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Today’s highly competitive business environment forces supply chain managers to maintain high service levels while keeping inventory
related costs as low as possible. Therefore, placing the right amount of safety stock at the right places in the supply chain is an
important aspect of effective inventory management. This safety stock placement problem, for which some solution strategies were
proposed in case of uncapacitated supply chains, becomes much more complicated when, in addition to the variability of the demand,
capacity constraints also come into play. In this paper, we propose a model to locate safety stocks in a capacitated supply chain with
the objective of maintaining the required service level. The underlying relationships linking excess capacity, demand variability, and
service levels are analyzed to gain deeper understanding of the safety stock placement problem in capacitated supply chains. Based on
these relationships a solution approach for the problem is proposed and is tested with Monte Carlo simulation.

Keywords: safety stock, capacity constraint, periodic review, supply chain

1 Introduction

Managing inventory, especially safety stocks, is one of the most challenging tasks facing supply chain
managers. Decisions related to inventory locations and their corresponding levels throughout the supply
chain has a fundamental impact on the service level, response time, delivery lead-time and the total cost
of the supply chain. These interactions, present at each single link of the chain, render the analysis at
the supply chain level much more difficult and complex. Traditionally, safety stock is exclusively stored
in the final stage of the supply chain, i.e. at the retailers dealing with customer demand. As a result, the
variation effect in demand is only addressed at this final stage. In reality, this variability cannot fully be
addressed at the retailer stage, its effect breaks into the upstream stages of the supply chain through to
the production stages up to raw material’s supply stages. Therefore, it makes sense to consider placing
safety stock at some critical stage of the supply chain. Naturally, this safety stock may then consist of
finished goods, semi-finished goods and raw materials.

A more efficient way to tackle the effect of demand variability in a supply chain consists of locating
safety stock at a number of upstream stages. The problem then is to determine the right location (i.e.
the right stage) and the right amount of stock that must be kept to ensure the required overall service
level at the lowest cost. The majority of the existing models for the problem reported in the literature
assume infinite capacity. Under the infinite capacity assumption, production lead-time is assumed to be
independent of the production-batch size. In practice this is hardly ever the case. Actually, the problem of
locating safety stocks becomes a lot more complicated if the production capacity constraint is taken into
account.

In this paper we first investigate the relationships between demand variability, capacity constraints and
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safety stocks to gain some better insights on the issue of the safety stock placement in a supply chain.
Based on these relationships, we propose an alternative model for safety stocks placement in a capacitated
supply chain. There is an evident relationship linking capacity constraint with manufacturing and delivery
lead-times. In a capacitated supply chain, lead-times depend on the ordered quantity. Thus, when the
order quantity increases (or decreases) manufacturing lead-times also increase (or decrease) accordingly.
To ensure a given service level, safety stock is needed to put up with lead-time demand variability. Once
these relationships are determined, an appropriate strategy can be deployed to efficiently place safety
stock.

The remainder of this paper is structured as follows. Section 2 provides a brief literature review on the
problem of safety stock placement in supply chains. Section 3 shows the effect of capacity in a single-stage
capacitated chain through simulation. Based on the results obtained, a modified base stock strategy is pro-
posed. In section 4 a capacitated n-stage serial chain problem is formulated and discussed. Computational
results and analysis are provided in Section 5. Section 6 presents some conclusions and some directions for
further research.

2 Literature Review

The existing models for safety stock placement in uncapacitated supply chains can be categorized according
to the structure of the supply chain. A supply chain can be modelled as a serial chain, a divergent system,
a convergent system or a general multi-echelon system. A divergent system has a single central stage and
several successors. A serial chain is a special case of the divergent systems as each stage has a single
successor. A convergent system has a one-end stage with several predecessors. A general network or a
general multi-echelon system is a combination of the above structures.

Early research focused mainly on serial systems (Simpson 1958, Clark and Scarf 1960). Simpson (1958)
modelled a serial production chain as a sequence of in-process inventories. The objective of the model is
to determine the inventory service time at each production stage to satisfy the demand of its downstream
stage at minimum inventory costs. The inventory service time is defined as the time guaranteed to fill
the demand requested by the downstream stage. The model assumes ‘infinite capacity’ and ‘maximum
reasonable demand’. The maximum reasonable demand is used to express the fact that a company’s
inventory is designed to handle any demand up to a certain level. The maximum reasonable demand
can be defined as the level of inventory that will satisfy demand for a certain fixed percentage of the
time intervals. Under the maximum reasonable demand assumption, Simpson (1958) shows that the cost
function of the model is concave and that the minimum occurs on a vertex of the solution domain. In serial
chains, the time to get materials from an upstream stage (predecessor) equals the service time guaranteed
by that upstream stage. Then, the lead-time for any stage is the time to get materials (i.e. the service time
guaranteed by upstream stage) plus the processing time. The net replenishment time of any stage is then
equal to the service time guaranteed by the upstream stage plus the processing time minus the service
time to fill demand from the downstream stage. Under this serial network structure, Simpson proves that
the minimum cost occurs when the inventory at each stage is either full or empty. The inventory is full if
the service time is zero, which means that safety stock is set to satisfy the maximum reasonable demand
during the lead-time. The inventory is empty (no safety stock is needed) if the service time is greater or
equal to the lead-time. Also, Clark and Scarf (1960) study the safety stock placement problem in serial
chains. Unlike Simpson (1958), they do not assume a ‘maximum reasonable demand’. Unmet demand is
charged with a penalty or shortage cost. The problem is to determine the size of the safety stock at every
stage such that the total holding costs and shortage costs for the entire chain are minimized. They also
extend the model to a divergent system. However, the solution approach stays the same, i.e. a minimization
problem over the feasible region of safety stocks.

