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Evolutionary feature selection applied to artificial neural networks for wood veneer classification

Plywood is made of thin layers of wood, called veneers, joined together using an adhesive. Defects of the veneer are identified by human inspectors as the sheets are transported to assembly on a conveyor. The task is extremely stressful and demanding and mis-classifications are frequent. Two studies conducted on inspectors in wood mills reported identification accuracies ranging from a more optimistic 68% [START_REF] Huber | Lumber Defect Detection Abilities of Furniture Rough Mill Employees[END_REF] estimate to a more conservative 55% [START_REF] Polzleitner | Real-Time Surface Grading of Profiled Wooden Boards[END_REF] measure.

An automatic visual inspection system (Pham and Alcock, 1999a) was developed for this application by the Intelligent Systems Lab of Cardiff School of Engineering at the University of Wales, UK and the Wood Research Institute of Kuopio, Finland. Fig. 1 outlines the system. Monochrome images of the veneer are pre-processed by algorithms that locate defect areas (Pham and Alcock, 1999b) where a set of numerical descriptors is extracted for further analysis. Seventeen statistical attributes of the local grey level distribution were initially deemed relevant for defect identification (Pham and Alcock, 1999c). Twelve defects of the veneer can be distinguished from clear wood giving 13 possible classes. For each data sample, a classifier takes the 17-dimensional vector of image features and decides to which of the thirteen classes the pattern belongs.

On the recognition of wood veneer defects, the best results were obtained using artificial neural network (ANN) [START_REF] Pham | Neural Networks for Identification, Prediction and Control[END_REF] classifiers. In particular, Packianather [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF]Packianather and Drake, 2000) reported 85% identification rates using a Multi-Layer Perceptron (MLP) [START_REF] Pham | Neural Networks for Identification, Prediction and Control[END_REF].

On the basis of statistical analysis of the patterns of defective veneer, [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF] suggested that reduction of the feature vector is beneficial. The study examined The statistical method used by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF] is an example of filter approach [START_REF] Blum | Selection of Relevant Features and Examples in Machine Learning[END_REF] to feature selection. The filter approach selects variables by ranking them according to statistical, geometrical or information theoretical measures. Despite being the least computationally intensive, such approach is not guaranteed to produce optimal results since it does not take into account the interaction between the input vector and the classifier (Yang and Honavar, 1998).

A popular alternative method for feature selection is the wrapper approach [START_REF] Blum | Selection of Relevant Features and Examples in Machine Learning[END_REF], that is, to directly evaluate subsets of features by running the induction algorithm and taking the classification accuracy as fitness measure. Compared to the filter approach, the wrapper approach involves a more severe computational effort since it entails extensive experimentation guided by hill climbing of the optimisation landscape [START_REF] Vafaie | Genetic Algorithms as a Tool for Restructuring Feature Space Representations[END_REF][START_REF] Blum | Selection of Relevant Features and Examples in Machine Learning[END_REF]. Due to the locality of the search procedure, algorithms following this approach are likely to be deceived by noise or get trapped into secondary peaks of performance. Global search techniques are more suitable to search the noisy, multimodal and deceptive optimisation surface of the feature space.

This study focuses on the application of evolutionary algorithms (EAs) [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF] to the selection of the set of attributes for the ANN wood veneer defect identification system.

A large literature supports the use of EAs for feature selection (e.g. [START_REF] Vafaie | Genetic Algorithms as a Tool for Restructuring Feature Space Representations[END_REF]Yao, 1999;[START_REF] Smith | Feature Construction and Selection Using Genetic Programming and a Genetic Algorithm[END_REF]Zhang et al., 2005), the wrapper approach being the common implementation. The main problem in the design of evolutionary feature selection algorithms for ANN classifiers is the time complexity of the evaluation procedures for the solutions. This slowness adds to the slowness of EAs, thus severely constraining the extent of the evolutionary search.

The evolutionary FeaSANNT algorithm was recently developed for automatic feature selection and ANN training. Similarly to other algorithms in the literature, the proposed method relies on the global nature of the evolutionary search to escape sub-optimal peaks of performance. However, FeaSANNT is characterised by a distinctive approach based on the concurrent evolution of the feature vector and the ANN weights. This embedded approach [START_REF] Blum | Selection of Relevant Features and Examples in Machine Learning[END_REF] allows considerable savings of computation time and simplifies the algorithm design. This paper presents the application of the FeaSANNT algorithm to the wood veneer defect identification problem. Experimental comparisons are made with a standard evolutionary feature selection algorithm and the statistical approach employed by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF].

Section 2 introduces the problem domain. Section 3 presents the proposed algorithm.

Section 4 describes the experimental design. Section 5 presents the experimental results.

