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Lot streaming in a multiple product permutation flow shop with intermingling

Introduction and literature review

The term "lot streaming" denotes techniques of splitting given jobs, each consisting of identical items, into sublots to allow their overlapping processing on successive machines in a multi-stage production system. While traditional scheduling problems assume that jobs or lotsizes are fixed, lot streaming problems can be considered as sequencing problems with the characteristic that the magnitude of each sublot is a decision variable. In line with [START_REF] Allahverdi | A review of scheduling research involving setup considerations[END_REF], these techniques are part of job floor control, where the master production schedule has to be realized. Lot or batch sizes are specified by the production planning and control system, but regularly these targets turn out to be infeasible during execution. One option to dealing with this problem is the application of lot streaming procedures, i.e. items are rearranged and allocated in sublots. If these sublots are produced in an overlapping fashion, remarkable reduction of makespan and improved timeliness are within reach [START_REF] Kalir | Evaluation of the potential benefits of lot streaming in flow-shop systems[END_REF]. Due to its high relevance, [START_REF] Lee | Current trends in deterministic scheduling[END_REF] classify lot streaming as one of the current trends in deterministic scheduling. They point out the necessity to extend classical algorithms to models which are more closely related to real world problems.

The first formal results on lot streaming are obtained by dealing with the one-product-case in a flow shop with two and three stages [START_REF] Potts | Flow shop scheduling with lot streaming[END_REF]. In the concluding part of their paper Potts/Baker address the problem of lot streaming with two products on two stages. They give a small example to show that sequential decisions -first sequencing the jobs without lot streaming and afterward applying lot streaming individually to each job-may lead to suboptimal schedules. However, [START_REF] Potts | Flow shop scheduling with lot streaming[END_REF] did not present a general solution procedure for streaming with multiple products. The vast majority of research in lot streaming has been concerned with the one-product-case only. A comprehensive and excellent review of well solved variants in lot streaming is given by [START_REF] Trietsch | Basic techniques for lot streaming[END_REF] -for more recent literature reviews see Biskup/Feldmann (2005), [START_REF] Chang | A comprehensive review of lot streaming[END_REF] and [START_REF] Feldmann | Losüberlappung -Verfahren zur Effektivitätssteigerung in der operativen Produktionsplanung[END_REF].

Generally, the goal in lot streaming is to determine the number of sublots for each product, the size of each sublot and the sequence for processing the sublots so that a given objective is optimized [START_REF] Zhang | Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops[END_REF]. As the general problem remains unsolved, research typically tackles less general versions of the general lot streaming problem. The following terms summarize different directions of lot streaming research, see [START_REF] Potts | Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity[END_REF], [START_REF] Trietsch | Basic techniques for lot streaming[END_REF], [START_REF] Kalir | A near-optimal heuristic for the sequencing problem in multiplebatch flow shops with small equal sublots[END_REF] and [START_REF] Zhang | Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops[END_REF]: • Single product / multiple products: Either a single product or multiple products are considered.

• Fixed / equal / consistent / variable sublots: Fixed sublots means that all sublots for all products consist of the identical number of items on all stages. Equal sublots means that sublot sizes are fixed for each product. The differentiation between fixed and equal sublots is only necessary for multiple products. A sublot is called consistent if it does not alter its size over the stages of processing. For variable sublots no restrictions are given.

• Non-idling / intermitted idling: For non-idling the sublots on a particular stage have to be processed directly one after the other. For intermitted idling on the other hand, idle times between sublots may occur.

• No-wait / wait schedules: In no-wait schedules, each sublot has to be transferred to and processed on the next stage immediately after it has been finished on the preceding stage. In a wait schedule, a sublot may wait for processing between consecutive stages.

• Attached setups / detached setups / no setups: If attached setups are required the setup can not start until the sublot is available at the particular stage. In a detached setup the setup is independent from the availability of the sublot. And sometimes setup times are neglected or do not occur.

• Discrete / continuous sublots: For discrete sublots, the number of items of a sublot has to be an integer. For continuous sublots no such restriction exists.

