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MODELING INDUSTRIAL LOT SIZING PROBLEMS: A REVIEW

In this paper we give an overview of recent developments in the field of modeling deterministic single-level dynamic lot sizing problems. The focus of this paper is on the modeling of various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection.

Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research.

Introduction

In this review, we will discuss models that have been developed for optimizing production planning and inventory management. Lot sizing models determine the optimal timing and level of production. They can be classified according to their time scale, the demand distribution and the time horizon. The famous Economic Order Quantity model (EOQ) assumes a continuous time scale, constant demand rate and infinite time horizon. The extension to multiple items and constant production rates is known as the Economic Lot Scheduling Problem (ELSP) [START_REF] Elmaghraby | The Economic Lot Scheduling Problem (ELSP): Review and Extensions[END_REF][START_REF] Zipkin | Computing Optimal Lot Sizes in the Economic Lot Scheduling Problem[END_REF]. The subject of this review is the dynamic lot sizing problem with a discrete time scale, deterministic dynamic demand and finite time horizon. We will see that lot sizing models will incorporate more and more scheduling aspects. These scheduling models essentially determine the start and finish times of jobs (scheduling), the order in which jobs are processed (sequencing) and the assignment of jobs to machines (loading). [START_REF] Lawler | Sequencing and Scheduling: Algorithms and Complexity[END_REF] give an extensive overview of models and algorithms for these problems.

A general overview of many different aspects of production planning and inventory management can be found in Graves et al. (1993) and in standard textbooks such as Silver et al. (1998), [START_REF] Hopp | Factory Physics[END_REF] or [START_REF] Vollmann | Manufacturing Planning and Control Systems[END_REF]. Several studies focus specifically on the dynamic lot sizing problem [START_REF] De Bodt | Lot Sizing under Dynamic Demand Conditions: A Review[END_REF][START_REF] Bahl | Determining Lot Sizes and Resource Requirements: A Review[END_REF][START_REF] Kuik | Batching Decisions: Structure and Models[END_REF][START_REF] Wolsey | Progress with Single-Item Lot-Sizing[END_REF][START_REF] Drexl | Lot Sizing and Scheduling -Survey and Extensions[END_REF][START_REF] Belvaux | Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs[END_REF][START_REF] Karimi | The capacitated lot sizing problem: a review of models and algorithms[END_REF][START_REF] Brahimi | Single Item Lot Sizing Problems[END_REF][START_REF] Jans | Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches[END_REF].

This review has a threefold contribution. Since the excellent reviews of [START_REF] Kuik | Batching Decisions: Structure and Models[END_REF] and [START_REF] Drexl | Lot Sizing and Scheduling -Survey and Extensions[END_REF] the research on dynamic lot sizing has further grown substantially. First of all, this paper fills a gap by providing a comprehensive overview of the latest literature in this field. Second, this paper aims to provide a general review and an extensive list of references for researchers in the field.

Although this literature review is very extensive, we realize that it is impossible to be exhaustive. We realize that a model and its solution approach are inherently linked: more complex models demand also more complex solution approaches to solve them. However, in this paper we focus on the modeling aspect as much as possible in order to create some structure in the ever growing literature. This focus also distinguishes this paper from other lot sizing reviews. A recent review of solution approaches can be found in [START_REF] Jans | Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches[END_REF]. We show that the lot sizing problem is a core substructure in many applications by reviewing both more operational and tactical or strategic problems. Third, a comprehensive review further allows us to indicate new areas for further research. The power of production planning theory comes from the ability to solve more and more complex industrial problems. Whereas the early models where usually more compact, capturing the main trade-off, the extensions focus more and more on incorporating relevant industrial concerns. Therefore, this review is also very timely.

Lot Sizing Models

The single item uncapacitated lot sizing problem

The simplest form of the dynamic lot sizing problem is the single item uncapacitated problem: (2)
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We have three key variables in each period t: the production level (x t ), the set up decision (y t ) and the inventory variable (s t ). With each of these key variables is a cost associated: vc t , sc t and hc t are respectively the variable production cost, set up cost and holding cost in period t. T is the set of all periods in the planning horizon and m is the last period. Demand for each period, d t , is known and sd tk is the cumulative demand for period t until k. The objective is to minimize the total cost of production, set up and inventory (1). We find here the same basic trade-off between set ups and inventory which is also present in the EOQ formula. Demand can be met from production in the current period or inventory left over from the previous period (2).