Section 6 analyses the computational overheads of the proposed algorithm. Section 7 discusses the results. Section 8 concludes the paper and proposes areas for further investigation.

Problem Domain

The goal of this study is to design an MLP classifier that correctly recognises instances of veneer defects. Defect areas can be identified and separated from clear wood following image segmentation. The FeaSANNT (Feature Selection and ANN Training) algorithm uses the embedded approach for the selection of the data attributes for ANN systems. The choice of such approach, still a largely unexplored area in the evolutionary feature selection for ANNs, is motivated by the possibility of obtaining high performing solutions at reduced computational costs.

General Overview

FeaSANNT architecture is sketched in fig. 2. The algorithm comprises a feature selection module and an ANN training module that act concurrently on the same pool of individuals.

Both the modules are expected to benefit from their co-occurrence. On the one hand, manipulation of the input vector modifies the error surface thus helping the ANN training module to escape local peaks or flat areas of fitness. On the other hand, similar input vectors require similar weight settings, thus allowing modification of the feature vector without major disruption of the ANN behaviour.

The genotype of each individual is composed of two chromosomes [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF], namely a binary string representing the data attributes and a real-valued string representing the MLP weights.

Each generation the fitness of the population is assessed, then a cycle of the feature selection module and a cycle of the ANN training module are executed. Fitness ranking [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF] is used to select the pool of reproducing individuals. A new population is produced through genetic recombination, mutation and BP training of the individuals.

New solutions replace old ones via generational replacement [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF]. The procedure is repeated until a pre-defined number of iterations has elapsed and the fittest solution of the last generation is picked.

Genetic crossover is operated only in the feature selection module. The choice against recombination of the MLP weight encodings is motivated by the lack of knowledge about which functional units to swap. On the contrary, the distributed nature of the knowledge base in connectionist systems supports the argument against point-to-point exchanges of genetic material amongst solutions. Against the appropriateness of the crossover operator weighs also the competing convention problem [START_REF] Thierens | Genetic Weight Optimisation of a Feedforward Neural Network Controller, Artificial Neural Networks and Genetic Algorithms[END_REF], namely the many-to-one mapping from the representation of the solutions (the genotype) to the actual ANN (the phenotype). This problem leads to disruption of the genetic search.

The backpropagation (BP) [START_REF] Rumelhart | Parallel distributed processing: exploration in the micro-structure of cognition[END_REF] rule is included into the ANN training module to support the MLP training procedure. This operator acts on the weights of the decoded individuals so as to reduce classification error. The changes are stored into the genotype. The algorithm therefore uses "Lamarckism" [START_REF] Aboitiz | Mechanisms of adaptive evolution -Darwinism and Lamarckism restated[END_REF], that is, the permanent storing in the genotype of behaviours learned by the phenotype.

Input Feature Selection Module

This module selects from an initial broad set of input features that subset which maximises the ANN performance.

Candidate solutions are encoded in the chromosome representing the set of pattern attributes. This chromosome corresponds to a binary mask of length equal to the number of the full feature set and defines which attributes are fed to the ANN. The feature selection module manipulates the input mask via the two customary genetic [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF] and two-point crossover [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF]. The feature selection algorithm is akin to a standard genetic algorithm [START_REF] Fogel | Evolutionary Computation: Toward a New Philosophy of Machine Intelligence[END_REF].

Neural Network Connection Weight Optimisation Module

This module evolves the ANN weight encodings to minimise classification error. Each solution is characterised by the real-valued chromosome that encodes the setting of the connection weights. Evolution is achieved via two operators, namely mutation and the BP algorithm.

Genetic mutations slightly modify the weights of the nodes of a solution. For each weight, the perturbation is randomly sampled with uniform probability from an interval of pre-defined width.

The BP rule is introduced as a deterministic mutation operator to speed up the learning process. If selected, an individual undergoes one cycle of BP learning over the whole training set. Because BP learning is computationally expensive, the operator is used with a moderate rate of occurrence. Weights corresponding to switched off features are still processed by the ANN training module. However, the only alteration on such weights comes from the mutation operator, which is a zero-mean random perturbation. The BP operator has no effect since there is no signal (i.e. zero signal) passing through the connection. The genetic drift of these genes is therefore expected to be extremely modest.

The weight optimisation module can be run independently from the feature selection procedure and used as an ANN training algorithm on its own. It is henceforth referred as the ANNT (ANN Training) algorithm. 

Fitness Evaluation Procedure

The fitness of the candidate solutions is evaluated on their classification accuracy on the training set of examples. To encourage the creation of compact solutions, whenever the fitness score of two individuals is equal, preference is given to the solution using the smallest feature set.

There are cases where the difference in accuracy between some of the solutions is negligible in comparison to the spread of the population. In such cases, it is more efficient to consider those solutions as equally performing and give preference to the ones using the smallest feature sets.

