B.Sc. (Hons), M.Sc David John Stockton 
  
Riham Khalil 
email: r.khalil@dmu.ac.uk
  
PhD Jason Ardon-Finch 
  
Stockton 
  
J ; De Montfort 
  
M.I.E.E C Eng 
  
MBA Riham Khalil 
  
Ph.D B A ( Hons 
  
  
  
  
CONTROL POINT POLICY: OPTIMISATION USING GENETIC ALGORITHMS

Keywords: DISPATCHING RULES, SIMULATION, GENETIC ALGORITHMS

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Control Point Policy

The Control Point Policy (CPP), developed [START_REF] Gershwin | System analysis, design and control: Unification and decomposition[END_REF][START_REF] Gershwin | Design and Operation of Manufacturing Systems ---The Control-Point Policy[END_REF] for scheduling work through a make-to-stock system has been shown by [START_REF] Gzouli | Comparison of Scheduling Policies by Simulation[END_REF] and [START_REF] Yong | Simulation of real-time scheduling policies in multi-product, make-to-order semiconductor fabrication facilities[END_REF], to be capable of outperforming Kanban [START_REF] Berkeley | A review of the kanban production control research literature[END_REF], CONWIP [START_REF] Spearman | CONWIP: a pull alternative to kanban[END_REF] and Basestock [START_REF] Kimball | General principles of inventory control[END_REF]) control policies in terms of its ability to improve the proportion of 2 products that are completed on time, ie service levels. Essential decisions that need to be made to operate a CPP are to select values for hedging times and to determine the maximum size of interprocess buffers. Selecting the correct hedging times, ie the times that dictate when the machine is allowed to remove parts from upstream buffers, and minimising buffer sizes both help to reduce congestion within the system and hence improve product flow and therefore service levels.

There are currently no effective techniques available for selecting values for the hedging time and buffer size parameters of a CPP. Simulation studies such as those by [START_REF] Bonvik | A comparison of production-line control mechanisms[END_REF][START_REF] Gzouli | Comparison of Scheduling Policies by Simulation[END_REF] are limited by the number of different parameter configurations that can be examined since each simulation needs to be allowed to run for a considerable amount of time.

This paper describes a technique that has been developed for aiding the selection of buffer sizes and hedging times for the CPP. This basis of this technique involves identifying these hedging times and buffer sizes using Genetic Algorithm optimisation routines according to a constraint on the total buffer space available within the system. Although total buffer space was not included in the analyses of [START_REF] Bonvik | A comparison of production-line control mechanisms[END_REF][START_REF] Gzouli | Comparison of Scheduling Policies by Simulation[END_REF] it was included within this technique primarily because the relationship between service level and total buffer space can reveal information not obvious from that of service level against average total WIP. In addition, total buffer space, unlike average total WIP, is also a quantity which may be specified as a constraint during a search procedure.

Simulation models were used to establish the efficiency of each of the GA solutions within a population with performance assessments being based on resulting service levels. Output from these simulation models and the results from the application of this technique prove useful in acquiring yet further understanding of how and when the CPP should be applied. GAs have, Comparison are made between the performances of the CPP and Critical Ratio and in doing this, it is hoped that further insight will be provided into when and how the CPP might be successfully applied in the control of production systems. The use of Critical Ratio has been widely adopted within make-to-order systems since this ratio can serve as a measure of how urgent it is that a part should progress to the finished goods buffer. A key feature of the CPP is that it includes both real time scheduling and release policies within its structure. Critical Ratio is solely a method for scheduling so comparing the performance of Critical Ratio without an entry policy against the performance of the CPP would be unfair. Therefore, in what follows, Critical Ratio has been implemented with the addition of the same entry policy inherent in the CPP.

This entry policy appears in the form of the hedging time of the first machine.