• Intermingling / non-intermingling sublots: If in a multi-product setting intermingling sublots are allowed, the sequence of sublots of product j may be interrupted by sublots of produkt k. For non-intermingling sublots no interruption in the sequence of sublots of a product is allowed, which is obviously always given in one-product settings and can be forced in multi-product settings.

In the following, we survey research on multi-product lot streaming problems and focus on flow shop environments, and consider consistent or variable sublots results in a magnitude of related problems:

Vickson/Alfredsson (1992) consider multiple products on two and three stages with unit-sized sublots, i.e. every item has to be transferred separately. If setup and transfer times are negligible and regular measures of performance are used, unit-sized sublots are proved to be Moreover, but restricted to the two-stage setting, it can be shown that optimal schedules exist with non-intermingling sublots, but if the number of stages increases, optimal solutions may require intermingling sublots [START_REF] Vickson | Two-and three-machine flow shop scheduling problems with equal sized transfer batches[END_REF], p. 1564). [START_REF] Vickson | Optimal lot streaming for multiple products in a two-machine flow shop[END_REF] considers non-intermingling sublots on two stages and investigates the question of how to solve lot streaming problems with job or sublot detached setups and attached setups for discrete and consistent sublots, respectively. He presents some closed form solutions for continuous sublots and a fast polynominally bounded search algorithm for discrete sublots. [START_REF] Baker | Lot streaming in the two-machine flow shop with setup times[END_REF] continues the analytic work of [START_REF] Vickson | Two-and three-machine flow shop scheduling problems with equal sized transfer batches[END_REF] by incorporating sublot-attached setup times into the model. He exploits some theoretical results of scheduling with time lags, but his findings strongly rely on the fact that in two-stage settings, permutation schedules are known to be optimal. For more than two stages, optimality is no longer guaranteed.

Lot streaming with multiple products and fixed sublot sizes is intensively discussed by [START_REF] Kalir | Optimal and heuristic solutions for the single and multiple batch flow shop lot streaming problems with equal sublots[END_REF]. In the case of continuous and fixed sublots, closed forms can be given for the optimal number of sublots and sublots-sizes, respectively. [START_REF] Kalir | A near-optimal heuristic for the sequencing problem in multiplebatch flow shops with small equal sublots[END_REF] present the BMI heuristic to sequence fixed sublots in multi-stage flow shops, if sublots are not allowed to intermingle. This heuristic constructs a schedule which attempts to minimize idle time on the bottleneck machine. [START_REF] Kalir | Constructing near optimal schedules for the flow-shop lot streaming problem with sublot-attached setups[END_REF] deal with sublot-attached setups, while equal and nonintermingling sublots are assumed. They present a solution procedure which finds optimal solutions if one product is streamed on two stages. They further propose procedures to gain near optimal solutions with equal, non-intermingling sublots for multiple products on two stages by applying Johnson's rule [START_REF] Johnson | Optimal two-and three-stage production schedules with setup time included[END_REF]. Moreover, they discuss an extension of their approach to the multi stage setting, modifying the BMI heuristic. [START_REF] Lee | Joint lot sizing with genetic algorithms for scheduling: evolving the chromosome structure[END_REF] minimize makespan in a multi-stage lotsizing and scheduling problem with significant and sequence depending setup times. The total lot size of each product is assumed to be given and items are allowed to be produced in an overlapping fashion -so their problem is equivalent to lot streaming with consistent and intermingling sublots in a permutation flow shop. They develop a genetic algorithm and focus their research on the effect of an evolving chromosome structure, where building blocks are directly interpreted as lot-sizes: In the beginning, a randomly generated sequence of fix and minimal lot sizes (e.g. 5 items per sublot) for all products is given. During the search, positions of sublots are interchanged and consecutive sublots of the same product are aggregated if and only if this aggregation is advantageous. As re-splitting of aggregated sublots is not modelled, sublot sizes are only sublots are allowed to intermingle, and finally the number of sublots for every product is adjusted by the genetic algorithm. However, sublot sizes are restricted to be multiples of the given minimal fixed sublot size, and the approach does not guarantee to find optimal solutions. [START_REF] Kumar | C: Lot streaming and scheduling heuristics for mmachine no-wait flowshops[END_REF] consider the multi-product, multi-stage, no-wait flow shop with nonintermingling discrete sublots. Their solution procedure consists of three-steps: First, optimal, consistent and continuous sublots are calculated separately for every product by linear programming. Secondly the sublots are rounded, as discrete sublots are required. In the third step the remaining sequencing problem among the products is reformulated as a TSP and solved heuristically. The approach of [START_REF] Kumar | C: Lot streaming and scheduling heuristics for mmachine no-wait flowshops[END_REF] generalizes the procedure of [START_REF] Sriskandarajah | Lot streaming and scheduling multiple products in twomachine no-wait flowshops[END_REF], which is restricted to two-stage settings, detached setups and consistent (continuous as well as discrete) lot sizes. In addition, [START_REF] Kumar | C: Lot streaming and scheduling heuristics for mmachine no-wait flowshops[END_REF] present two genetic algorithms to solve the sublot size or the product sequencing task. They further develop some hybrid heuristic approaches (combinations of genetic search, linear programming and heuristical TSP procedures) and allow the number of sublots to be adjusted during the search. [START_REF] Hall | Scheduling and lot streaming in flowshops with no-wait in process[END_REF] study the problem of Sriskandarajah/Wagneur (1999) with attached setups and develop an efficient heuristic to solve the multi-stage no-wait lot streaming problem with multiple products, if consistent non-intermingling but integer sublot sizes are assumed.