The proposed algorithm considers the accuracy of two individuals to be equal when the difference is less than one standard deviation of the average population accuracy. That is, the population is divided into a number of bins of width equal to

      -       - ⋅ = popsize worst best duration gen dva std width , 1 _ max (1)
where width is the width of the bin, std_dva is the standard deviation of the population fitness, gen is the current evolutionary cycle, duration is the length of evolutionary procedure, best and worst are the classification accuracies of respectively the best and the worst individual and popsize is the population size.

The first bin is centred around the best performing solution while the centres of the remaining bins are calculated according to the following formula: where centre i is the centre of the i th bin and i is an integer number (i=1,…,n) that is progressively increased until all the population is grouped.

width i best centre i ⋅ - = (2) 
The proposed procedure aims at cutting the noise that affects the evaluation of the candidate solutions. As the algorithm proceeds, the width of the bins is shrunk to shift the emphasis on finer differences of accuracy. For each fitness evaluation test, equation

(1) limits the number of bins to a value that is no greater than the population size.

Solutions are awarded the following pair of measures as fitness score:

{ } j j size i n fitness , - = (3) 
where fitness j is the fitness score of the j th member of the population, i is the bin where the j th solution lies, n is the total number of bins and size j expresses the dimensionality of the MLP input layer (i.e. the number of selected features).

The first fitness measure is proportionally related to the classification accuracy. That is, the best performing solution (grouped into the first bin) has an accuracy score equal to n-1. All the solutions within half bin width from the accuracy of the best individual obtain the same score. The solutions grouped into the second bin obtain an accuracy score equal to n-2, and so forth until the last bin where solutions achieve a score equal to 0. Solutions having the same accuracy score (i.e. belonging to the same bin) are ranked according to the number of selected features by the fitness ranking procedure. In the following two tests, the BP rule and ANNT are used to train the classifier using the reduced feature set suggested by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF]. In the last test, a standard genetic wrapper algorithm is employed. In all the cases, the learning algorithms act on the same MLP architecture that is employed by FeaSANNT.

Full Feature Set

The first set of experiments is performed using the full feature set. The results of the learning trials are used as a baseline for comparison with the feature selection procedures.

In the first experiment, the MLP is trained using the standard BP rule with a momentum term. The learning procedure is run for a fixed number of iterations on the training set of examples. This algorithm is called henceforth basicBP.

The second experiment replicates the above procedure using the ANNT algorithm. The 

Feature Selection through Filter Approach

The second set of experiments is performed using the reduced set of attributes that is selected by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF] using statistical analysis of the data patterns. Also in this case, two tests are performed, the first training the ANN with the basicBP rule and the second using the ANNT algorithm.

Feature Selection through Evolutionary Wrapper Approach

The last control experiment is performed using a standard evolutionary wrapper approach.

The algorithm uses the feature selection module of FeaSANNT to select the data attributes, and the BP rule with a momentum term to train the MLP classifier. The whole system is equivalent to a standard genetic wrapper algorithm.

The algorithm keeps the overall structure of FeaSANNT. Since the evolutionary procedure concerns only the input vector, individuals are characterised by the sole binary string defining the ANN input mask. This genotype is manipulated by the mutation and crossover operators of the feature selection module. Individuals are selected for reproduction according to the fitness ranking procedure and the offspring population replaces the parent population via generational replacement.

The fitness of the individuals is evaluated on the learning results of the valBP algorithm.

That is, for each solution an MLP classifier is randomly initialised and trained using The genetic wrapper procedure is run for a pre-defined number of iterations. At the last generation, the population is evaluated and the fittest individual is picked as the final solution. The best performing ANN structure is experimentally found to have one hidden layer of 30 units, a configuration very similar to the one suggested by Packianather et al. (2000).

Experimental Settings and Results

Input

The learning parameters characterising the various algorithms are manually optimised according to experimental trial and error. Once the parameters are fixed, each algorithm is run and the classification accuracy of the final solution is estimated on the test set of examples. This procedure is repeated 20 times with different random initialisations. The learning accuracy of the final solutions is estimated as the average test accuracy of the 20 independent learning trials.

Table 2 summarises the parameter settings for the different algorithms.

ANN Training Algorithms Settings

The learning parameters of the basicBP and ANNT algorithms are experimentally set to maximise the learning results. the performance of the algorithm, while longer cycles don't bring appreciable improvements of accuracy.

Feature Selection Algorithms Settings

Experimental tests show that the performance of the FeaSANNT algorithm is robust to reasonable variations of the search parameters.