The re-entrant work system used to examine the ability of GAs to optimise policy parameters is shown in Figure 1. This system contains 3 unreliable machines, i.e. M1, M2 and M3, and 6 buffers. Different processing times and repair probabilities are assigned to different machines in an attempt to introduce imbalance in the system. The way in which due dates are assigned represents an unpredictable and variable customer demand process so the urgency to manufacture parts will vary greatly among customers.

M 1 B 3 M 3 M 2 B 0 B 1 B 4 B 5 B 2 B 6
Parts travel through the system in the sequence:

B 0 -M 1 -B 1 -M 2 -B 2 -M 3 -B 3 -M 1 -B 4 -M 2 -B 5 -M 3 -B 6
The characteristics used to discuss system performance will be average total work-in-process, total buffer space and service level. These are calculated at the end of each simulation run as follows:

Average Total WIP = ∑ = 4 1 i i n
where i n is the average value of n i , the level of the buffer B i When calculating the service level a part that was 'finished late' is one that arrived at the finished goods buffer after its due date and a 'late part still in the system' is one whose due date has already expired but that has not yet reached the finished goods buffer.

Essentially, the nature of these characteristics is that a higher service level (benefit) can be achieved with a larger average total WIP or total buffer space (costs). Decreasing the average total WIP or total buffer space (benefits) will result in a lower service level (cost). There is a trade-off, therefore, between WIP, total buffer space and service level which is usually resolved by management constraints (e.g., the service level must be at least 95% or the average total WIP must not exceed 100 parts) or by capacity constraints (e.g., there may only be enough room on the factory floor for 200 units of storage).

Basic GA Structure and Information Flow

The fundamental concept behind GAs (and all other techniques in this field) is the evolution of a number of solutions using operators intended to mimic natural selection and reproduction. The presence of solutions viewed as having desirable characteristics is deemed likely to steer the evolutionary process to an optimum. Such solutions are selected for reproduction and are thereupon mated with other high quality solutions. Essentially, mating entails the recombination of two parent solutions with a view to producing a child containing desirable properties from both parents. The quality of solutions is measured by the objective function. The use of an objective function to describe the calibre of solutions plays a key role in the success of any optimisation process and its formulation is, therefore, of paramount importance.

Within the field of evolutionary computation, it is undoubtedly Genetic Algorithms (GAs) that have received the most literature attention, particularly during the last decade. Unlike evolution strategies and evolutionary programming which were developed in order to solve specific problems, GAs were intended for the study of adaptation within the natural world. The fact that GAs were developed outside any particular problem constraints has resulted in an inherent flexibility. As a consequence, GAs have been seen to be applicable to an extremely wide range of problems. GAs are often criticised for being a 'blind' search procedure. During the optimisation process, variables or parameters are manipulated in the same way by the GA, regardless of the problem being addressed. This, however, can be considered a benefit. The fact that GAs are 'blind' to the type and number of variables being investigated, adds to their flexibility as an optimisation technique since they are able to deal with new problems just as they would any other. Similarly, they are able to cope with changes in problem definition. If there is a shift in the goal, all that is required are suitable alterations to the solution structure and to the objective function. Since today's markets demand that manufacturing systems rapidly adapt to changing customer requirements, GAs offer an ideal solution technique. There will be frequent shifts in the significance of different variables and in performance measures. GAs are able to deal with such changes unlike more traditional techniques.

Figure 2 demonstrates how information is transferred between the GA and the simulation model.

An initial population of solution strings is created at random by the GA. Solution strings contain information that can be translated into values for the 6 buffer sizes, N 1 , N 2 ,…,N 6 , and the 6 hedging times, H 0 , H 1 ,…,H 5 . When GA runs are performed using the Critical Ratio in the simulation model, strings only contain information for N i and H 0 .