Sherbrooke (1968) considers a divergent system consisting of a single one base to serve multiple de-
pots (base-depot supply system) for which item demand follows a Poisson distribution. A mathematical
model is developed to determine the base and depot stock levels subject to a constraint on system invest-
ment (budget constraint) and system performance. The objective is to minimize the expected number of
backorders.
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Rosling (1989) studies the inventory policy for assembly systems under random demands. Assembly
systems are convergent systems due to the fact that one stage can have several predecessors or upstream
stages. Rosling (1989) demonstrates that assembly systems can be remodelled as serial systems. His model is
a generalization of the serial model of Clark and Scarf (1960) considering random demands and proportional
production, and holding costs to minimize the average cost or the total discounted cost of the network.

The optimal placement of safety stocks is also studied by Lagodimos and Anderson (1993). They consider
multi-echelon production networks operating in an MRP system. Supporting Chakravarty and Shtub
(1986), they demonstrate that the optimal positioning of safety stock is system-specific. They argue that
the network structure, the demand variability and the service measure chosen are interdependent factors
that may affect the optimal policy. Lagodimos and Anderson (1993) provide a theoretical basis of the
optimal positioning policy for serial and divergent networks. Using numerical analysis, they claim that
putting all safety stock at the upper echelon is always optimal for serial networks and some divergent
networks under certain conditions. They also suggest to pay more attention to the issue of lot sizing as it
may affect the optimal safety stock policy.

Inderfurth and Minner (1998) formulate the safety stock location problem for a system with a normally
distributed demand, without internal delays and every stage satisfying the service level constraint. It is
shown that the optimal policy depends on the structure of the multi-stage system and the service measure
used. Two service measures are considered in this paper, i.e. α-type and γ-type service levels. The α-
type service level is defined as the probability of demand that can be met from inventory. Thus, safety
stock factor is the α-quantile of the standard normal distribution which is independent of the coverage
time. Safety stock coverage time denotes the time span for which protection against uncertain demands is
guaranteed. The γ-type service level is an extension of well-known fill-rate measure (Silver et al. 1998). It is
defined as 1 - (expected backorders at the end of a period/expected demand of a period). The γ-type service
level depends on the coverage time and its computation is quite difficult. The α-type service level leads to
a class of optimization problems that can be solved by the ‘either full or empty’ inventory policy (Simpson
1958). When using the γ-type service level, the problem is to determine the optimal coverage time such
that the total cost is minimized. Inderfurth and Minner (1998) demonstrate some properties of the problem
for serial, convergent and divergent systems that allowed them to formulate for each system a simplified
optimization model. As a result, for system type only a finite number of coverage time combinations need
to be taken into account.

Graves and Willems (2000) formulate the safety stock placement problem as a network optimization
problem and develop a dynamic programming algorithm for its solution. Their work is closely related to
Simpson (1958) and Inderfurth and Minner (1998). The demand is bounded by the maximum possible
demand over the net replenishment time for the stage. For a demand smaller or equal to this bounded
demand, every stage provides 100% service to its customers. Service levels to both external and internal
stages are expressed by means of guaranteed service times. Thus, the safety stock placement problem is
to determine the guaranteed service time that minimizes the total holding costs subject to the precedence
constraints of the supply chain. This optimization problem consists of minimizing a concave objective
function over a bounded convex set where the optimum occurs at an extreme point of the feasible region.
For different network structures of the supply chain, solution algorithms are provided. For serial chains, the
problem is equivalent to a shortest path problem. Dynamic programming is suggested to solve the problem
when the supply chain is an assembly network or, as is generally the case, a spanning tree. Lesnaia et al.
(2004) formulate the safety stock problem in supply chains as a general network problem. The safety stock
problem in a general network is shown to be NP-hard, limiting exact solution techniques only to small-scale
problems. Branch and Bound is suggested as a solution technique, but no dedicated approach is offered
for large-scale problems.

Early attempts at solving the safety stock problem with capacitated production can be attributed to
the work of Federgruen and Zipkin (1986a,b). They model the inventory problem with limited production
capacity and uncertain demands. The problem is to determine the optimal base-stock level under a periodic-
review policy. The objectives of the model are to minimize the average cost Federgruen and Zipkin (1986a)
and the discounted cost Federgruen and Zipkin (1986b) over the planning horizon. The average cost is
the long-run expected cost of production and holding costs. Thus, the model assumes an infinite planning
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horizon. The discounted cost criterion is used for both infinite and finite horizon of planning. Future costs
are discounted by a parameter, α where 0 < α < 1. Both papers suggest a modified base stock policy,
which is stationary and optimal. The modified base stock policy includes the capacity constraint. When the
inventory level falls below a critical number, stock is produced to bring total stock up to the base stock level
or as close to it as possible, given the limited capacity. It is shown that the average costs and discounted
costs are convex, thus optimality can be guaranteed. However, the base stock policy suggested solves
the safety stock problem for one stage only. The model for a two-stage chain is developed by Anily and
Federgruen (1991). They consider a two-stage production/inventory system. In the first stage, a common
intermediate product is produced and possibly stored. In the second stage, the intermediate product is
processed into a number of distinct finished products. The problem is to determine the replenishment
interval time for the intermediate product and for each finished product such that the long-run average
cost is minimized. An optimal procedure to solve the problem is presented. The model is related to the
safety stock placement problem discussed in this paper, in the sense that the replenishment interval for
each stage is actually coherent with the net replenishment time (Graves and Willems 2000, Lesnaia et al.
2004). Safety stock is placed to cover variation of demand during the replenishment interval.

