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Introduction

The quantitative study of disassembly processes originally emerged as a by-product of assembly theory, which was developed mainly as a tool for addressing the problem of deadlocks [START_REF] Bourjault | Contribution à une approche méthodologique de l'assemblage automatisé: elaboration automatique des séquences opératoires[END_REF]. For this, various graph representations such as AND/OR graphs and state diagrams have been proposed, which are aimed at representing the complete set of feasible disassembly sequences. Although these graphs are both complete and well suited for mathematical analysis, their size tends to become unmanageably large when realistic products are considered. This proves particularly impeding when end-of life disassembly is considered. The challenge for disassembly theory, particularly the extension of its methods to increasingly complex products and more realistic assumptions, has been driven by the need for both environmentally conscious and economically feasible processing of end-of life products. Typical examples of such products, which contain a large variety of hazardous, useful and valuable components and materials, are PCs and their peripheral devices. On one hand, the requirements for adequate processing of end-of life products are becoming stricter, while on the other hand, the variety and complexity of these products are increasing. Obviously, disassembly of these products has the characteristics of a reverted assembly process. In this case one often applies an alternate graph for representing the disassembly process, viz., the disassembly precedence graph (DPG). DPG provides us with an extremely compact notation of the many possible disassembly processes, although it is usually not exhaustive. This implies that not all the possible disassembly processes are incorporated in a single graph (parallel disassembly operations, which result in multiple multi-component subassemblies, are 2 not supported here). In a DPG, nodes are assigned to operations. A typical operation is the detachment of a single component. Therefore, the nodes also refer to components. Both yield and costs are associated with every operation. The yield results from the sale of the component that is available. The costs are those of labor and capital goods that are required for the respective operation. The result of costs and yields is the profit (either positive or negative) which is assigned to every node. The directed arcs in the graph refer to precedence relationships indicating that a specific operation can only be performed if all the previously required operations have been performed. It is possible for multiple incoming arcs to be present at any node.

Network representation is used for modeling the set of possible disassembly processes. Here, an appropriate modeling technique is indispensable for optimization, which involves the search for a sequence of operations that generates the maximum profit. If desired, additional constraints, such as the requirement to execute a specific operation as early as possible in the process, can be added to the model.

The search space of even a modest disassembly precedence graph, which includes all the possible disassembly sequences, is large. It combinatorially explodes with increased product complexity, which is typically related to its number of components. Fortunately, one can rely on linear programming methods if the cost of a single operation is sequence independent. In such case, extended problems can be solved at the expense of modest CPU time. In practice, however, costs are typically sequence dependent, because any operation might include sequence dependent tasks such as tool selection, product and tool reorientation, and fixturing. In general, costs of a specific operation will even be dependent on other previous operations, which, e.g., reflect themselves in the remaining partially disassembled product from which a particular component has to be removed. But even in the case with costs of an operation only dependent on the previous operation, linear programming no longer offers an adequate tool for the selection of the optimum disassembly sequence. The solution of this problem intrinsically requires integer linear programming methods, which are far less efficient in CPU time. This is one of the reasons why many researchers rely on heuristic and metaheuristic methods. Heuristic methods, in particular, can be efficient tools for achieving the so-called "good enough" solutions. However, here a serious shortcoming is that there is no tool available to determine the goodness of such solution. In other words, it is often unclear whether a "good enough" solution is really good enough. This makes the exact method an indispensable tool in developing, improving and adjusting heuristic methods as well as to benchmark the solution obtained using heuristic methods.