The GA procedure is paused whilst the values of buffer sizes and hedging times are transmitted to the simulation model. The model is then run for a specific amount of simulation time and for a certain number of repetitions using the values provided by the GA. An average of the service levels from these runs is then transmitted back to the GA for use in its objective function. Once the set of simulations for all solutions in a population is complete, the GA resumes the evolution of solution strings using cross-over and mutation operators. Each time the next generation of strings has been produced, the process is repeated with the running of simulations of the new solutions.

Reducing the number of variables

In general the less variables that need to be optimised by the GA the more efficient is the GA optimisation process. The GA is currently faced with the problem of optimising 12 variables, i.e.

{H 0 ,…,H 5 , N 1 ,…,N 6 }. However, since there exist relationships between these variables this number can be reduced by transforming the set of variables {H 0 ,…,H 5 , N 1 ,…,N 6 } into a second set of variables {α 0 ,…,α 5 , N 1 ,…,N 6 }. The enables estimates to be made for the values of α I and hence enables α I to be initialised to a value of 1 at the beginning of the GA search procedure. where:

ε CustLeadTime ∈ [-{AvgCustLeadTime -4( ∑ = + 3 1 ) ( i i i i i r p r τ )},{AvgCustLeadTime -4( ∑ = + 3 1 ) ( i i i i i r p r τ )}]
and is biased towards 0. Here τ i is the processing time on Machine i, p i is the probability of a breakdown in Machine I and r i is the repair time for Machine i. This requires that the average customer lead time (AvgCustLeadTime) be specified in advance, i.e. here a value of 130 has been chosen. The average customer lead time is the only indication, aside from the machining times, of when to allow parts into the system, therefore, H 0 will be based on this value. H 0 should not be permitted to assume a value less than the sum of the average processing times otherwise there would not be enough time to process the parts. If a realvalued variable α 0 , which is to be optimised, is introduced then H 0 can be chosen such that:

H 0 = max{α 0 (Average Customer Lead Time), 2 1 τ + 2 2 τ + 2 3 τ } (2)
Little's Law [Little, 1961] then provides the relationship between the production or arrival rate, λ, the in-process inventory, W, and the throughput time, L, of any queuing system: 

L = λW ( 
= (δ -H 1 ) -(δ -H 0 + 1 τ ) = H 0 -H 1 -1 τ
On average, one part arrives at the raw materials buffer every Takt time units. Hence, the arrival rate of parts into any of the buffers in the system is given by 1/Takt. Using Little's Law (Equation 3), the average number of parts, 1 n , in buffer B 1 can be estimated as follows:

1 n = Takt 1 (H 0 -H 1 -1 τ ) (4) 
Rearranging Equation 4 so that H 1 becomes the subject of the formula gives: Technically, H 1 should not be the subject of the formula since it is 1 n that is determined by the other variables. However, suppose the capacity, N 1 , of the buffer B 1 is to be predetermined. Then

H 1 = H 0 -( 1 τ + 1 n Takt) (5) 
Equation 5 provides a useful indicator of how to choose H 1 , i.e., by how much H 1 should be set below H 0 . Since Equation 5 is only an indicator of how large the difference between H 0 and H 1 should be, if the variable α 1 (which is to be optimised) is introduced then a similar argument to that used when providing Equation 2for H 0 suggests that H 1 should not be permitted to assume values resulting in insufficient time to process the parts. H 1 may then be specified using:

H 1 = max{H 0 -α 1 ( 1 τ + N 1 Takt), 1 τ + 2 2 τ + 2 3 τ }
Note that it is possible to do this only after H 0 has been specified using Equation 2. Once H 1 has been specified, H 2 can be chosen in a similar manner. To summarise the set of hedging times may be chosen using the following equations:

H 0 = max{α 0 (Average Customer Lead Time), 2 1 τ + 2 2 τ + 2 3 τ } H 1 = max{H 0 -α 1 ( 1 τ + N 1 Takt), 1 τ + 2 2 τ + 2 3 τ } H 2 = max{H 1 -α 2 ( 2 τ + N 2 Takt), 1 τ + 2 τ + 2 3 τ } H 3 = max{H 2 -α 3 ( 3 τ + N 3 Takt), 1 τ + 2 τ + 3 τ } H 4 = max{H 3 -α 4 ( 1 τ + N 4 Takt), 2 τ + 3 τ } H 5 = max{H 4 -α 5 ( 2 τ + N 5 Takt), 3 τ }
This completes the transformation of the set of variables {H 0 ,…,H 5 , N 1 ,…,N 6 } into the second set {α 0 ,…,α 5 , N 1 ,…,N 6 }. The appropriate choices for the real-valued variables α 0 ,…,α 5 are not known and as such will be varied by the search procedure. The purpose of the transformation from {H 0 ,…,H 5 , N 1 ,…,N 6 } to {α 0 ,…,α 5 , N 1 ,…,N 6 }, however, is that a value of 1 would be a reasonable guess for any of the α i . Therefore, the sections of the GA string which represent these variables will be initialised so that, at the first generation, α i = 1, ∀i.

GA representation of the parameter selection problem

The parameter selection problem is represented using a binary encoded string with α i being permitted to assume values between 0 and 2.55. This is achieved by representing each α i as a binary substring of length 8. The real value given by the substring is then divided by 100 to provide the value of α i . Four runs will be carried out using different limits on total buffer space.

Let Ψ denote the limit on total buffer space in the system. Essentially, the buffer sizes in the simulation model, N i,Sim , are set, based on the value of:

              - Ψ ∑ = 6 1 , , 6 j GA j GA i N N + 1
Where:

N i,GA = the buffer sizes suggested by the GA.

Objective Function

The purpose of the objective function is to assign high fitness values to solutions resulting in high service levels and low fitness values to solutions resulting in low service levels. During the optimisation procedure, solutions yielding high service levels will begin to fill the population. It would, therefore, be desirable for the objective function to become steeper as the service level → 1. Hence, the objective function that will be used is defined by Equation 6and is shown in Figure 3. Satisfactory results were achieved with values of 1.005 and 2 for β and γ, respectively.

Imposing a value of β > 1 guarantees that the denominator of Equation 6is never equal to 0.

Imposing a value of γ > 0 ensures that the objective function is a strictly increasing function of the service level and that the gradient also increases with the service level. Setting β to a value only slightly greater than 1 results in the objective function rising asymptotically as the service level → 1. Intuitively, the form of the objective function seems appropriate although the choice 

Results

Using the re-entrant system shown in Figure 1, experiments were carried out with the Takt time specified at 3.25 time units. The value for Average Customer Lead Time was set at 130 time units and the total buffer space constraint (Ψ) was set at 42. Simulations were run for 100,000 time units with warm-up periods of 5,000. Averages of 5 runs were used to obtain a value for the service level.

A population size of 40 was chosen for the GA. Roulette Wheel selection was employed with an Elitism operator which ensured that at least 1 instance of the best string to date was held within the population. Simple Crossover and Bit Mutation, ie whereby one character in the string switches value, were employed with crossover and mutation rates of 0.65 and 0.008, respectively.

With these parameter choices, the integrated GA-simulation search procedure was allowed to run for 100 generations. The best strings found gave the values shown in Table 1.

Service

Level majority of the total buffer space, Ψ, for the system. A large value of N 6 helps to achieve a high service level since parts cannot satisfy demands unless they are in the finished goods buffer. The fact that so much of Ψ has been allocated to B 6 shows that the system is still able to operate with very small buffer sizes. The distinction between the CPP and Critical Ratio is clear in that the CPP achieves a higher service level than does Critical Ratio (CR). This arises since although the sizes of buffers B 1 , B 2 , B 3 , B 4 and B 5 are permitted to be small with both policies, they are smaller with the CPP. This suggests that the CPP performs better in terms of controlling the flow of parts through the system. The fact that the sizes of these buffers are larger when using the Critical Ratio suggests that, in this case, the flow of material is not being as well conducted, i.e., the Critical Ratio requires the additional buffer space as 'insurance' against poor product flow. Since the CPP is able to control the flow of material using smaller buffers, it is then able to adopt a larger finished goods buffer and the larger finished goods buffer enables the CPP to achieve a higher service level.