Recent research aimed at solving the capacitated safety stock placement problem includes Mapes (1992),
Roundy & Muckstadt (2000), Bouhia and Abernathy (2003), Paschalidis et al. (2004), and Wijngaard &
Karaesmen (2005). Mapes (1992) shows the effect of capacity limitations on safety stock using simulation.
The effect of capacity limitations is noticeable when the excess capacity is less than twice the standard
deviation of demand. The results indicate that the amount of safety stock should be significantly increased
to provide a given service level. Roundy & Muckstadt (2000) study the problem of determining production
quantities in each period for a single item over an infinite horizon. They propose a heuristic to compute the
periodic review interval for a periodic-review base stock policy. Their work is closely related to the work
of Federgruen and Zipkin (1986a,b), because they modify the base stock policy to minimize the long-run
costs in one stage systems. Using simulation, they show that their heuristic works as long as the coefficient
of variation of demand is less than two. Bouhia and Abernathy (2003) formulate production policies
to maximize one stage system performance (measured in terms of profit) under capacitated production.
The production policies considered are base-stock policy and look-forward policy. The look-forward policy
predicts the finished goods inventory in the future before determining the production amount. A simulation-
based model is proposed to compare both ordering policies aimed at increasing the overall performance
of the system. The results show that both ordering policies are statistically equivalent. The authors claim
nevertheless that the look-forward policy is more advantageous if forecasting information is available.

Paschalidis et al. (2004) model an n-stage serial supply chain that produces a single product when
demand is stochastic. The model is a stochastic optimization problem to set the safety stock level for a
base stock policy at each stage to minimize the expected inventory cost subject to capacity constraints and
the constraints of ensuring a stock out probability below a given level. A combination of large deviation
and perturbation analysis is used to solve the problem. Large deviation analysis is an asymptotic-based
approach to evaluate an objective measure involving ‘rare events’, e.g. for asymptotically obtaining a tight
approximation of the stock out probability. This approach requires knowledge of the characteristics of the
stochastic process of demand and production. In contrast, perturbation analysis estimates gradients of the
objective measure to control parameters by observing an actual system or by using simulation.

Miragliotta and Staudacher (2004) propose another approach to manage uncertain demand. They rec-
ommend to determining the amount of safety stock and the capacity over sizing simultaneously. Thus,
there is a clear trade-off between the reduced stock and the reduced investment in idle overcapacity. To do
so, the system needs an information sharing (data set exchange) among many departments. They argue
that the approach is simple and effective as a management tool. However, the issue for multi stage systems
(i.e. where to keep the stock) is not yet addressed in this study.

As noted earlier, the safety stock placement model in supply chains is an NP-hard problem. From a
computation point of view, exact solution approaches are not promising for large-scale problems. The single
stage capacitated production problem has been studied thoroughly. However, its extension into capacitated
multi-stage systems still needs some attention. This paper’s objective is to explore new approaches to solve
the safety stock placement problem in a capacitated supply chain, closely related to the work of Simpson
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(1958), Mapes (1992), Graves and Willems (2000), and Lesnaia et al. (2004).

3 The Effect of Capacity in a Single-Stage Capacitated Supply Chain

We first start the discussion with the analysis of the effect of capacity constraint on the service level
for a single-stage capacitated supply chain. Mapes (1992) discussed the effect of capacity limitations on
safety stock using simulation. The results showed that the effect of limiting production capacity is to
(significantly) increase the safety stock to maintain the prespecified service level. However, the study did
not show how the safety stock is to be increased when capacity limitations are present. In this section we
will show that to achieve a certain service level (i.e. the stock out probability), the amount of safety stock
needs to be increased by a constant which is dependent on the capacity limitation, the average and the
standard deviation of the demand. We simulate a single-stage capacitated supply chain under a base stock
policy. At the beginning of each period, the amount to be produced is decided to be the smallest among
the capacity and the quantity necessary to bring back the inventory up to the base stock level. Thus, the
production at time t is then xt = max(0,min (c,B − It−1)), where c is the production capacity, B is the
base stock level and It−1 is the inventory position at the beginning of period t. Assume that the production
is realized at that period, the inventory level at the end of period t is then It = It−1 + xt − dt, where dt

is the demand in period t. It is assumed that backordering is not allowed, thus unmet demand then turn
into lost sales. If production capacity is not limited, the production is always able to replenish the stock
up to the base stock level. In this case, if the demand follows a normal distribution, using zα = 2.33 a
base stock equals to µ + zασ gives a 0.01 stock out probability, where µ is the average of the demand and
σ is its standard deviation. The term zα refers to the standard normal value such that the probability of
meeting demand is (1− α).