Literature review

The sequencing problem with sequence dependent costs has been discussed in the literature. The first application of the rigorous exact method to a DPG was discussed by [START_REF] Johnson | Economical evaluation of disassembly operations for recycling, remanufacturing, and reuse[END_REF]. The authors used a two-commodity network flow approach, which is based on integer linear programming and is related to a constrained Traveling Salesperson Problem. This method was extended to an AND/OR graph by [START_REF] Kang | Parallel disassembly sequencing with sequence-dependent operation times[END_REF]. An adapted method with a reduced set of integer variables has been discussed by [START_REF] Lambert | Exact method for disassembly sequence optimization subjected to sequence dependent costs[END_REF]. Binary integer linear programming (BILP) has been applied by [START_REF] Yee | A Petri net model to determine optimal assembly sequences with assembly operation constraints[END_REF] to AND/OR graphs without parallelism and, consequently, without the possibility of generating short tours, i.e. cyclic solutions in which the initial node of the graph does not appear. The authors also proposed a metaheuristic (Lagrangian relaxation) for extended problems. Iterative BILP has been applied by [START_REF] Lambert | Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs[END_REF] for solving general problems with DPGs, and by [START_REF] Lambert | Optimizing disassembly processes subjected to sequence dependent cost[END_REF] for AND/OR graphs. Metaheuristic methods are compiled by [START_REF] Santochi | Computer aided disassembly planning: State of the art and perspectives[END_REF]. Gungor andGupta (1997, 2001) and [START_REF] Rosell | Robot tasks sequence planning using Petri nets[END_REF] have presented heuristic methods. Combination of exact and heuristic methods has been proposed by [START_REF] Lambert | Exact methods in disassembly sequencing as a benchmark for heuristic algorithms[END_REF]. For a thorough coverage on disassembly modeling, see Lambert and Gupta (2005a).

The example product

The methods that are presented in this paper for solving the sequencing problem will be demonstrated by implementing them to a case example. Such case example must have considerable complexity, i.e. a sufficient number of components, a nontrivial set of precedence relationships, and an extensive search space. For this, we selected a cell phone of the brand Samsung, type SCH-3500, which was studied for testing a heuristic disassembly line-balancing algorithm. This 25 components product has been adapted from [START_REF] Gupta | Disassembly sequencing problem: a case study of a cell phone[END_REF] and is depicted in Figure 1. All the components on the left of the circuit board, 21, are removed in the -x direction. This involves the components 9, 11, 14, 17, 19, 20, 22, 23, and 24. The components on the right of the circuit board are removed in the +x direction. This involves the components 3, 4, 6, 7, 8, 10, and 5. The components 1 and 14 are removed in the +z direction, and component 2 has to be removed in the -z direction. Notice that bolt 10 can only be removed if component 5 is previously disengaged. Directed arrows in Figure 3 depict the precedence relationships between the operations listed previously. For example, operation 15 can only be performed after operations 6, 7, 8, and 10 have been performed. In order to study the sequence dependent disassembly, we introduce the concept of profit per operation (the difference between yield and cost of every operation).

Because the costs are sequence dependent, the profits are thus also sequence dependent. Although disassembly costs per operation have been experimentally established [START_REF] Gupta | Disassembly sequencing problem: a case study of a cell phone[END_REF], no information on sequence dependency of the costs has been given. Such a dependency can only be estimated, as the number of feasible subsequences of two operations is generally large. By randomly generating profit values, Π j,m , varying from 1 to 99 per operation and arranging them in a matrix Π, we can arrive at an unbiased instance of the problem. Here, Π j,m corresponds to the profit that is obtained when operation m is performed followed by operation j. A typical instance of a profit matrix is presented in Figure 4. A value of zero in a matrix cell refers to an infeasible subsequence. It should be noticed that the effort for achieving the optimum disassembly sequence via an exact method strongly depends on the instance of the profit matrix for the product. We encountered some instances that converged quickly while other instances of the same product converged slowly. The instance of the product appears to be of minor importance when heuristic methods are used.
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Heuristic methods

Greedy k-best search algorithm

Heuristic methods are based on a set of prescribed rules. Often, these rules are derived from practical experiences and intuitions. For a network representation of the disassembly process, one can follow a more formal approach. For a typical disassembly precedence graph we discuss a forward approach, starting with the nonphysical source node 0 (where the disassembly process starts).

The disassembly sequence ends with the nonphysical sink node, which is also given a node number of 0. A value of zero is assigned to cells Π j,0 for all j. Note that certain cells in the Π matrix are never visited because they are inhibited by the set of precedence relationships. This, for example, holds true for all the diagonal elements Π m,m . For the DPG of Figure 3, it is similarly clear, for example, that Π 1,10 is not feasible, as it is apparent that operation 10 cannot be performed immediately after operation 1.