N 1 N 2 N 3 N 4 N 5 N 6 α α α α 0 α α α α 1 α α α α 2 α α α α 3 α α α α 4 α α α α 5 H 0 H 1 H 2 H 3 H 4 H 5 CPP 0.
In order to add weight to the results of Table 1 and to increase the pressure, i.e. in achieving due dates, on the system with a view to confirming the arguments that the benefits of the CPP are seen more readily in such situations, the search procedure was repeated with values of 30 and 14 for Ψ. The results are presented in Tables 2 and3.

Service Level N 1 N 2 N 3 N 4 N 5 N 6 α α α α 0 α α α α 1 α α α α 2 α α α α 3 α α α α 4 α α α α 5 H 0 H 1 H 2 H 3 H 4 H 5 CPP 0.
8923 1 1 2 3 1 22 1.12 1 0.7 0.7 1.02 1.58 146 141 138 133 122 116 CR 0.8721 1 2 2 3 2 20 1.09 142 

N 1 N 2 N 3 N 4 N 5 N 6 α α α α 0 α α α α 1 α α α α 2 α α α α 3 α α α α 4 α α α α 5 H 0 H 1 H 2 H 3 H 4 H 5 CPP 0.
6628 1 1 2 1 1 8 1.08 1.03 1.05 1.16 1.09 1.37 140 136 132 123 118 113 CR 0.6343 1 1 2 3 1 6 1.07 139 The same phenomena apparent in Table 1 are again evident in Tables 2 and3. The majority of Ψ is awarded to the finished goods buffer. In both Tables 2 and3 the finished goods buffer is larger when using the CPP. This, again, results in higher values for the service level and is due to better control of material flow within the system. It is important to note that the difference in the service levels resulting from the CPP and Critical Ratio increases as the total buffer space in the system is reduced. The service levels in Tables 2 and3 would probably be unacceptable in practice.

However, the purpose of this paper, is not to provide parameters for use in practical situations but to highlight the differences in the two policies.

Increasing the pressure within the system was also achieved by focussing on reducing the average customer lead time and not decreasing the total buffer space. The search procedure was, therefore, run once again with Ψ = 30 but this time with Average Customer Lead Time = 60 rather than 130. The results are provided in Table 4.

Service Level

N 1 N 2 N 3 N 4 N 5 N 6 α α α α 0 α α α α 1 α α α α 2 α α α α 3 α α α α 4 α α α α 5 H 0 H 1 H 2 H 3 H 4 H 5
CPP 0.8486 2 3 2 3 1 19 1.1 1 0.63 0.71 1.03 1.21 66 59 52 46 35 30 CR 0.8154 2 2 4 4 2 16 1.09 65 The values of service level were found to be lower than when Average Customer Lead Time = 130 (Table 2). It can be seen that, due to the increased pressure, the system is unable to operate with the small buffer sizes of Table 2. In order to provide the system with greater flexibility in terms of ensuring that parts get to the finished goods buffer on time, the sizes of buffers B 1 , B 2 , B 3 , B 4 and B 5 have been increased. This is achieved at the expense of the finished goods buffer which must then be decreased to the detriment of the service level. The service level, however, is again higher when using the CPP and the difference in service levels in Table 4 is larger than that in Table 2. This reiterates that the advantages of the CPP become clearer when the system is under increased pressure.

Conclusions

The objectives of this paper were to highlight the benefits of the CPP and to demonstrate that GAs can be successfully integrated with simulation to provide a search procedure for identifying good choices of hedging times for the CPP and buffer sizes for both the CPP and Critical Ratio.