In a single-stage capacitated supply chain, production cannot bring the inventory level to the base
stock level immediately. Several periods of full production may be required, during which further large
demand might occur, requiring still more time to return to a normal inventory level (Federgruen and Zipkin
1986a,b). However, Glasserman and Tayur (1994) show that the base stock policy is stable if the mean
demand per period is smaller than the production capacity per period. Since the stock out probability for
capacitated single-stage is quite difficult to determine beforehand, simulation is first used to observe the
effect of capacity limitation on the stock out probability. We know that the production is dependent on
the characteristic of demand (the average and the standard deviation) and the production capacity. For
ease of use, the system behaviour can be described then by a single parameter ρ, where

ρ =
c− µ

σ
. (1)

The parameter ρ represents the excess capacity over the standard deviation of demand. From Equation
1, the system becomes an uncapacitated system as ρ increases to infinity. Using safety stock equals to
zασ guarantees the stock out probability of α (α = 1% in the simulation case, i.e. zα = 2.33). If ρ is too
small the system will ‘explode’ because the production will not be able to bring the inventory level back
to the base stock level. In this case, the stock out probability will steeply increase and the service level
will plummet. To achieve the same stock out probability as in the uncapacitated system, the capacitated
system would require an infinite amount of safety stock.

We simulate three cases which correspond to demand processes with the same average (i.e. 100 units
per period) and three levels of variability (i.e. standard deviation = 10, 20 and 40 units). Each simulation
run consists of 4000 periods and repeated four times. The stock out probability is then averaged. Figure 1
shows the effect of ρ on stock out probability when using the same base stock level as in the uncapacitated
system. The figure indicates that a system where ρ > 1.5 behaves as an uncapacitated system because the
stock out probability of the system is the same as the stock out probability for the uncapacitated system.
The stock out probability increases significantly when ρ falls below 1 or when the excess capacity cannot
cover one time standard deviation.
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Figure 1. Stock out probability versus ρ

Given that a system with ρ above 1.5 behaves as an uncapacitated system, it is useful to further analyse
the system with ρ less than 1.5. For each simulation with the same setting as above, the safety stock level
(hence the base stock level) is gradually increased such that the stock out probability approaches the stock
out probability for uncapacitated system, i.e. 0.01 stocks out in the simulated cases. Each case is simulated
four times and the corresponding safety stock is averaged and plotted in Figure 2. Figure 3 shows the ratio
of these safety stocks over the safety stock under the uncapacitated system, zασ.

The amount of safety stock has to be increased by a correction factor such that the stock out probability is
the same as in the uncapacitated single stage system, i.e. the system will experience a stock out probability
100α%. If Bu = µ + zασ is the base stock level in an uncapacitated stage then increasing the safety stock
by a correction factor gives the base stock level for a capacitated stage as follows:

Bc = µ + θzασ (2)

where Bc is the base stock level for a capacitated single stage and θ is the correction factor given the
parameter ρ. The rational behind this heuristic approach is that to maintain a certain service level when
capacity limitation exists, it is necessary to produce more, if possible, so that it can be used to cover some
of the variation of demand in the future.

Table 1 enlists the values of the correction factor obtained by averaging the value in Figure 3 for the
three demand variability levels. For ρ values that are not in the table, exponential interpolation can be used
to estimate the required correction factor. We use a non linear regression, i.e. the exponential function to
determine the correction factor given the parameter ρ. The exponential regression gives a high correlation
between values in Table 1 and the regression value (R-squared = 0.996). The correction factor is given as
follow

θ = 1 + 5.25e−5.25(ρ−0.075). (3)

The correction factor as shown in Equation 3 is bounded by the value 1 as the parameter ρ increases, i.e.
when the capacity is unlimited.
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Figure 2. Safety stock for a stock out probability of 1 %

Figure 3. Capacitated safety stock over the safety stock for uncapacitated system
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Table 1. Correction factor, θ

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9 1.0 1.1 1.2 1.3 1.4 1.5

θa 5.7251 3.5694 2.5832 2.0288 1.7015 1.4869 1.3385 1.2402
1.1767 1.1418 1.1043 1.0882 1.0703 1.0569 1.0479

aAccuracy is subject to numerical error.

Figure 4. An n-stage serial supply chain.

4 N−Stage Capacitated Serial Supply Chain

4.1 Problem Description

Consider an n-stage serial chain in Figure 4, where stage 1 is facing an external demand while stage n has
an abundant supply of raw materials. In the terminology of Graves and Willems (2000), the capacitated
safety stock placement problem can be formulated as follows. The outbound service time, Sj , is the time
guaranteed by stage j to satisfy its downstream demand. We assume that we want to fill customers demand
immediately, thus S1 = 0. The inbound service time, SIj , is the time for stage j to get input material from
its upstream stage. In a serial chain, inbound service time stage j equals the outbound service time of its
upstream stage. Since stage n has unlimited supply of raw materials then the inbound service time for
stage−n, SIn = 0. Assume that Stage 1 faces normally distributed demand with average µ and standard
deviation σ and that one unit of production in any stage requires one unit input from its upstream stage.
It is also assumed that there is no delay on demand information.

If the production time for stage j is constant Tj , then the replenishment time equals to SIj + Tj .
Thus, the net replenishment time, τj is equal to SIj + Tj − Sj which under ‘maximum allowable demand’
assumption, the base stock is equal to Bj = µτj + zασ

√
τj , i.e. to cover demand exposure during this time

interval (Simpson 1958, Graves and Willems 2000). If τj ≤ 0 then a 100 % service level can be provided
even without placing any safety stock. In this case, the stage would delay each order on its supplier by
Sj −SIj −Tj , so that the supplies will arrive when needed (Graves and Willems 2000). It is not surprising
that when capacity is limited, such strategy will cause the stock out probability to increase steeply.