Due to the lengthy training of the MLP classifier, the genetic wrapper procedure is limited to a smaller population than FeaSANNT and a reduced number of learning cycles. The choice for the population size and the evolution length is the result of a trade off between exploration of the search space and algorithm running time. To sustain the exploration of the feature space, the genetic wrapper algorithm uses a higher input vector mutation rate than FeaSANNT. Finally, the size of the MLP training and fitness validation subsets used by the valBP algorithm are set to 80% and 20%, respectively, of the training set of examples.

Control Algorithms -Learning Results

The results of the seven learning tests (FeaSANNT plus the six control tests) are reported in Table 3. For each experiment, the table reports the mean and the standard deviation of the MLP accuracy, the number of selected features and the duration of the learning results, with no appreciable differences between the basic gradient descent method and the more sophisticated EA.

The performance of the valBP algorithm is unsatisfactory in terms of learning accuracy and robustness. On average, the duration of the valBP procedure is much shorter than the manually optimised duration of the basicBP procedure. Premature termination of the learning process is therefore a likely reason for the poor performance of the valBP rule.

It is interesting to notice that the stopping criterion used by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF] for his implementation of the BP algorithm is similar to the stopping criterion of the valBP algorithm. Comparison of the learning results shows that the accuracy of the two algorithms is equivalent.

The learning trials carried out using the set of attributes suggested by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF] confirm that there are redundant features that can be removed without affecting the ANN performance. The reduction of the feature set causes only a minor decrease of the speed of convergence and robustness of the MLP training procedures.

The last control experiment regards the genetic wrapper procedure. Compared to the results obtained by the valBP algorithm using the full feature set, the wrapper algorithm noticeably improves the accuracy and the consistency of the solutions. This observation confirms the capability of EAs to cope with noisy evaluations of the population fitness.

However, compared to the results of the learning trials performed using the full feature set and the feature subset suggested by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF], the genetic wrapper procedure is inferior in terms of robustness and learning accuracy.

The genetic wrapper algorithm selects on average 11.35 attributes, a figure close to the configuration suggested by [START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF]. over ten sample learning trials. The plot shows a trend towards more compact input vector configurations, even though oscillations can be noticed in the learning curve in proximity of the end of the evolution period. This behaviour suggests that the duration of the algorithm is probably too short to allow convergence to the minimal solution.

FeaSANNT -Learning Results

The 

The standard deviation of the classification accuracy of the solutions produced by

FeaSANNT is comparable to the distribution of the solutions produced by the genetic wrapper algorithm. This figure is slightly larger than the spread of the accuracy of the solutions produced by the basicBP and the ANNT algorithms on the fixed sets of attributes (full feature set and filter-reduced set). This result is probably due to the larger solution space (features and weights) that FeaSANNT and the genetic wrapper algorithm search.

In terms of reduction of the input features, FeaSANNT generates solutions using on average less than 8 attributes, thus outperforming the other feature selection methods. cases, for a better understanding of the algorithm behaviour the learning process is monitored over 10000 generations. The plots refer to average values over ten independent learning trials that were run during the algorithm optimisation phase. The curves show the standard EA learning pattern marked by a brisk initial improvement of the population fitness followed by slow convergence to the optimum values.

Computational Issues

Compared to the customary wrapper approach to evolutionary feature selection, the proposed embedded approach minimises the computational effort for training the ANN solutions. As a result, larger computational resources are dedicated to a more thorough exploration of the feature space. To prove this point, the computational complexity of The above calculations don't take into account lesser computational costs that affect negligibly the algorithm complexity, such as the cost for calculating the ANN weight updates at each BP cycle (wrapper and FeaSANNT) and the costs for the random genetic weight mutations (FeaSANNT).

Table 7 shows that, given the current settings, FeaSANNT allows savings of roughly one third of the estimated computation cycles needed by the genetic wrapper algorithm.

Discussion

Experimental evidence shows that FeaSANNT is capable of robust learning results, characterised by high-performing solutions and a considerable reduction of the number of input features. Robustness is defined as a solution that is not sensitive to large The optimisation of the ANN learning algorithm is a crucial issue in the design of evolutionary wrapper algorithms. This problem doesn't arise if an embedded approach is chosen, since the number of ANN training cycles coincides with the convergence of the evolutionary procedure.

Finally, none of the feature selection methods improves the MLP learning results obtained using the full set of attributes. Indeed, analysis of the feature selection results

suggests the presence of superfluous attributes, rather than attributes that negatively affect the separability of the classes. In such case, given that the basicBP algorithm or ANNT are adequate to learn the task from the full attribute set, the removal of any number of unnecessary features has no effect on the accuracy of the learning process.

However, by removing several superfluous features FeaSANNT allows to cut feature extraction costs and image pre-processing times.

Conclusions and Further Work

The evolutionary FeaSANNT algorithm is applied to the selection of the feature set for the MLP wood veneer defect classifier. The proposed algorithm concurrently performs the two tasks of feature selection and ANN training. The novelty of the method lies in the implementation of the embedded approach in an evolutionary feature selection paradigm.