We could uncover an enumerative procedure to find the most profitable disassembly sequence by starting with the expansion of the source node. It is clear from the DPG (Figure 3) that the source can be expanded in five subsequences, viz., 0-0, 0-1, 0-2, 0-3, and 0-4. Using the instance of Figure 4, the respective profits of 0, 40, 84, 25, and 69 are achieved. Notice that the subsequence that ends with the sink node, viz., 0-0, completes the sequence. This corresponds to the case of partial disassembly (here, however, it means that no disassembly is carried out at all). This sequence results in a zero profit. The remaining four subsequences are further expanded, resulting in 19 additional subsequences, viz., 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-2-0, 0-2-1, 0-2-3, 0-2-4, 0-2-6, 0-2-7, 0-2-8, 0-3-0, 0-3-1, 0-3-2, 0-3-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3. Proceeding by further expanding the remaining subsequences, we would have supposedly enumerated all possible disassembly sequences. However, the set of all the possible disassembly sequences include a number of sequences that are virtually inaccessible to enumerative calculations.

We will demonstrate this phenomenon by considering the product represented by the DPG of Figure 3 and splitting it into two subgraphs, viz., the smaller one with operations 3, 4, 9, 11, and 16 and the larger one with the rest of the operations.

Consider the following feasible sequence (one of many feasible sequences) of operations belonging to the larger subgraph:

0-1-2-7-5-6-8-10-15-14-18-13-12-17-21-20-19-23-22-24-25-0

Note that the only possible sequences for the smaller subgraph are as follows:

3-4-9-11-16 or 4-3-9-11-16.

These operations of the smaller subgraph can be placed at arbitrary positions in the sequence of the larger subgraph to obtain a feasible sequence of the DPG of Figure 3, provided the order of sequence of the smaller subgraph is maintained. The following are three (of many) such examples: 0-3-4-9-11-16-1-2-7-5-6-8-10-15-14-18-13-12-17-21-20-19-23-22-24-25-0 or: 0-1-2-7-5-6-8-10-15-14-18-13-12-17-21-20-19-23-22-24-25-3-4-9-11-16-0 or: 0-1-3-2-7-5-6-8-4-10-15-9-14-18-13-12-17-21-11-20-19-23-22-16-24-25-0

While there is no available method for exactly determining the size of the search space of an arbitrary DPG, a method is available that holds true for completely divergent, multi-level DPGs [START_REF] Uchiyama | Generation of mechanical assembly sequences considering different evaluation viewpoints[END_REF]. It can be shown that for any specific sequence of the larger subgraph considered above, there are 106,260 possible sequences that could be derived using the two feasible sequences of the smaller subgraph given above (see also [START_REF] Lambert | Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs[END_REF]. Bearing in mind that the larger subgraph results in a multitude of possible sequences, and knowing that merging any of these sequences with the smaller subgraph results in over 100,000 possible sequences, it is clear that the order of magnitude of the search space is indeed substantial.

It is therefore evident that the enumerative calculation is not a realistic option for the size of the problem considered here. This implies that we must limit the amount of expansion. The other extreme of complete enumerative approach is the greedy approach, where, after expansion, only the most profitable subsequence is considered for further expansion. The greedy sequence that results from the instance of Figure 4 of the cell phone is as follows:

0-2-6-8-3-7-4-9-11-16-1-5-10-12-14-15-18-13-21-17-19-20-23-24-25-22-0 The corresponding profit is 1720, which can be easily verified via manual calculations. However, one wonders whether this is a 'good enough' solution or not. By introducing a greediness parameter, k, which is the number of subsequences that should be considered for further expansion, we can extend this method. For instance, with k = 2, we select 0-2 and 0-4 for further expansion and from the resulting subsequences we proceed with the best and the second best of the resulting subsequences. Obviously, a further increase in the value of k is possible. The results for the case of Figure 4 for increasing values of k are compiled in Table 1.

It can be observed that the profit usually increases with increasing values of k. It must, however, be noted that this increase is non-monotonic. This is because promising subsequences can be selected prematurely, which do not further increase the profit as expansion continues, thus inhibiting the discovery of sequences with better profits.