Only few studies on production environments other than flow shops are available:

- [START_REF] Zhang | Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops[END_REF] deal with lot streaming in m-1 hybrid flow shops to minimize mean completion time. On the first stage m identical and parallel machines are given, while the following stages are arranged like a traditional flow shop. In their study only two stages are investigated: two parallel machines are given on the first stage and one machine on the second stage. Each sublot requires a setup. Similar to the paper of [START_REF] Kumar | C: Lot streaming and scheduling heuristics for mmachine no-wait flowshops[END_REF], the number of sublots is a decision variable and sublot sizes are restricted to be larger than a fixed minimal sublot size. They present two heuristic approaches and a MIP model, but again sublots are not allowed to intermingle.

-Lot streaming in job shop environments is dealt with by Dauzère-Pérès/Lasserre (1997).

They propose an iterative procedure, where first lot streaming with consistent sublots is executed, and in a second step the scheduling decisions are regarded. As job shop scheduling is NP-hard, Dauzère-Pérès/Lasserre apply the shifting bottleneck heuristic [START_REF] Adams | The shifting bottleneck procedure for job shop scheduling[END_REF].

-Lot streaming in open shops was first considered by [START_REF] Şen | Lot streaming in open shops[END_REF]. They present some results for scheduling a single job in multi-stage open shops, considering single or multiple routing for each sublot. Furthermore they focus on the multiple-job lot streaming problem with two stages and show that lot streaming will only improve makespan if there is a job with large processing times. Close form solutions are given to calculate optimal sublot sizes and their sequences. [START_REF] Hall | Scheduling and lot streaming in two-machine open shops with no-wait in process[END_REF] study the problem of minimizing makespan in no-wait two-machine open shops with consistent and non-intermingling sublots by modifying the procedures given in [START_REF] Hall | Scheduling and lot streaming in flowshops with no-wait in process[END_REF]. As the problem additionally requires a machine sequence for each product, the study is restricted to two stage settings. A dynamic programming algorithm is used to generate all dominant schedule profiles for each product. These profiles are required to formulate the open shop problem as a generalized traveling salesman problem. A computationally efficient heuristic is presented and it is shown that good solutions can quickly be found for two machine open shops with up to 50 products.

Recapitulating the solution status of lot streaming problems, one important aspect -already highlighted by [START_REF] Potts | Flow shop scheduling with lot streaming[END_REF] -is still open. It is the question of how to find optimal solutions in a multi-stage multi-product flow shop if sublots are allowed to intermingle. In line with the studies mentioned above, we consider a permutation flow shop to let the sequencing decision only occur once, and restrict sublot sizes to consistent sublots. From a practical point of view permutation flow shops have two big advantages: Firstly, as the sequencing decision is determined on the first stage, the remaining stages do not need to bother with (error-prone) sequencing issues. Their schedule is given by the order the different sublots arrive. Secondly, from the perspective of fast error detection sublots need to be easily tracable. Obviously lot tracing is much easier in permutation flow shops than in open flow shops (Feldmann, 2005, p. 71).