Experimental evidence shows that FeaSANNT creates high-performing MLP solutions with robust learning results and good generalisation capabilities. On average, the proposed algorithm generates solutions using less than half the full feature set, thus FeaSANNT requires also lower design costs since feature selection is fully automated.

Experimental tests show the superiority of FeaSANNT over a standard evolutionary wrapper feature selection algorithm. Analysis of the computational overheads prove that, when the same genetic operators and ANN training algorithms are used,

FeaSANNT is more economical than a genetic wrapper approach. Consequently, larger computational resources are allocated to the exploration of the feature space to obtain better learning results. The adoption of the embedded approach simplifies also the design of the evolutionary procedure, since it removes the need of setting the stopping criterion for the ANN learning algorithm.

Analysis of the patterns of selected features suggests the presence of overlapping or redundant attributes, rather than conflicting or harmful ones. This hypothesis is corroborated by the lack of observable improvements of the ANN classifiers accuracy following the application of the feature selection routines. Number of pixels after thresholding at µ+2σ 17 Number of edge pixels after thresholding at µ+2σ (e) (a) The grey level p is used as the lowest grey level to accommodate for potential noise pixels. (b) The grey level s is used as the highest grey level to accommodate for potential noise pixels. (c) q is the grey level below which there are 2000 pixels. (d) r is the grey level above which there are 2000 pixels. (e) the number of edge pixel is calculated after the application of a 3x3 Laplacian convolution mask to the thresholded sub-image. Legend: 1 bark, 2 clear wood, 3 coloured streaks, 4 discoloration, 5 pin knots, 6 rotten knots, 7 roughness, 8 sound knots, 9 splits, 10 streaks, 11 curly grain, 12 holes, 13 worm holes 

  class and the inter-class variation amongst the attributes and lead to improvement of the classifier compactness and accuracy upon rejection of 6 of the 17 data features.

  The segmentation procedure was the work of[START_REF] Pham | Automatic Detection of Defects on Birch Wood Boards[END_REF].Digitised images of the veneer sheets consist of 512x512 pixels. A feature extraction window of size 60 pixels in the horizontal direction and 85 pixels in the vertical direction (roughly corresponding to a 3cm square on the sheet) is centred around likely defective areas. The grey level values and their frequencies are recorded from the feature extraction window. A set of seventeen features are extracted from each window for veneer defect identification. These features are listed in Table 1. Features 7, 14 and 15 are designed to detect dark defects. Features 8, 16 and 17 are designed to detect bright defects. Features 1 to 12, 14 and 16 are first-order features. First-order features are tonal attributes and they are calculated directly from the grey level histogram of the window. Features 13, 15 and 17 are second-order features. Second-order features are textural attributes and they are obtained from the image itself by thresholding and edge-detection. Further details on the feature extraction process can be found in (Packianather, 1997; Drake and Packianather, 1998) Twelve defects of the veneer can be distinguished, namely bark, streaks, pin knots, coloured streaks, curly grain, discoloration, rotten knots, roughness, sound knots, splits, holes and worm holes. Data patterns must be classified into one of thirteen classes corresponding to the twelve possible defects and clear wood. A set of 232 pre-classified numerical data representing vectors of statistical features and associated plywood defects is avaiable. All the classes are represented by 20 examples, except for curly grain (16 examples), holes and worm holes

  is applied to the wood veneer classification problem. For comparison, six tests are performed on the same problem using combinations of different feature selection and ANN training algorithms. In the first three tests, the MLP classifier is trained using the full feature set and employing respectively two versions of the BP rule and ANNT.

  algorithm is run for a fixed number of iterations and the fittest individual of the last generation is chosen as the solution. This test evaluates the efficacy of ANNT, which is the MLP training module of FeaSANNT.The third experiment uses again the BP rule with a momentum term but changes the stopping criterion for the training of the classifier. In this case, the training set is randomly divided into an MLP training subset and a validation subset. The classifier is trained using the MLP training subset and the learning accuracy is monitored on the subset. As the classification accuracy on the validation subset stops improving, the learning procedure is terminated. This algorithm is called henceforth valBP. This test evaluates the efficacy of the MLP training procedure of the genetic wrapper algorithm.

  the training patterns that correspond to enabled locations of the genotype. The wrapper algorithm employs the same procedure used by FeaSANNT (see Section 3.4) to assign the fitness measure of an individual. Each generation of the evolutionary algorithm, the training set of examples is randomly divided into an MLP training subset and a validation subset. All the MLPs are trained on the former and their learning accuracy is monitored on the latter. Since the MLP training subset and the fitness validation subset are re-initialised at every evolutionary cycle, the evolutionary procedure uses the whole training set of examples.

  data are normalised according to the Mean-Variance procedure. For each learning trial, the database is randomly partitioned into a training set including 80% of the examples (185 data patterns) and a test set including the remaining 20% (47 data patterns). The classifiers are trained on the former and the final learning result is evaluated on the latter. To reduce the danger of overfitting, the order of presentation of the training samples is randomly reshuffled for every learning cycle of the algorithm under evaluation. Due to the unbalanced distribution of the wood veneer defect examples and the small size of some categories, the distribution of the training data set is balanced by duplicating randomly picked members of the smaller classes. The balanced training set contains 208 data patterns, corresponding to 16 examples per class.