The benefits of using the Critical Ratio over the CPP is that in order to assist part selection it quantifies how urgent it is to get specific parts through the system. The fixed buffer selection sequences of CPP do not make use of this information. However, the use of a hedging time by CPP attempts to ensure that a part is not loaded onto a machine until it is 'sufficiently urgent' to do so.

The CPP, therefore, aims to move parts through the system such that they do not arrive at machines too early nor too late as with other scheduling policies. Using CPP, if the buffer selection scheduling is efficient then questions regarding which part is most urgent should not be necessary, i.e. parts should arrive at each stage of production at the appropriate time. The results of the simulation experiments provided in Tables 1 to 4 show that the Control Point Policy [START_REF] Gershwin | System analysis, design and control: Unification and decomposition[END_REF][START_REF] Gershwin | Design and Operation of Manufacturing Systems ---The Control-Point Policy[END_REF] performs better, in terms of the service level, than the popular Critical Ratio technique on a simple, re-entrant production systems. The results also

show that the benefits of the CPP can be clearly obtained in a make-to-order environment and in environments where the assignment of due dates to parts results in a high level of resequencing by the chosen scheduling policy. Critical Ratio specifically aims to perform this re-sequencing successfully by making use of any available due date information. The CPP uses hedging times to reorder parts just as effectively despite its use of fixed buffer selection sequences. In short, more is demanded from a scheduling or control policy when the system is under greater pressure and when parts need frequent re-sequencing. Under such circumstances, the qualities of a policy will be exposed. It has been shown that, under these exact circumstances, the qualities of the CPP are exposed.

Relationships between production rate, average customer lead time, buffer sizes and hedging times were outlined when devising a suitable method of encoding for GA solutions. Aside from the search procedure that has been developed, these relationships have been found to hold and provide good guidelines for hedging time selection.

The results confirm that CPP performs better than Critical Ratio and that the differences become clearer when total buffer space is reduced and when the system is placed under greater pressure. 

  integrated with simulation in order to develop a strategy for evolving system design.

Figure

  Figure 1: A re-entrant system comprising three unreliable machines M 1 , M 2 & M 3

Figure 2 :

 2 Figure 2: Flow of information between the GA and the simulation model

Figure 3 :

 3 Figure 3: Objective function versus service level as given in Equation 6 with β = 1.005 and γ = 2

  If the average amount of time spent by parts in buffer B 1 is taken as an example and δ is used to denote the due date of a particular part arriving at buffer B 1 . Then if machine M 2 is available and the part is on or behind schedule, i.e., Current time t ≥ δ -H 1 , it is immediately removed and loaded onto M 2 . It is hoped, however, that parts arrive at B 1 slightly ahead of schedule, i.e., that t < δ -H 1 , in which case the part waits in B 1 until t = δ -H 1 , whereupon it is removed.Similarly, it is hoped that parts are removed from B 0 and placed into machine M 1 at time t = δ -H 0 . The average time a part spends on M 1 is 1 τ , therefore, parts should be placed into B 1 at time t = δ -H 0 + 1 τ . Since it is known when parts should ideally enter and leave B 1 , the approximate time spent in buffer B 1 can be deduced:
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Time parts spend in B 1 = Time parts leave B 1 -Time parts enter B 1

Table 1 : Solutions found by GA-simulation search procedure for Ψ = 42, Average Customer Lead Time = 130
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	9377 1 2 2 6 2 29 1.17 0.44 0.48 1.72 1.02 2.23 152 150 147 134 113 96
	CR 0.9224 1 2 2 9 5 23 1.1	143

Table 2 : Solutions found by GA-simulation search procedure for Ψ = 30, Average Customer Lead Time = 130
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Table 3 : Solutions found by GA-simulation search procedure for Ψ = 14, Average Customer Lead Time = 130
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Table 4 : Solutions found by GA-simulation search procedure for Ψ = 30, Average Customer Lead Time = 60
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