In contrast to the studies mentioned above, our mixed integer programming formulation simultaneously determines the lot sizes and the sequence of sublots to guarantee overall optimal solutions. To the best of our knowledge the complexity status of the lot streaming problem considered in this paper is still open -but as makespan minimization in permutations flow shop scheduling is known to be NP-hard for three and more machines (Garey, et [START_REF] Trietsch | Basic techniques for lot streaming[END_REF][START_REF] Sriskandarajah | Lot streaming and scheduling multiple products in twomachine no-wait flowshops[END_REF], too.

The remainder of the paper is organized as follows: In the next section we introduce a model formulation for the multi-stage multi-product flow shop problem with sublots that are allowed to intermingle. This model formulation is afterwards extended to some settings that seem to be very interesting from a practical point of view. In the third section we discuss the benefits of lot streaming by introducing a problem generator and solving 1,760 problems to optimality.

The paper concludes with some final remarks in section four.

Model Formulation and Extensions

With the following model formulation, generally speaking, the two inherent goals of the problem, namely determining the sequence among the sublots and the size of the individual sublots, are solved simultaneously. We will make use of the following variables and symbols: 

, 1 jsk t jskt x x -£ j, k = 1, ..., J, j k < ; s = 1, ..., S; t = 1, ..., S-1 In line with most of the literature on lot streaming we assume that sublots do not need to be discrete, see (9). However, discrete sublots can easily be generated by non negative integer requirements for u js , j = 1, …, J, s = 1, …, S in (9). From a practical point of view there are examples for both cases: Books, cars, furniture, etc. require integer variables while for the production (not the sizing) of gas, beverages, concrete, electricity etc. real variables are appropriate.
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The number of binary variables needed can be calculated by 2

( 1) 2 S J J ⋅ ⋅ -. Note that the number of machines does no impact this formula as a permutation work flow is considered.

But with an increasing number of products and sublots the number of binary variables needed increases rather fast, see From the perspective of intermingling especially the following settings seem to be of interest:

Extension #1: No intermingling between the sublots of one (or more) of the J products with the other products

All sublots of one (or more) of the J products are produced one after the other and are not allowed to intermingle with the other products. This setting might be advantageous if the setup costs for one or more products are high. Let us assume product three is not allowed to intermingle (and J = 3, S = 3). A possible sequence on the machines might be: (1_1, 1_2, 2_1, 1_3, 3_1, 3_2, 3_3, 2_2, 2_3). The first number indicates the product, the second number the sublot. To formulate a situation like this we can use the restrictions (3.1) and (3.2) of the above model formulation for all products j and k that are allowed to intermingle. We assume that J i contains all products that are allowed to intermingle and the subset J n contains the products that are not allowed to intermingle, i.e. J ={J i , J n }:

(3.1)

(1 )
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For the products l ∈ J n we make use of the following binary variables:

x jsl := binary variable, which takes the value 1 if sublot s of product j ∈ J i is sequenced prior to product l ∈ J n , 0 otherwise

(3.3) 1 (1 ) jsm jsm l m jsl b p b x R + £ + - j ∈ J i ; l ∈ J n ; s = 1, ..., S; m = 1, ..., M (3.4) jsm lSm lSm jsl b p b x R + £ + j ∈ J i ; l ∈ J n ; s = 1, ..., S; m = 1, ..., M
Furthermore, the definition of the binary variables in (9) has to be adjusted. All other restrictions of the above model formulation apply for both intermingling and nonintermingling products. Another "quick and dirty" approach for this setting was to use the model formulation (1) to ( 9) and equate the binary variables for the sublots of the product(s) that is (are) not allowed to intermingle. For the above example this would be x js31 = x js32 =

x js33 , j = 1, 2 and s = 1, 2, 3.