The

  valBP algorithm is run until the classification accuracy stops improving. Since oscillations of the BP training process and noisy evaluations may lead to premature termination of the algorithm, the evolution of the classification accuracy is monitored using an average measure of the past readings. That is, every ten BP cycles the accuracy of the classifier is tested on the validation subset and the result is compared with the average of the last 20 readings. If the current accuracy measure is better than the average of the past 20 readings, the present MLP configuration is stored and the algorithm is continued. If no improvement is recorded, the algorithm is terminated and the best configuration of the previous evaluation is taken as the final solution. The monitoring process covers therefore a span of 200 learning cycles sampled every ten cycles. Experimental evidence shows that shorter monitoring periods are detrimental for

  learning procedure. The number of learning cycles for the valBP algorithm is estimated from the average duration of the 20 learning trials. Accuracy results report the percentage of correctly classified examples of the test set. The three tests conducted using the full feature set show a good performance of the basicBP and the ANNT algorithms. Both the procedures give accurate and consistent

  Fig.3shows a sample evolution curve for the population average of the size of the feature set. The measurements are averaged

  proposed algorithm obtains an average 92.98% classification accuracy on the test set of examples (98.36% on the training set). This figure is comparable within one standard deviation to the accuracy results achieved by all the other algorithms but the valBP algorithm, which clearly underperforms. In order to assess the significance of the accuracy differences measured between FeaSANNT and the other algorithms, a set of ANOVA tests are used. Tables 4a-e report the F-test statistics and the critical value for a 5% alpha level of significance of five ANOVA test performed taking the learning results of FeaSANNT and the learning results of respectively the basicBP, ANNT, Filter+basicBP and Filter+ANNT algorithms. The valBP algorithm is excluded from the comparison since it is the only one that clearly underperforms. The tests reported in tables 4a-e reveal that there are statistically significant differences between the accuracy results obtained by FeaSANNT and the genetic wrapper algorithm. In this case, it can be concluded that the proposed algorithm is superior to the genetic wrapper algorithm in terms of learning accuracy. In all the other cases, no statistically significant differences are revealed and the algorithms can be considered equally performing in terms of accuracy results. Tables 5a-b present two typical confusion matrices of the classification results obtained by the MLP at the end of the FeaSANNT learning procedure. Table 5a

  results on the training set of examples, while Table 5b reports the classification results on the test set of examples. Both the matrices report classification results averaged over 20 learning trials. For the three classes curly grain, holes and worm holes, the number of training set samples includes the patterns duplicated following the data balancing procedure. The confusion matrices highlight the good generalisation capabilities of the classifier. The most frequent the classification mistakes on the test set concern the three underrepresented classes (curly grain, holes and worm holes). There seems to be no strong indication of systematic classification errors. In the training set, the most common classification error is curly grain being identified as sound knots. In the test set, the two most common classification errors are bark being identified as rotten knots and roughness as streaks. Interestingly, analysis of the inter-class variation performed by Packianather (1997) identifies bark, rotten knots, streaks, and curly grain as the classes that are the hardest to separate from the others.

  For each of the three feature selection algorithms, Table6breaks down the frequency of selection for the 17 attributes. The first row gives for each feature on/off values according to the results of the feature selection procedure used by[START_REF] Packianather | Design and Optimisation of Neural Network Classifiers for Automatic Visual Inspection of Wood Veneer[END_REF].The other two rows report frequency values calculated out of the 20 learning trials.Comparisonof the feature selection results shows that no definite conclusions can be taken on the usefulness of many attributes. Some features are frequently selected by all the algorithms, namely features number 7, 9, 11 13 and 17, while other attributes such as number 1, 2 are frequently not selected. However, there many cases where the three algorithms disagree on the selection result. This behavior suggests the presence of redundant and overlapping attributes, which can be used interchangeably without altering the performance of the classifier. As a consequence, several combinations of different attributes generate equally descriptive feature sets. Since the three algorithms use different feature selection criteria, different choices of equally performing feature sets are possible. The hypothesis that the full feature set is composed of several redundant attributes is also supported by the fact that, despite considerably reducing the set of input features, none of the feature selection algorithms improves the accuracies obtained by training the neural network using the full attribute set. This result indicates the presence of unnecessary and overlapping attributes, rather than conflicting or harmful ones.