We study the capacitated inventory system under a common review period policy. At the beginning of
each period (review period = 1), a production decision is taken to bring the stock up to the base-stock
level when it is possible given the capacity constraint. In each period, the decision to produce for stage j
is defined by xj,t = max(0,min(cj , Bj − Ij,t−1)), where Bj is the base stock level for stage j and Ij,t−1 is
the inventory level of stage j at the beginning of period t. By definition of xj,t, production time required
to produce xj,t is one period (xj,t ≤ cj). Actually, xj,t will be effectively produced after SIj + 1 period
(SIj is the inbound service time for stage j, i.e. the time to get input material from its upstream stage).
Inventory at the end of period t for stage j is the inventory at the beginning of period t plus the realization
of production at period t minus the demand delivery at period t. Demand at period t is observed at the end
of the period. The realization of production at period t is the production decision taken at the beginning
of period t− SIj − 1. The demand delivery at period t is the demand observed at period t− Sj , where Sj

is the time guaranteed by stage j to fill demand of its downstream stage (outbound service time). There
are two possibilities regarding the outbound service time (Sj) and the effective production time (SIj + 1),
i.e.

(i) Sj < SIj + 1 corresponding with the positive net replenishment time,
(ii) Sj ≥ SIj + 1 corresponding with the non positive net replenishment time.
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Figure 5. The stock replenishment process

Figure 5 shows the stock replenishment and demand delivery process, where (i) shows the process for the
strictly positive net replenishment time and (ii) for the non positive net replenishment time. We define
the net replenishment time for stage j, τj as follows

τj = 1 + SIj − Sj . (4)

The net replenishment for stage j is corresponding with the time-lag between the production realization
and the demand delivery. If the outbound service time of stage j is strictly smaller than the effective
production time of stage j, or Sj < SIj +1 then we get a strictly positive time-lag between the production
realization and the demand delivery (see Figure 5(i)). This time-lag is thus corresponding to the positive
net replenishment time. If the net replenishment time is positive then the base stock policy is to bring the
stock (on hand and on order) up to the base stock level. The base stock level for stage j is set to satisfy
demand during the net replenishment time,

Bc
j = µ (1 + SIj − Sj) + θjzασ

√
1 + SIj − Sj , (5)

where the safety stock for the capacitated stage SSc
j is given by

SSc
j = θjzασ

√
1 + SIj − Sj . (6)

Recall that during the net replenishment time, the standard deviation of demand is σ
√

τj and the excess
capacity during the net replenishment time is equal to τj(c− µ), thus Equation 1 becomes

ρj =
τj(c− µ)

σ
√

τj
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or replacing τj by 1 + SIj − Sj ,

ρj =
(cj − µ)

√
1 + SIj − Sj

σ
. (7)

Substituting ρj into Equation 3, the correction factor for stage j as a function of the parameter ρj is then
given as follow

θj = 1 + 5.25e−5.25(ρj−0.075). (8)

The stock out probability is approximately α if we use the base stock level for capacitated stage j as given
in Equation 5 with the parameter ρj as defined in Equation 7 and the correction factor θj as given in
Equation 8.

If the outbound service time of stage j is equal to or larger than the effective production time of stage
j, or Sj ≥ SIj + 1 then it is better to delay order so that the supplies arrive when needed. In Figure 5(ii),
delaying order as much as Sj−SIj−1 periods brings the production realization coincides with the demand
delivery. In an uncapacitated stage, the safety stock is not needed because this production realization is
not limited by the capacity. However, in a capacitated stage delaying order may be useful if there is enough
stock such that the capacity plus the stock would meet demand 100(1− α)% of the time, otherwise stock
out probability will increase highly. Thus, we want the safety stock plus the capacity is able to meet the
maximum demand for one period, SSj + cj = µ + zασ or SSj = zασ − (cj − µ). If the excess capacity in
one period (cj −µ) is greater than zασ then there is no need to put safety stock. Therefore, the base stock
policy for non positive net replenishment time is to produce as much as the demand needed to be delivered
plus an amount to bring current stock up to the safety stock given the capacity limitation. Again, we need
a correction factor to maintain the stock out probability to α level. In this case, the correction factor is
needed only for one period of production as given in Equation 1, or

ρj =
cj − µ

σ
. (9)

The base stock level for non positive net replenishment time is therefore set to

Bc
j = µ.0 + θj(max(0, zασ − (cj − µ))), (10)

where the safety stock for a capacitated stage SSc
j equals to the base stock. Replacing cj−µ with ρjσ (see

Equation 9), the safety stock for a capacitated stage with a non positive net replenishment time is given
by

SSc
j = θjσ(max(0, zα − ρj)), (11)

where θj is also given as in Equation 8. The probability of stock out is α if we use the base stock level
as in Equation 10 for non positive net replenishment time, where ρj and θj are given by Equation 9 and
Equation 8 respectively.

The operating chart of the safety stock as given in Equation 6 and Equation 11 is shown in Figure
6. The figure is based on the average demand, µ = 100, standard deviation, σ = 10, and the standard
normal value, zα = 2.33. In uncapacitated system (see for c = 240), the safety stock depends on the net
replenishment time, i.e. the square root function of the net replenishment time. In capacitated systems, the
safety stock is a function of net replenishment time and capacity. The benefit of delaying an order (i.e the
net replenishment time is zero or negative) is significant when the capacity is larger. If capacity is small,
we still need a certain amount of safety stock to maintain the stock out probability at a prespecified level.
The effect of capacity is also noticable when the net replenishment time is small because the parameter ρj

increases as the net replenishment time decreases (see Equation 7), hence the correction factor θj is also
increasing.
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Figure 6. The operating chart of the safety stock.