Table 1. Solutions for the cell phone problem with increasing values of the greediness parameter. -6-8-3-7-4-9-11-16-1-5-10-12-14-15-18-13-21-17-19-20-23-24-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-16-15-18-13-14-17-21-20-23-24-25-22-19-0 0-2-6-8-3-7-4-1-9-11-5-10-12-16-15-18-13-14-17-21-20-23-24-19-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-16-13-15-17-19-18-14-21-20-23-24-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-16-13-14-15-18-17-21-20-23-24-19-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-14-15-18-13-21-17-16-20-23-24-19-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-16-13-14-15-18-17-21-20-23-24-19-25-22-0 0-2-6-8-3-7-4-1-9-11-5-10-12-14-15-18-13-21-17-16-20-23-24-19-25-22-0 0-2-1-6-8-5-7-10-3-12-4- 14-15-18-13-9-11-17-16-20-23-24-19-21-25-22-0 1720 1870 1902 1901 1943 1965 1943 1965 1977 Indeed, as k approaches infinity, the optimum solution will be obtained. This calculation would coincide with the enumerative approach and is obviously not realistic. In our specific case, software restrictions confined us to a maximum value of k equaling 277. In this case, the needed CPU time is about 2 sec. We used VisualBasic 6.0 as a programming environment, and the program has been run on a Dell Pentium 4 2.8 GHz computer with 1 GB RAM. The maximum k is due to the memory used and can be easily increased by more sophisticated programming. However, k → ∞ is equivalent to investigating all the possible sequences which is obstructed by the gigantic amount of these. Apart from this, we have no longer a heuristic but an inefficient search algorithm. From Table 1, we conclude that the greedy solution is certainly not 'good enough' as it can be easily surpassed by approximately 16%. Unfortunately, we do not know for sure if the solution that results in the profit of 1977 is 'good enough' or not, as it is basically impossible to increase k to the extent that is needed to find that. Obviously, the method applied here is an extension of the nearest neighbor algorithm (see, [START_REF] Jünger | The Traveling Salesman Problem[END_REF].

k Sequence Profit 1 2 3 4 5-6 7-8 9 10-271 ≥ 272 0-2

A* search algorithm

In an effort to achieve a better solution (that is closer to optimum), the feasibility of an A* search algorithm is considered. This proceeds as follows. The software enables us to predefine initial subsequences. In the case of Figure 3, we can predefine, e.g., 0-1, 0-2-6, and so on. By this, we restrict the search space by excluding those solutions that deviate from the predefined subsequence. Obviously, we select a set of such initial subsequences, i.e., the most promising ones. The calculation thus starts as usual, in which the virtual operation, '0', is predefined only. Next, we predefine the first nonvirtual operation and perform the calculation for any possible operation. Those solutions that result in the highest profits are selected and the other ones are rejected. For this purpose, we define the parameter, Γ, which reflects the number of initial subsequences that is selected for the next expansion step. In this step, the possible expansions are calculated and those initial subsequences with the first two operations predefined are considered. This calculation is repeated towards increasing size of the initial subsequences till no further convergence is observed. Of course, every calculation is done with the original greediness parameter k. The larger the value of Γ, the more accurate the result of the calculation will become. Obviously, Γ = 1 corresponds to the original greedy k-best search. Even for modest values of Γ the solutions tend to converge closer to the optimum at lower values of the greediness parameter than in case Γ = 1. Although the acquisition of the optimum solution is still not guaranteed, we can find a close-to optimum solution at the expense of a modest CPU time, even for complex problems. The reason that no optimum is guaranteed is due to the fact that some branches in the search tree are rejected at an early stage of the calculation, leaving us with the possibility that the optimum solution resides just there. This is the reason why we speak of an A* search algorithm.

For illustration, we will apply the method to the product already discussed. Assume that a value of 200 has been selected for the greediness parameter k. The result of the first iteration step is the sequence listed in Table 1 with the objective value of 1965. We will investigate this further and see if there are better solutions. Let us select Γ = 5. We expand the source, thus arriving at the subsequences: 0-1, 0-2, 0-3, and 0-4. The corresponding profits of the four sequences found are, respectively : 1930, 1965, 1897, and 1930. These all have to be expanded one operation further, and the calculation is repeated, but with the following initial subsequences: 0-1-2, 0-1-3, 0-1-4, 0-2-1, 0-2-3, 0-2-4, 0-2-6, 0-2-7, 0-2-8, 0-3-1, 0-3-2, 0-3-4, 0-4-1, 0-4-2, 0-4-3

Only those five of the resulting 15 sequences must be selected that have the highest profit. These start with: 0-1-2, 0-2-1, 0-2-6, 0-2-7, and 0-4-1.