Fig. 4

 4 Fig. 4 shows the evolution of the average classification accuracy of FeaSANNT

FeaSANNT

  is estimated in comparison to the complexity of the standard genetic wrapper algorithm used in the tests of the previous section. The structure of the two algorithms is similar except for the training and the evaluation of the MLPs. The genetic wrapper algorithm fully trains an MLP classifier for each candidate feature vector configuration, while FeaSANNT concurrently evolves the input vector and the ANN weights. Both algorithms use the BP rule. The most expensive operation in the BP training of an MLP is given by the forward processing of the training information and the backward propagation of the output errors. For each training example, the cost of this operation can be approximated as two passes (forward and backward) of the input signal through the ANN. For each BP cycle, the cost for passing the whole training set of examples will be henceforth used as the unit of computational cost.Table 7 summarises the estimated costs for the two algorithms espressed in ANN passes of the training set.

  The valBP algorithm used by the genetic wrapper procedure trains an MLP until the classification accuracy stops improving. For each individual, the cost of this operation can be estimated by the sum of the costs for training the ANN and monitoring the evolution of its accuracy. These costs can be roughly deduced from the average duration of the valBP algorithm on the full data set (see Table3). On average, the final MLP configuration is achieved after 783 learning cycles. The actual algorithm lasts 10 more cycles, that is, until the first time the classification accuracy is seen decreasing. Since the ANN is trained on a subset of examples containing 80% of the training data, the cost of fully training the MLP classifier amounts to (783+10)×0.8 double (forward and backward) passes of the training set. In addition, there is the cost of monitoring every 10 BP cycles the classification accuracy, that corresponds to 78+1 evaluations of the MLP performance. Each evaluation amounts to one forward pass of the validation subset of examples, which contains 20% of the training data. The total cost of monitoring the evolution of the classification accuracy amounts therefore to (78+1)×0.2 passes of the training set. By multiplying this figure by the population size and by the number of evolutionary cycles, it is possible to calculate the total cost of the genetic wrapper procedure in terms ANN passes of the training set. In the case of FeaSANNT, each solution has a 60% probability of undergoing one BP learning cycle. Each solution is evaluated once on the full set of training examples. On average, this amounts to 0.6 double (forward and backward) passes and one single pass of the full set of training examples per solution. Multiplied by the population size and by the average number of evolutionary cycles, this figure expresses the estimated computational cost of running FeaSANNT for the wood veneer defect identification problem.

  variations or changes in input parameters sometimes referred to as noise conditions. In the experiments conducted in this work, robustness is built into the FeaSANNT algorithm by virtue of the data patterns used for training the algorithm. As discussed in Section 2, virtually all classes are represented by 20 examples with 185 data patterns used for learning as discussed in section 5. The accuracy of the solution when tested, indirectly represents the robustness of the algorithm as it is measuring the ability of the algorithm to classify "noisy" data input using the 47 data patterns. On average, the evolved MLP classifiers recognise wood veneer defects with over 90% accuracy using less than half the full feature set. Compared to the currently used statistical feature selection method employed by Packianather (1997), FeaSANNT greatly reduces the feature set with no degradation of the ANN accuracy. Compared to a standard genetic wrapper algorithm, FeaSANNT obtains superior results in terms of learning accuracy and reduction of input features. Two reasons explain the genetic wrapper algorithm, that is, inadequate exploration of the feature space and unsatisfactory training of the MLP classifiers.The poor exploration of the search space is related to the necessity of fully training an MLP classifier for every evaluation of an input vector configuration. Given the slowness of the BP rule, to maintain acceptable running times the genetic search must be restricted to a smaller population size and a shorter evolution span. Nevertheless, the genetic wrapper procedure implies larger computational overheads than the proposed embedded algorithm. This problem is intrinsically related to the choice of the wrapper approach. Faster ANN training methods can speed up the evaluation of the population fitness. However, the same methods can likewise speed up the ANN training procedure in an evolutionary embedded framework. Given equal genetic operators and ANN training algorithms, an embedded feature selection approach such as FeaSANNT allows considerable savings of computational resources. These resources can be allocated to a more thorough exploration of the feature space or allow faster algorithm running times.The unsatisfactory performance of the ANN training procedure of the genetic wrapper algorithm is due to the difficulty of setting a stopping criterion for the induction algorithm. The results of the learning trials carried out using the full feature set and the filter-reduced feature set confirm that different input vector configurations determine different MLP learning speeds. Consequently, setting a fixed number of ANN training cycles is a sub-optimal solution. At the same time, due to oscillations in the learning process and noise in the monitoring of the learning curve, an adaptive stopping criterion such as the one used for the valBP algorithm is difficult to optimise. Larger fitness validation subsets would improve the evaluation of the solutions. Unfortunately, given of wood veneer defect patterns, a large validation subset can't be afforded without affecting the quality of the training process.

  based on statistical filtering of the data attributes.