4.2 The Model

Based on Section 4.1, we can formulate the safety stock placement problem for an n−stage capacitated
serial supply chains as follows
Minimize

N∑
j=1

(hjSSj) (12)

subject to

ρj =

{
(cj−µ)

√
1+SIj−Sj

σ if 1 + SIj − Sj > 0,∀j = 1, 2, ..., N,
(cj−µ)

σ if 1 + SIj − Sj ≤ 0,∀j = 1, 2, ..., N,
(13)

θj = 1 + 5.25e−5.25(ρj−0.075),∀j = 1, 2, ..., N, (14)

SSj =
{

θjzασ
√

1 + SIj − Sj if 1 + SIj − Sj > 0,∀j = 1, 2, ..., N,
θjσ(max(0, zα − ρj)) if 1 + SIj − Sj ≤ 0,∀j = 1, 2, ..., N,

(15)

S1 = 0, (16)

Sn+1 = 0, (17)

Sj ≤ Ms,∀j = 2, .., N, (18)
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where
hj denotes the holding cost per unit inventory at stage j,
cj is the capacity of stage j,
µ is the average of demand,
σ is the standard deviation of demand,
ρj denotes the excess capacity over standard deviation during net replenishment,
θj is the correction factor for capacitated stage j given parameter ρj ,
zα is the standard normal distribution value (i.e. zα = 2.33 for 0.01 stock out probability),
Ms is the maximum service time for stage j = 2, ..., N .
Sj is the outbound service time guaranteed by stage j,
SIj is the inbound service time of stage j (for a serial chain, SIj = Sj+1),
SSj is the amount of safety stock placed for stage j.

Recall that in a serial chain, the inbound service time of stage j is equal to the outbound service time of
its downstream stage or SIj = Sj+1. Thus, the notation SIj at Equation 13 and Equation 15 is replaced
by Sj+1. Equation 12 shows the objective function, i.e. minimizing the expected cost of the inventory due
to holding safety stock. The parameter ρj is given by Equation 13 which depends on the net replenishment
time. As we see in the previous section, we need to increase the safety stock by a correction factor θj .
Equation 14 denotes the function of the correction factor given a parameter ρj for stage j. In our problem,
since the parameter ρj and θj depend on the service times, they also become decision variables. Equation
16 and Equation 17 shows the need to immediately fill the customers demand from the inventory of stage
1, and the time to get raw material for stage j is also zero. Equation 18 shows that the outbound service
time (j = 2, ..., N) is limited to a certain period.

From Equation 13 to 15, we know that if cj →∞ then the correction factor is one and the safety stock is
then zασ

√
1 + SIj − Sj if 1+SIj−Sj > 0 and 0 otherwise. This is as expected for uncapacitated systems.

We model the above problem as a shortest path problem because of the special structure of the
serial chain and its solution domain (as given by Equation 16 to 18). Let the set of nodes V ∈
{Sj = l,∀j = 2, ..., n, ∀l = 0, 1..., Ms}, where Sj = l means that the outbound service time of stage j is
equal to l period. The origin node is given by Sn+1 = 0, i.e. the outbound service time for stage n + 1
equals to zero. The destination node is given by S1 = 0, i.e. the outbound service time for stage 1 equals
to zero. The arc costj(k, l) between two nodes represents the costs of holding safety stock for stage j when
the inbound service time of stage j, Sj+1 = k and the outbound service time Sj = l are chosen in the
path, where (k, l) ∈ {0, 1, ...,Ms} . The cost between two nodes for stage j, costj(k, l) is defined by

Costj(k, l) =

{
hj(1 + 5.25e−5.25(

(cj−µ)
√

1+k−l

σ
−0.075))zασ

√
1 + k − l if 1 + k − l > 0,

hj(1 + 5.25e−5.25(
(cj−µ)

σ
−0.075))σ(max(0, zα − (cj−µ)

σ )) if 1 + k − l ≤ 0.
(19)

Equation 19 is obtained from substituting parameter ρj in Equation 13 into θj in Equation 14, subtituting
θj into SSj in Equation 15, and substituting SSj into the cost function.

The problem is then to find a path from the origin node SN+1 = 0 to the destination node S1 = 0 which
gives the minimum total cost. Figure 7 shows the shortest path model for a 3-stage serial chain.

5 Computational Results

We test the model for a 3−stage serial chain. Stage 1 is facing a normally distributed demand with average
µ = 100 and standard deviation σ = 10. The capacity for each stage is set to 3 different levels, i.e. 102,
110, and 124 unit per period. We are using zα = 2.33 to determine the service level (i.e. the stock out
probability = 0.01). The holding costs are e30, 20, and 10 for stage 1,2, and 3 respectively. The outbound
service time for stage 1, S1 is zero, i.e. demand from external customers is delivered immediately. The
outbound service time for the other stages (j = 2, 3, ..., n) is assumed to be not larger than 3 periods. The
inbound service time for stage 3, S3 is also zero because it is assumed to have an abundand supply of raw
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Figure 7. The shortest path model.