A model without any intermingling would only make use of the restrictions (3.3) and (3.4). In this case the sequencing part of the problem reduces to finding a sequence among the products (instead of among the sublots).

Extension #2: Overall number of sublots given, but not the number of sublots per product

From a practical point of view a second interesting setting is the following: The overall number of sublots is given but not the number of sublots per product. For example it might, from an logistical perspective, be advantageous to have at most 8 sublots (among J = 3 products). Now the task is to find the optimal number of sublots per product, the optimal sequence among the sublots, and the optimal size of the sublots. To formulate a setting like this we make use of position related binary variables. 
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The restrictions (1') ensure that for each product L j units are produced; note that at most P -J + 1 sublots are possible for one job, as for each of the other jobs at least one sublots is 

Sequence-related binary variables versus position-related binary variables for the multi-stage multi-product flow shop problem with sublots that are allowed to intermingle

The multi-stage multi-product flow shop problem with sublots that are allowed to intermingle can easily be formulated with position-related binary variables as well. At first glance the model formulation (1') to (9') seems to be very compact and easy to solve, and the model formulation with sequence-dependent binary variables (1) to ( 9) looks more complex.

However, it turned out to be far easier to solve (1) to ( 9) than (1') to (9'). To demonstrate this attribute of the two models, the number of sublots used for every product is restricted by (10'), so both models become comparable.

(10')

1 P pj p P x J = = ∑ j = 1, ..., J
In Table 2 9) for the multi-stage multi-product flow shop problem with sublots that are allowed to intermingle. If only an overall number of sublots is given, sequence-dependent binary variables cannot be applied with reasonable effort.

Therefore we decided to present the model formulation (1') to (9') making use of position related-binary variables for this extension. This model formulation furthermore has the advantage that no-wait and no-idling schedules can be required by formulating (5') or (6') as equations, respectively.

Benefit of lot streaming and computational experiments

Studies to evaluate the potential benefit of lot streaming are rare. To the best of our knowledge just two papers tackle this issue:

• Baker/Jia (1993) present a comparative study of over 6,000 test-problems to evaluate the effect of lot streaming in a three stage one-product setting, if non-idling is assumed or consistent sublots or equal sublots and non-idling are given. They found diminishing improvements in makespan reduction for an increasing number of sublots. For every solution procedure, more than half of the potential makespan reduction from ten sublots is obtained with just two sublots, while 80% of the benefit of ten sublots is already obtained with three sublots (Baker/Jia, 1993, p. 565).

• [START_REF] Kalir | Evaluation of the potential benefits of lot streaming in flow-shop systems[END_REF] present some approximation forms for the evaluation of the potential consequences, if one or multiple products are streamed in a flow shop. If equal sublot sizes are assumed, it becomes possible to gain upper-bounds for makespan, mean flow time and work-in process in the single product case. Regarding multiple products, the problem is approachable only if an identical, i.e. product-unspecific, bottleneck machine exists and non-intermingling and unit sized sublots are used. Solely for this limited setting approximative upper-bounds on the benefit of lot streaming are derived.

We are not aware of any results on the benefit of lot streaming with multiple products in a multi-stage setting for consistent sublots. Moreover, no reproducible instances exist in the literature. Along with our computational results we decided to develop a problem generatorcalled LSGen-to make our computational results reproducible. Furthermore the possibility to replicate benchmark instances may serve as a base for future research on "larger" problems.

LSGen can easily be downloaded via the following link: http://www.wiwi.uni- 13 bielefeld.de/%7Ekistner/mitarbeiter/feldmann/lsgen.exe1 . Within LSGen it is just necessary to appoint the number of products J, the number of stages M and the number of the instance N, to receive the reproducible instance J_M_N. LSGen calculates r jm and L j , as uniformly distributed integers within the following ranges: r jm = {1, ..., 12}; L j = {10, ..., 40}.