The corresponding profits are : 1930, 1977, 1965, 1942, and 1930. The other branches result in lower profits and are no longer considered. The subsequent steps of the calculation proceed analogously. Obviously, this approach does not rule out the possibility of rejecting potentially good solutions; even the optimum solution might be rejected. However, the method appears to be much more efficient than increasing the value of k to an appropriately high value. We encountered no sequence with a higher profit than 1977. However, two additional suboptimum sequences with profit 1972 were detected by this method.

Results of the A* search can be graphically represented. For example, see Figure 5.

Here the greediness parameter is 270. In this graph, the corresponding positions in the sequence are vertically arranged. The numbers above the nodes denote the operation number while the numbers below the nodes correspond to profits. For instance, if the greedy k-best search algorithm is applied to the problem with the initial subsequence predefined by 0-2-1-6-3, a sequence with profit 1957 is returned. Note that, for the sake of clarity, the graph is only partly depicted here.

An exact method

General

The disassembly sequencing problem with sequence dependent costs can be rigorously solved via integer linear programming methods that are based on the solution of a constrained Traveling Salesperson Problem (TSP) (see [START_REF] Lambert | Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs[END_REF].

Unfortunately, the size of virtually any nontrivial problem is too large for efficiently applying such method. The iterative method, based on repeatedly solving a binary integer linear programming problem, has been applied to various products of up to 18 components, including both transitive and nontransitive networks [START_REF] Lambert | Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs[END_REF]. The size of the search space was considerable (up to about 4,000,000,000 sequences when restricted to complete sequences). Because of the combinatorial characteristic of this method, the cell phone with 25 components has a much more extended search space. Therefore, it is likely that the exact iterative method for the cell phone problem will approach the limit of being manageable. This is related to the convergence of the procedure, which depends on the instance of the problem, i.e., the actual values of the elements of the profit matrix. Lambert and Gupta (2005b) presented the calculation for a particular instance, which could be optimally solved without encountering any problem. We also encountered some unfavorable instances, such as the one that has been taken as an example here. Increasingly complex products will most likely fall beyond the scope of the exact methods, which is inherent to combinatorial explosion.

In the next three subsections, the BILP model and the iterative method will be briefly described followed by a discussion of the cell phone case, respectively. 

BILP model

The basic mathematical model is quite straightforward. Here, we have partial flow (0,1) variables w j,m . These are combined into aggregate flow variables x j, which is effectuated by the following constraint:

∑ = m m j m w x , ( 1a 
)
The partial flow variable w j,m = 1 when operation j is followed by operation m, and zero otherwise.

Initializing the source node takes place as follows:

x 0 = 1 (1b)
At the nodes, some equilibrium constraints have to be met. The sum of the outgoing flows should not exceed that of the incoming flows, which is guaranteed by the following expression:

∑ ∑ ≥ m m l m l m w w , , (1c) 
The source node simultaneously acts as the sink node, consequently:

∑ ∑ = m m m m w w , 0 0 , (1d)
The aggregate flows should not exceed 1, consequently:

1 , ≤ ∑ l l m w (1e) 1 , ≤ ∑ m j m w (1f)
The objective function, which reflects the complete profit, is given by: ( )

∑ ∑ Π = Π m j m j m j w , , (1g) 
where Π j,m refers to the position of the profit matrix that contains the profit obtained by operation m when performed after operation j. Note that any forbidden 2subsequences can be eliminated by assigning a large negative value to the corresponding position of the profit matrix. For example, the 2-subsequence, 3-11 in Figure 3, can be eliminated by assigning Π 3,11 a large negative value.

It should be noted that in the above equations, the indices j and m run over all the nodes while the index l runs over all the nodes except the virtual (or zero) node. 