Table 2. Computation results

Case c1 c2 c3 S1 S2 S3 τ1 τ2 τ3 θ1 θ2 θ3 SS1 SS2 SS3 Total Cost

1 102 102 102 0 3 1 4 -1 0 1.9531 3.7237 3.7237 91 79 79 5109.87
2 102 102 110 0 3 1 4 -1 0 1.9531 3.7237 1.0408 91 79 14 4455.16
3 102 102 124 0 3 1 4 -1 0 1.9531 3.7237 1.0000 91 79 0 4316.73
4 102 110 102 0 3 1 4 -1 0 1.9531 1.0408 3.7237 91 14 79 3800.46
5 102 110 110 0 3 1 4 -1 0 1.9531 1.0408 1.0408 91 14 14 3145.75
6 102 110 124 0 3 1 4 -1 0 1.9531 1.0408 1.0000 91 14 0 3007.32
7 102 124 102 0 3 1 4 -1 0 1.9531 1.0000 3.7237 91 0 79 3523.59
8 102 124 110 0 3 1 4 -1 0 1.9531 1.0000 1.0408 91 0 14 2868.88
9 102 124 124 0 3 1 4 -1 0 1.9531 1.0000 1.0000 91 0 0 2730.45
10 110 102 102 0 0 0 1 1 1 1.0408 3.7237 3.7237 24 87 87 3330.39
11 110 102 110 0 0 3 1 4 -2 1.0408 1.9531 1.0408 24 91 14 2686.28
12 110 102 124 0 0 3 1 4 -2 1.0408 1.9531 1.0000 24 91 0 2547.85
13 110 110 102 0 0 0 1 1 1 1.0408 1.0408 3.7237 24 24 87 2080.20
14 110 110 110 0 0 0 1 1 1 1.0408 1.0408 1.0408 24 24 24 1455.10
15 110 110 124 0 0 1 1 2 0 1.0408 1.0046 1.0000 24 33 0 1389.63
16 110 124 102 0 1 0 2 0 1 1.0046 1.0000 3.7237 33 0 87 1860.74
17 110 124 110 0 1 0 2 0 1 1.0046 1.0000 1.0408 33 0 24 1235.64
18 110 124 124 0 2 1 3 0 0 1.0009 1.0000 1.0000 40 0 0 1211.76
19 124 102 102 0 0 0 1 1 1 1.0000 3.7237 3.7237 23 87 87 3301.86
20 124 102 110 0 0 3 1 4 -2 1.0000 1.9531 1.0408 23 91 14 2657.75
21 124 102 124 0 0 3 1 4 -2 1.0000 1.9531 1.0000 23 91 0 2519.32
22 124 110 102 0 0 0 1 1 1 1.0000 1.0408 3.7237 23 24 87 2051.66
23 124 110 110 0 0 0 1 1 1 1.0000 1.0408 1.0408 23 24 24 1426.57
24 124 110 124 0 0 1 1 2 0 1.0000 1.0046 1.0000 23 33 0 1361.10
25 124 124 102 0 1 0 2 0 1 1.0000 1.0000 3.7237 33 0 87 1856.15
26 124 124 110 0 1 0 2 0 1 1.0000 1.0000 1.0408 33 0 24 1231.05
27 124 124 124 0 2 1 3 0 0 1.0000 1.0000 1.0000 40 0 0 1210.70

material. The results are shown in Table 2.
There are some conclusions that can be drawn from the computational results in Table 2. In Cases (1-9),

the capacity of stage 1 is very limited (c1 = 102). Because the outbound service time of stage 1 is equal
to zero (S1 = 0) and the inbound service time SI1 ≥ 0 then the net replenishment time of stage 1, τ1

is never less than one period (τ1 = 1 + SI1 − S1). Increasing the net replenishment time for stage 1, τ1

gives the opportunity for stage 2 to reduce its safety stock through increasing the outbound service time
for stage 2 (SI1 = S2). Increasing the net replenishment time for stage 1 is a sound choice because the
required increase of the safety stock is quite small, in particular when the capacity is very limited (see
Figure 6). Furthermore, the need of safety stock in stage 2 is reduced because its net replenishment time
is decreasing. For Cases (1-9), stage 2 and stage 3 have non positive replenishment time, therefore their
safety stocks are defined only by the capacity. The safety stock for stage 2 and stage 3 in Case 9 is zero
because their production capacity can be considered unlimited (cj ≥ µ + zασ).

The capacity of stage 3 in Case 10 is limited (c3 = 102), while in Case 12 can be considered unlimited
(c3 = 124). In Case 10, all stages need to have a certain level of safety stocks to maintain a prespecified
stock out probability. In Case 12, it is better not to put any stock at stage 3 if the net replenishment time
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for stage 3, τ3 is non positive. A non positive net replenishment time for stage 3 is resulted from increasing
the outbound service time for stage 3, S3 (hence the inbound service time for stage 2 is also increasing).
Therefore, stage 2 has to put more safety stock than that in Case 10 because the net replenishment time
for stage 2 is increasing (see τ2 in Case 10 and 12). Thus, the decision of no safety stock in stage 3 is
beneficial if the overall cost is minimum.

The capacity of stage 1 in Case 18 is less than the capacity of stage 1 in Case 27. However, there is
only a small difference between the total costs of these cases. From Figure 6, the operating chart for c =
110 and c = 240 (unlimited) is almost the same for a positive net replenishment time. We can conclude
that if the net replenishment time increases then the capacity impact into the safety stock becomes less
noticeable.

In Case 21, the capacity of stage 1 is equivalently unlimited (see Case 3 for comparison). Reducing the
number of safety stock to be kept in stage 1 can be achieved through decreasing the net replenishment time
τ1. Decreasing the net replenishment time can be achieved using two ways, i.e. increasing the outbound
service time or decreasing the inbound service time. Since increasing outbound service time in stage 1 is
not possible (we want to serve external custommer immediately), the only way to do this is decreasing
the inbound service time for stage 1. Decreasing inbound service time for stage 1 means increasing the
net replenishment time for stage 2, thus increasing the safety stock in stage 2. Therefore, if the capacity
increases, reducing the number of safety stock by reducing the net replenishment time is a sound choice.
However, reducing the net replenishment time for one stage changes the net replenishment time for the
other stage. Therefore, reducing the number of safety stock for one stage influences the need of safety stock
for the other stage. In general, the optimal solution is achieved when overall costs for the supply chain is
minimized.

