07 3.96 
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