Iterations

The BILP problem must be solved repeatedly. The method is based on the following philosophy: initially, virtually no information about the network structure is incorporated in the model, apart from the inhibition of forbidden 2-subsequences. There is a set of candidate solutions that might include erroneous 3-subsequences or higher order subsequences, i.e. those subsequences that violate the precedence relationships. Short tours also might be present as part of a candidate solution. These too correspond to an erroneous subsequence. Feasible solutions are candidate solutions that do not violate the precedence relationships. Consequently, these belong to a subset of the candidate solutions. After each iteration, the BILP solver returns a candidate solution. If an erroneous subsequence is encountered, this must be inhibited via an additional constraint before proceeding with the next iteration.

Let us consider the following candidate solution of the cell phone problem: 0-2-9-1-3-10-..... As can be observed from Figure 3, this solution violates at least one precedence relationship. Although precedence relationships are not explicitly included in the model, erroneous subsequences are. In this case, three erroneous 3-subsequences are detected, viz.: 0-2-9, 9-1-3, and 1-3-10. If an erroneous subsequence is rejected via the addition of an extra constraint, such as the following

1 9 , 2 2 , 0 ≤ + w w ,
the candidate solution is inhibited, and so are the other candidate solutions that include this subsequence. This is the reason why it is efficient to inhibit the shortest possible erroneous subsequence.

Short tours, or cycles, i.e. sequences that do not visit the 0-node, might also be present. An example of this is: 3-9-8-3. In this case, the erroneous 3-subsequence 9-8-3 can be inhibited, thus inhibiting not only this particular cycle, but any candidate solution that includes the subsequence 9-8-3.

If no erroneous 3-subsequences are present, we can also inhibit erroneous 4subsequences etc.

It is stressed here that not all the erroneous subsequences are inhibited, for this would result in either an integer linear programming problem or the extension of the model with an unmanageable number of constraints.

A subset of the candidate sequences is the set of feasible sequences, i.e. those sequences that actually meet the precedence relationships. Generally, both sets have a large number of elements, although the set of candidate sequences typically has still more elements than the set of feasible sequences. As of now, no formula is available for calculating the size of such sets for an arbitrary DPG.

Unfortunately, the required CPU time tends to increase exponentially with the number of additional constraints. If BILP steps are carried out to the full extent, we might be Fortunately, two methods are available for reducing this effect.

1. Due to the availability of the heuristic algorithm, an estimate of the optimum solution can be established. At least, a lower bound for the optimum profit is available. This implies that the BILP calculation can be interrupted if an objective is obtained that exceeds the heuristically estimated value. This method is recommended when the calculation of a single iteration step tends to require considerable CPU time. As a result, a suboptimal candidate solution is achieved.

If this suboptimum corresponds to a feasible sequence, a better solution than the estimated one is available. Consequently, the lower bound for the optimum profit may be increased to the newly found value. We again resume the calculation. This way, the iterative BILP provides us with a gradually converging optimum value that finally coincides with the continuously modified lower bound and the global optimum is established. Obviously, interruption does not completely rule out long CPU time, because if there are only few potential solutions left and many iterations have already been applied, the CPU time tends to become lengthy. However, at this stage, a considerably fewer lengthy calculations have to be performed.

2. The problem can be split. We demonstrate this with the case that is confined to complete disassembly, which means that every node is visited in any candidate solution. For the case of the example of Figure 3, we can, for example, separately consider the solutions that have operations 16, 19, 22, and 25 as the final operation. Further splitting is also possible; this way, the number of iterations will decrease and so will the maximum CPU time per iteration. A drawback of this method is that the complete procedure has to be repeated a multiple number of times. For the case at hand, it was found that the results for candidate solutions ending with 16 or 19 converged quickly, but those ending with 22 and 25 converged slowly.

The cell phone case

In the sequel, we will restrict ourselves to complete disassembly, which means that all the operations are performed. An instance of the cell phone case of Figure 3 was solved and discussed by Lambert and Gupta (2005b) This histogram depicts the number of candidate solutions that are encountered in the course of the iterative procedure. The absolute number of such solutions would be much higher, if it were not for each additional constraint inhibiting multiple candidate sequences.