Additionally, a J×J matrix with c jk = {0, ..., 30} is given, if sequence dependent setup times are applied. The pseudo-random numbers used in LSGen are initialized with a seed, calculated as a function in S, M, N to assure that all instances are calculated independent to other instances and that bigger and smaller instances do not systematically share common properties: seed = 3,965,481 + 1,000*J + 100*N + M . In the following the data of instance 3_4_10 (three jobs: J = 3, four stages: M = 4, tenth instance: N = 10) are given: Additionally, all calculations are repeated for the non-intermingle case, so in total 1,760 optimal schedules form the basis for the statistical evaluation. For these settings solutions with and without intermingling can be found within a second and up to 45 minutes applying First, we investigate whether an increase in S will show a slope that corresponds to the findings given by [START_REF] Baker | A comparative study of lot streaming procedures[END_REF] and whether the problem size will show any effect on the benefit of lot streaming. In Figure 2 the averaged marginal benefit of additional sublots is shown. The marginal benefit mb S is calculated by: mb S = (Z S -Z S+1 ) / Z S where Z S denotes the optimal makespan for lot streaming with S consistent sublots. Hence, mb S denotes the percentage reduction of Z S if one additional sublot (Z S+1 ) is allowed. All data of Figure 2 are averaged over 10 instances. For example, among the first ten benchmark problems with J = 2 and 6 stages, i.e. 2_6_1, 2_6_2, …, 2_6_10, allowing two sublots, reduces the makespan by 34.69% compared to the situation without sublots (i.e. one production lot). Allowing three sublots reduces the makespan by an additional 17.21% compared to the situation with two sublots.

<< please insert Figure 2 here >>

The benefit of lot streaming in multi-stage settings increases not only with the number of sublots but also with a growing number of stages, see Figure 2. This pattern holds across all numbers of sublots, i.e. the effect of the 4 th additional sublot in an eight stage setting is on average higher than the effect of the 4 th sublot in a three stage setting. This finding gives important advice to production managers if they have to decide which of the production lines should be accelerated by lot streaming. Considering 10 stage settings, streaming of two products in two sublots reduces makespan compared to the situation without lot streaming by 39% on average while in three stage settings an improvement of only 25% can be realized.

The results for lot streaming with three products show the same pattern, thus we decided to omit them.

The averaged total benefit of lot streaming is given in Table 3. The total benefit tb S is calculated by: tb S = (Z 1 -Z S ) / Z 1 . Again, all data of Table 3 are averaged over 10 instances.

For example: among our benchmark problems with J = 2 and 6 stages allowing 5 sublots, reduces the makespan to 54.76% compared to the situation if lot streaming is not applied. On average, over 100 benchmark instances, lot streaming with intermingling is 5.01% better than lot streaming without intermingling, if seven sublots are allowed for each product. The standard deviation, σ, is 6.97% in this case. The minimal deviation is zero and the maximal deviation is 34.92%. This means that for at least one of the benchmark instances identical optimal schedules for lot streaming with and without intermingling exist. On the other hand there is a benchmark instance (2_6_4) where lot streaming with intermingling sublots gives an advantage of 34.92% over lot streaming without intermingling; the optimal makespan with and without intermingling is 435.74 and 587.93, respectively. Again the results for J = 3 are omitted here, as they show a similar pattern. The maximum deviation was found to increase with an increasing number of sublots, which is independent on the number of stages. As the mean deviation seems to be quite small, the application of non-intermingling sublots is a good recommendation for many instances, especially if setups have to be considered. Nevertheless, approaches to calculate solutions with intermingling sublots are valuable, as in some settings they may offer remarkable improvements; up to 34.92% for our benchmark instances.

F

Summary

Chang/Chiu (2005, p. 1532) recommend to tackle multiple product lot streaming problems not by hierarchical approaches but by simultaneous solution procedures. We have been able to present a model formulation to solve the multi-stage multi-product flow shop problem with sublots that are allowed to intermingle by standard optimization software. The applicability of the model formulation is due to the alleged complexity status of the problem and the subsequent use of binary variables somehow limited. However, we have been able to solve problems with 2 or 3 products and up to 7 sublots per product to optimality in a reasonable time. The number of stages hardly influences the effort to solving the problem; for instance solving a problem with 40 stages and 7 sublots per product takes less than 15 minutes.