Further

  work should address the investigation of other filter feature selection criteria such as mutual information or classifier-independent feature selection, and other non-evolutionary wrapper algorithms such as feedforward and backward wrapper methods[START_REF] Blum | Selection of Relevant Features and Examples in Machine Learning[END_REF]. By including the optimisation of the ANN structure in the evolutionary process, the solutions are expected to take further advantage from the reduction of the input vector. More compact solutions are likely to be obtained by tailoring the ANN structure to the evolved feature set. Further work in this direction is in progress and preliminary results are encouraging.
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Table 1 .

 1 Statistical features.

	Multi-Layer Perceptron			Settings	
	Input nodes			17	
	Output nodes			13	
	Hidden layers Hidden nodes F Act. function hidden nodes Act. function output nodes o Learning Algorithms r Learning coefficient	basicBP 0.1	valBP 0.1	1 30 Hyper-tangent Sigmoidal ANNT n.a.	wrapper FeaSANNT n.a. n.a.
	Momentum term Initial range MLP weights [-0.05, 0.05] [-0.05, 0.05] [-0.05, 0.05] 0.01 0.01 n.a. P Trials 20 20 20 Generations * ** * e Population size n.a. n.a. 100 e Feature mask crossover rate n.a. n.a. n.a. r MLP weight mutation rate n.a. n.a. 0.25	n.a. n.a. 20 75 30 1.0 n.a.	n.a. [-0.05, 0.05] 20 * 100 1.0 0.25
	MLP weight mutation width BP mutation rate Feature mask mutation rate Masked features at start * experimentally optimised ** on-line optimised n.a. not applicable	n.a. n.a. R n.a. n.a. e n.a. n.a. n.a. n.a. v e 0.2 0.6 n.a. n.a. i	n.a. n.a. 0.2 10% total 10% total 0.2 0.6 0.05
				w	
				O n l
					y

Table 2 .

 2 Parameter Setting of Multi-Layer Perceptron and Learning Algorithms.

	Algorithm	Accuracy	Std. deviation	Features	Learning cycles
	basicBP	94.89	2.33	17.00	4000
	valBP	82.34	7.72	17.00	783
	ANNT F Filter+basicBP o r 93.30 93.51 Filter+ANNT 94.79	2.70 3.42 3.42	17.00 11.00 11.00	4000 6000 5000
	wrapper	89.68	3.98	11.35	75
	FeaSANNT	P 92.98	3.91	7.95	9000
		e			
		e r		
			R		
			e		
			v i e		
			w	
				O n l
					y

Table 3 .

 3 Experimental Results.

	Source of variation	df		SS	MS		F	Critical
	Among	1.00		36.67	36.67		3.54	4.41
	Within	38.00	393.84	10.36	
	Total	39.00	430.51	47.03	
		a) FeaSANNT vs basicBP
	F Source of variation Among o Within r Total	df 1.00 38.00 39.00	SS 1.02 428.93 429.94	MS 1.02 11.29 12.31		F 0.09	Critical 4.41
	P				
	e				
	Source of variation Among	df e r 1.00	SS 2.83	MS 2.83		F 0.21	Critical 4.41
	Within	38.00	512.22	13.48	
	Total	39.00	R 515.05	16.31	
			e		
	Source of variation Among Within Total	df 1.00 38.00 39.00	v i SS MS e 32.71 32.71 512.22 13.48 w 544.93 46.19	F 2.43	Critical 4.41
	Source of variation Among Within	df 1.00 38.00	SS 108.76 591.90	MS 108.76 15.58	O n l F Critical 6.98 4.41 y
	Total	39.00	700.66	124.33	

b) FeaSANNT vs ANNT c) FeaSANNT vs Filter+basicBP d) FeaSANNT vs Filter+ANNT e) FeaSANNT vs wrapper

Table 4. ANOVA F-Test results.
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 5 FeaSANNT Learning Results: Confusion Matrices.

		1	2	3	4	5	6	7	8	9 10 11	12 13 14	15	16 17
	Wrapper 0.35 0.5 0.6 0.9 0.8 0.8 0.65 0.25 0.7 0.6 0.95 0.75 0.9 0.65 0.7 0.55 0.7
	FeaSANNT 0.45 0.25 0.1 0.45 0.15 0.3 0.95 0.75 0.8 0.4 0.95 0.1 0.6	0	0.95 0.15 0.6
	Filter	0	r o F 0 0							
					P						
					e						
						e r				
							R				
								e			
								v i e		
										w		
										O n l	
											y
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