In Case 2, the capacity of stage 2, c2 is 102 unit per period and the capacity of stage 3, c3 is 110 unit
per period. Meanwhile in Case 4, the capacity of stage 2, c2 is 110 unit per period and the capacity of
stage 3, c3 is 102 unit per period. From the total costs in Table 2, the minimum cost is reached when
the capacity is larger at the stage near the customer (i.e. stage 2). The same phenomenon also appears in
Cases (11,13) and (20,22). However, Cases (17,23) and (18,24) show a contrasting phenomenon. In Case
17 and 18, the capacity of stage 1, c1 is 110 unit per period and the capacity of stage 2, c2 is 124 unit per
period. Meanwhile in Case 23 and 24, the capacity of stage 1, c1 is 124 unit per period and the capacity of
stage 2, c2 is 124 unit per period. The minimum cost is reached when the capacity is smaller at the stage
near the customer (i.e. stage 1). This means that having a larger capacity at the stages near the customer
does not necessarily result in smaller total costs.

We can conclude that the process of placing safety stock in a capacitated serial supply chain depends
on both capacity and net replenishment time. The net replenishment time of a stage in a serial chain is
influenced by the outbound service time guaranteed by its upstream stage. The need of safety stock in
that stage is affected by its capacity and net replenishment time. A sequence of outbound service time
(for each stage) is optimal if it results the minimum of total holding costs. In general, the optimality of
the solution depends on the interaction between the capacity, the net replenishment time, and the holding
costs.

From the solution results, we simulate Case 6 for 4000 periods. Each run is repeated four times of
different random demands (D). Table 3 shows the actual inventory on hand (Ij) and the probability of
stock out Oj for each stage. We choose Case No.6 because it has three characteristics of our interest. First,
it has an uncapacitated stage with a non positive net replenishment time (i.e. stage 3). Second, it has a
capacitated stage with a non positive replenishment time (i.e. stage 2). Last, it has a capacitated stage
with a positive net replenishmet time (i.e. Stage 1). It is shown that even when the replenishment time is
non positive, the safety stock is still needed to give an α stock out probability if capacity is limited (see
stage 2). The actual inventory on hand is smaller than the safety stock derived from our model (see the
average and the model for inventory and stock out probability in Table 3). It is logical because production
is not able to replenish its stock in one period of time. As a matter of fact, it is quite difficult to obtain
the ‘true’ inventory level for capacitated systems. However, our model gives a good approximation of the
upper bound of the safety stock to achieve a certain service level. Futhermore, it makes use the base stock
policy for a capacitated system with a simple modification. The stock out probability for each stage in our
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Table 3. Simulation Test for Case No.6

I1 O1 I2 02 I3 03

D1 71.2184 0.011 12.6461 0.018 0 0.012
D2 71.8901 0.008 12.6401 0.012 0 0.012
D3 73.4313 0.007 12.739 0.017 0 0.011
D4 72.1353 0.01 12.7229 0.014 0 0.01
Average 72.1688 0.009 12.6870 0.015 0 0.011
Model 91 0.01 14 0.01 0 0.01

simulation is near to 0.01 when we use zα = 2.33.

6 Conclusion

Although supply chain managers try to reduce inventory costs, a certain level of safety stock is always
needed to ensure a predefined service level if demand is subject to variation. If well-located and well-
sized, the safety stock is able to protect supply chains against demand variability at an acceptable cost.
Modelling the safety stock placement in capacitated supply chains is, however, rather difficult. Simulation
experiments indicate that the safety stock in a capacitated stage has to be increased by a correction factor
to obtain the same stock out probability as in the uncapacitated case. When the safety stock is increased
(and hence the base stock), the modified base stock policy tries to produce more than under the normal
policy (i.e. without taking into account capacity). If extra production is possible, it can be used as a buffer
to meet future demand.

In a capacitated stage, there are two cases regarding the net replenishment time, i.e. positive and non
positive net replenishment time. The safety stock is intended to cover variation of demand during this net
replenishment time. Even when the net replenishment time is zero or negative, a certain level of safety
stock is still needed, in particular when capacity is small. If capacity is large or equivalently unlimited
(i.e. ρj ≥ zα) and the net replenishment time is non positive then the safety stock is not needed because
production is able to replenish stock 100(1−α)% of the time. When capacity is limited, we need to increase
the safety stock by a correction factor which depends on the parameter ρj , i.e. excess capacity divided by
the standard deviation of demand during the net replenishment time. The decision to guarantee services to
customers or downstream stage depends on the capacity and the service time guaranteed by the upstream
stage. The outbound service time of one stage is influencing the inbound service time of the next stage,
hence the net replenishment time. Thus, we can say that the model optimizes the size and the location of
safety stock simultaneously while maintaining a certain stock out probability.

Although our findings are based on a limited set of simulation experiments, they can offer guidance to
practitioners in locating and sizing safety stock in a capacitated serial supply chain. We make use the base
stock policy with a simple modification when capacity is limited. Further research will be directed towards
a theoretical derivation of the correction factor.
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