From the computational results it became obvious that it is, at least for some instances, very beneficial to allow the sublots to intermingle in a multi-stage multi-product flow shop environment. Thus future research might be directed towards the development of meta heuristical solution approaches to solve larger instances of multiple product lot streaming problems; the application of meta heuristics for example is recommendable for integer lot sizes especially. 
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  . Nevertheless, sequencing and lot sizing are decided simultaneously,

  machines, m = 1, …, M J := number of products j,k := indices for the products, j, k = 1, ..., J r jm := processing time for one unit of product j on machine m u js := number of units produced in sublot s of product j p jsm := processing time of sublot s of product j on machine m L j := number of identical items of product j to be produced R := sufficiently large number b jsm := starting time of the sublot s of product j on machine mx jskt := binary variable, which takes the value 1 if sublot s of product j is sequenced prior to sublot t of product k, 0 otherwise Note that the use of sequence-related binary variables bears some similarity to[START_REF] Manne | On the job-shop scheduling problem[END_REF] formulation of the job shop scheduling problem. The multi-stage multi-product flow shop problem with sublots that are allowed to intermingle can now be formulated: p jsm = u js r jm j = 1, ..., J; s = 1, ..., S; m = 1, ..., M = 1, ..., J; j k < ; s, t = 1, ..., S; m = 1, ..., M = 1, ..., J; j k < ; s, t = 1, ..., S; m = 1, ..., M ..., J; s = 1, ..., S; m = 2, ..., M ..., J; s = 2, ..., S; m = 1, ..., M

  j = 1, ... J, s = 1, ..., S, m = 1, ..., M Restrictions (1) ensure that in sum L j items are processed of product j. With (2) the processing times of the sublots are calculated. Restrictions (3.1) and (3.2) determine the sequence of sublots. Since it is a permutation flow shop, no machine index is needed for x. (3.1) is binding if (and only if) x jskt takes the value 1. In this case sublot s of product j is scheduled prior to sublot t of product k on machine m and the processing of sublot t of product k is forced to start after sublot s of product j has been finished. If, on the other hand, x jskt takes the value zero, (3.1) are not binding, as R is added on the right hand side. The disjunctive counterpart is reflected by restrictions (3.2). These restrictions are only binding, if x jskt takes the value 0. The restrictions (4) and (5) assure that the sublots of the same product do not overlap: With restrictions (4) sublot s on machine m is not allowed to start before sublot s on machine m -1 has been finished. Restrictions (5) prevent that two sublots, s and s -1, are processed simultaneously on one machine. From a computational point of view, is it advantageous to decrease the number of possible permutations of the binary variables. As stated in (6), an inherent structure among the variables x jskt is known: If sublot s of product j is scheduled prior to sublot t of product k, sublot s must also be scheduled prior to sublot t + 1, t + 2, ..., S of product k. With the restrictions (6) the number of iterations (LINGO 7.0 is used) could be . 60% compared to the model without them. In (7) the completion time of the last sublot S on the last machine M are used to define the makespan Z.

  sublots allowed, p = 1, …, P x pj := binary variable which takes the value 1 if at the p-th position product j is produced, 0 otherwise u pj := number of units produced of product j in position p p pjm := processing time of product j in position p on machine m b pm := starting time of the product in position p on machine mThe model formulation is as follows: ) p pjm = u pj r jm p = 1, …, P; j = 1, ..., J; m = 1, ..., M …, P; j = 1, ..., J; m = 1, ..., M -1

  necessary. The restrictions (3') allow exactly one product being produced at each of the P positions. This of course means that a positive production time may only occur if the particular binary variable takes the value 1 (4'). All other restrictions are obvious and similar to the model formulation (1) to (9).