Although the steep increase in the number of candidate solutions at profit ranges slightly exceeding the optimum is partly an artifact caused by the interruption of the BILP calculations. If an interrupt is carried out, frequently a candidate solution is returned with a profit only slightly beyond the optimum. As long as this solution is infeasible, the constraint that inhibits it might also inhibit some candidate solutions with higher profit. Consequently, these do not appear in the histogram in Figure 6. However, the population of the elements of the set of both candidate solutions and feasible solutions quickly grows denser if the objective approaches an average value.

Still more dramatically and ultimately insurmountable, is the increase in CPU time needed to perform the full optimization calculation. Figure 7 depicts the needed CPU time for one full iteration for the case where the number of iterations increases and a better approximation of the optimum is obtained. Obviously, the CPU time exponentially increases when advancing towards the optimum. This refers to the embedding of the subset of feasible solutions within the set of candidate solutions. Fortunately, not every calculation must be performed to its full extent, due to the availability of the interrupt function. The exponential behavior of the CPU time per iteration step as a function of the number of constraints is illustrated in Figure 8. Obviously, this becomes visible here after a certain number of constraints. We had carried out the calculations on a relatively obsolete Pentium 1 PC (200 MHz), using AIMMS 2.20. Later on, we changed to AIMMS 3.0 on a 2.8 GHz computer, which did not result in a significant improvement after a considerable number of iterations. This is inherent to the NPhardness of the problem considered. 

Link with metaheuristics

Many of the candidate solutions that are returned by the iterative approach are long tours in which all the nodes are visited. Candidate solutions that consist of a long tour and one or two additional short tours might also occur. An example of the first category is the candidate sequence that ends in operation 25, with profit 1992: 0-2-6-8-7-4-1-9 -11-5-10-12-16-13-14-15-17-19-3-20-23-18-22-21-24-25-0 From Figure 3 it follows that operation 9 is the first erroneous one in the sequence, because it is performed prior to performing operation 3. Additionally, operations 16 and 3 are positioned in the wrong order. Therefore, either the subsequence 0-2-6-8-7-4-1-9 or the subsequence 16-13-14-15-17-19-3 must be inhibited prior to performing the next iteration.

Another interesting feature of the sequence presented here is that the majority of the pairs of operations in the sequence are in the right order. We observe in Figure 3, two parallel systems of precedence relationship, the smaller one consisting of operations: 3, 4, 9, 11, and 16, and the larger one consisting of the other real operations. In the sequence above, the operations that correspond with the larger system are already in the right order.

A typical example of a sequence that consists of a long tour and a short tour is: 0-2-1-5-10-7- 12-16-13-15-19-3-20-23-24-4-18-17-21-22-25-0•6-8-14-9-11-6 Not only the long tour contains some erroneous subsequences, such as the appearance of operation 12 before 6 and 8 are performed, but the short tour, which is erroneous as such, has erroneous subsequences, such as 14-9-11-6. The latter is shorter than the complete short tour and will be inhibited. It can be considered a "faulty gene".

Actually, the iterative procedure permits the model to "learn" about its structure, without being able to obtain complete knowledge on this. This is in contrast with the integer linear programming approach, in which the exact structure is included in the model a priori. The same is true in the heuristic approach that also includes the complete structure, although no guarantee can be given about optimality.

Let us consider a candidate solution that ends in operation 22, e.g. the sequence with profit 1979: 0-2-1-6-8-5-7-10-3- 14-9-11-12-17-16-15-18-13-21-4-20-23-24-19-25-22-0 Comparing this with the following optimum solution, that has a profit of 1977, 0-2-1-6-8-5-7-10-3-12-4- 14-15-18-13-9-11-17-16-20-23-24-19-21-25-22-0, it is obvious that the candidate solution has already many subsequences in common with the optimum one, such as: 0-2-1-6-8-5-7- 10-3, 15-18-13, 9-11, 17-16, 20-23-24-19, and 25-22-0. -9-11-5-10-12-16-13-14-15-17-19-3-20-23-18-22-21-24-25-0, has only the subsequences 6-8, 9-11, and 20-23 in common with the optimum solution. When restricting ourselves to those sequences ending in operation 25, the solution, with profit 1972, is as follows: -6-8-5-7-10-3-12-4-14-15-18-13-9-11-17-16-20-23-24-19-21-22-25-0 Obviously, this is a suboptimum sequence, because the global optimum ends in operation 22 and has profit 1977. Nevertheless, this suboptimum sequence is far more related to the optimum sequence than to the candidate sequence listed above. Clearly, mutation and crossover will not unambiguously result in the optimum sequence, if metaheuristics based on genetic algorithms are applied.