  (1') to (10') needs on average significantly more iterations than the model with sequencerelated binary variables. We decided not to analyze the difference between the two models to present the formulation (1) to (

  Gantt Chart of instance 3_4_10 depicting an optimal solution with four discrete, intermingling and consistent sublots (no setups) is given. The optimal makespan is Z* = 909. << please insert Figure1here >> In this solution the four sublots of job 3 are scheduled first. Then the first sublot of job 2 (named 2_1) follows, but job 2 is intermingled by sublots of job 1. The following sequence and sublot-sizes are found to be optimal: u 31 = 3; u 32 = 4; u 33 = 6; u 34 = 5; u 21 = 10; u 11 = 7; u 22 = 11; u 12 = 9; u 23 = 4, u 24 = 13; u 13 = 9; u 14 = 7. The optimal makespan without intermingling sublots is 1,071, which equates to a disadvantage of 17.8 %.Overall we generated and solved 160 instances (J = {2, 3}; M = {3, 4,... , 10} N = {1, 2,... , 10}). The number of sublots S was set to be in the interval {1, 2,... , 7} for J = 2 and S = {1, 2, ..., 4} for those instances with J = 3. Consequently 880 lot-streaming problems were solved.

  a standard PC(Pentium 4, 1.8 GHz, Windows 2000). In the following we survey average results. The details are given in the Appendix.

Figure 1 :Figure 2 :

 12 Figure 1: Optimal solution of instance 3_4_10 with S = 4 intermingling discrete sublots
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	1976), the problem under study is most probably NP hard
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Table 1 :

 1 

	J\S	2	3	4	5	6	7	…	10
	2	4	9	16	25	36	49		100
	3	12	27	48	75	108	197		300
	…								
	10	180	405	720	1,125	1,620	2,205		4,500

Table 1 :

 1 Number of binary variables needed depending on J and S.

Table 2 :

 2 Exemplary comparison of the number of branch and bound iterations of the two models Considering the instances given in Table 2, the model with position-related binary variables

	instance	Sublots per product	Iterations needed by model (1) to (9)	Iterations needed by model (1') to (10')	%
	2_5_1	7	190,450	330,637	173.6
	2_5_2	7	155,086	233,450	150.5
	2_5_3	7	168,308	320,189	190.2
	3_5_1	4	3,229,003	3,990,200	123.6
	3_5_2	4	2,133,996	4,066,437	190.6
	3_5_3	4	3,714,000	4,122,178	111.0
	4_4_1	3	8,918,934	14,807,426	166.0
	4_4_2	3	17,678,258	28,017,556	158.5
	4_4_3	3	5,318,975	14,550,500	273.6

the number of branch and bound iterations for both models are given. We solved lot streaming instances with 2, 3 and 4 products. The notation (taken from our problem generator introduced in the following section) indicates the number of products, number of stages and number of instance. For example in instance 2_5_1 two products are streamed over five stages, while instance number 1 is investigated.

Table 3 :

 3 Total benefit of lot streaming with consistent intermingling sublots and J = 2, M = {3,..., 10}, S = {2,..., 7}If the situation of multi product lot streaming with versus without intermingling sublots is considered, we found the following averaged percentage results (over 100 benchmark

	Sublots	2		3		4		5	6	7
	Stages						
	3	25.44%		33.33%	36.77%	38.44%	39.37%	39.94%
	4	29.38%		38.88%	43.42%	46.05%	47.71%	48.78%
	5	33.19%		43.75%	48.57%	51.27%	53.30%	54.50%
	6	34.69%		45.93%	51.48%	54.76%	56.89%	58.38%
	7	35.57%		47.24%	53.11%	56.59%	58.82%	60.36%
	8	36.52%		49.03%	55.18%	58.79%	61.18%	62.83%
	9 10	38.81% o r 39.04%	51.61% 52.13%	57.92% 58.60%	61.62% 62.46%	64.05% 65.01%	65.75% 66.85%
		P			
			e		
				e r	
	instances):				R	
	S	2	3		4	e 5	6	7
	Mean σ Range: Min 0.00 1.39 2.51	2.49 3.57 0.00	3.37 4.71 0.00	4.05 v 4.60 5.71 6.39 i e 0.00 0.00	5.01 6.97 0.00
	w Max 10.22 15.59 21.65 27.39 31.61 34.92
								O n l
								y
								15

Table 4 :

 4 Comparison of intermingling versus non-intermingling sublots and J = 2, M = (3,..., 10), S = (2,..., 7)
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We will gladly distribute LSGen or the collection of instances, used in this paper by mail.

Acknowledgments

We wish to thank two anonymous referees for their helpful comments on an earlier version of this paper.