0-2-1

Link between heuristic and iterative method

A heuristically obtained "good enough" solution is useful as a tool for supporting the iterative exact method, because it provides us with a lower limit of the solution. This enables the use of the interrupt function, which considerably accelerates the iterative method. As the CPU time for a complete iteration step tends to increase exponentially with the number of additional constraints, interruption relaxes the necessity to perform every BILP problem in the iterative procedure to its full extent.

However, in practice it might be desirable not to obtain the "best" sequence, but to have one or more "good enough" sequences provided it is known how far these are removed from the optimum solution. The exact method provides us with an upper limit indeed, even if the calculation is not completed and the optimum solution is not reached. It might be possible, for example, to stop the iterative procedure at profit 2000, which corresponds to an infeasible solution. This means that we know that the optimum sequence, in any event, has a profit lower than 2000. The heuristic provides us with a feasible sequence with profit 1977. The estimate thus is that there might be a better solution that generates at best 10% more profit than the heuristically found one. Of course, this is an optimistic estimate. We even demonstrated that in our particular case this sequence was the optimum one. But the problem of estimating how far the heuristically found solution is removed from optimum is approached by combination of the methods that have been described here.

Conclusions and recommendations

We presented a novel heuristic algorithm for detecting "good enough" solutions to the sequencing problems for DPGs with sequence dependent costs. Combining this approach with an exact method that is based on iteratively solving BILP problems appears to be fruitful both for accelerating the exact calculation via interruption and for evaluation of the heuristically obtained sequence.

We observed that the domain of application of the iterative method is restricted, due to the exponentially exploding CPU time that is required, but we also demonstrated that iterative BILP can be applied for moderately complex products that are beyond the domain of application for the rigorous exact method. It has been also demonstrated that the heuristic method efficiently returned optimal or close to optimum solutions in such cases. This means that both methods are useful for solving sequencing problems for a lot of practically relevant product configurations. It should, however, be noted that the convergence towards the optimum depends on both the problem structure, i.e. the set of precedence relationships, and the instance of the problem, which is expressed in the values of the relevant positions of the profit matrix.

It is evident that the application of the iterative exact method cannot be extended to arbitrary product complexity. Fortunately, the heuristic method can be successfully applied in such cases as it does not deal with erroneous candidate solutions. The needed CPU time reflects polynomial complexity instead of exponential, and the effectivity of the heuristic method can be extended by using the A* search algorithm.

Because the heuristic method provides us with a list of suboptimum solutions rather than with a single solution, multiple criteria decision making is possible.

We applied these methods on a variety of problems, and we were able to arrive at consistent results both for the heuristic and the iterative method.

In future studies, two directions would be interesting, viz., (1) the application of both methods to increasingly complex problems, and (2) extension of the application of the heuristic method to more advanced problems, such as the disassembly line balancing problem. 
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 5 Figure 5. Graphical representation (partial) of the A* search approach for the problem of Figure 3.

  slowly converging problem, in which each iteration takes a long time.
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 7 Figure 7. Required CPU time for a single iteration step if not interrupted. The problem is that of Figure 6.
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 8 Figure 8. Required CPU time as a function of the number of iterations.
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  at modest expense of CPU time. The instance of Figure4, however, needed more lengthy calculations. Figure6depicts the convergence of the calculation for this case. Figure6. Number of candidate solutions ending with operation #25 with higher than optimum profit, which have to be dealt with when the iterative method is applied. Ranges of profit are on the x-axis. The optimum profit is 1977 indeed.
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  This feature is exploited in genetic algorithms (Caccia and Pozzetti, It can be observed, however, that such an approach will not always quickly converge toward the optimum. The already mentioned candidate sequence, viz.:
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