Any excess is carried over as inventory to the next period. In each period we need a set up if we want to produce anything (3). As there is no ending inventory in an optimal solution, production is limited by the remaining cumulative demand. Finally, the production and inventory variables must be positive and the set up variables are binary (4). This problem was first discussed in the seminal paper by [START_REF] Wagner | Dynamic Version of the Economic Lot Size Model[END_REF]. [START_REF] Zangwill | A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System -A Network Approach[END_REF] showed that this problem is actually a fixed charge network problem. For a 5 period problem, the network can be depicted as shown in Figure 1. The arcs (0, t) correspond to the production variables x t and have an associated unit flow cost of vc t . If the production is strictly positive, i.e. x t > 0, then there is also a fixed cost of sc t on the arc. The arcs (t, t+1) correspond to the inventory variables s t and have a unit flow cost of hc t . In network terms we say that node 0 is the supply or source node, nodes 1 to 5 are the demand nodes and the demand balance equations (2) correspond to the conservation of flow constraints.

Fig. 1.

Network for the single item uncapacitated lot sizing problem

Capacitated Multi-Item Lot Sizing Problem (CLSP)

Of course, companies do not have an unlimited capacity and usually they make more than one product. Any realistic model has to take this into account. How these two elements are modeled, depends on the mode of production and the choice of the time period. In the large bucket model, several items can be produced on the same machine in the same time period. In the small bucket model, a machine can only produce one type of product in one period. 
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We observe that in this formulation, product specific variables and parameters now have an extra index i to identify the item. For each item we have the demand balance equations ( 6) and set up constraints (7). The main difference with the uncapacitated model is the addition of the capacity constraint (8). In the set up constraint (7), the 'big M' is usually set equal to 
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The new variable z it is the start up variable and there is an associated start up cost of g it . A start up occurs when the machine is set up for an item for which it was not set up in the previous period. The objective function (10) minimizes the total cost of start ups, set ups, variable production and inventory. We still have the regular demand constraints (11). Further, we have the single mode constraint (12), imposing that at most one type of product can be made in each time period. For each item, production can be up to capacity if there is a set up (13). The start up variables are modeled in constraint ( 14). There will only be a start up if the machine is set up for an item for which it was not set up in the previous period. A set up can be carried over to the next period if production of the same product is continued. Finally, the set up and start up variables are binary (15). [START_REF] Karmarkar | The Deterministic Dynamic Product Cycling Problem[END_REF] consider this problem without set up costs and called it the product cycling problem. [START_REF] Karmarkar | The Dynamic Lot-Sizing Problem with Startup and Reservation Costs[END_REF] study the single item version of the CSLP, both for the uncapacitated and capacitated case. This problem is also referred to as lot sizing with start up costs [START_REF] Wolsey | Uncapacitated Lot-Sizing Problems with Start-Up Costs[END_REF][START_REF] Sandbothe | The capacitated dynamic lot-sizing problem with startup and reservation costs: A forward algorithm solution[END_REF]).

The Discrete Lot Sizing and Scheduling Problem (DLSP) is a small bucket lot sizing model with a discrete production policy: if there is any production in a period, it must be at full capacity. The generic model [START_REF] Fleischmann | The Discrete Lot-Sizing and Scheduling Problem[END_REF]) has a similar structure as the CSLP ( 10)-( 15), except that the capacity and set up constraint (13) becomes an equality:
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Note that the production variable can be substituted out through this constraint. [START_REF] Jordan | Discrete Lotsizing and Scheduling by Batch Sequencing[END_REF] showed the equivalence between DLSP for a single machine and the batch sequencing problem.

Further Extensions of Lot Sizing Models

Production planning problems are often classified according to the hierarchical framework of strategic, tactical and operational decision making (e.g. [START_REF] Bitran | Hierarchical production planning[END_REF]. Depending on the decision horizon and level of aggregation, lot sizing models are usually classified as either tactical or operational models. A yearly master production schedule at the plant level is used for tactical planning. Production sequencing and loading are operational decisions and determining the lot sizes for products in the next month falls somewhere in between. We observe that the basic lot sizing models from the previous section are extended in two different directions. On one hand, lot sizing formulations include more operational and scheduling issues in order to model more accurately the production process, costs and demand side. We organize these extensions around four topics: set ups, production, inventory and demand, but clearly some extensions relate to more than one of them. Here we also discuss the use of these models in a rolling horizon way. On the other hand, these models are incorporated into more tactical and strategic problems for which the operational lot sizing decisions are a core substructure.

Operational models

Extension on the set ups

Sometimes, there are not only set ups for individual items, called minor set ups, but there is a joint or major set up as well, which is incurred when at least one product is produced. These joint costs are used to model general economies of scale in manufacturing or procurement. This problem is extensively studied (Veinott 1969, Atkins and[START_REF] Atkins | A heuristic with lower bound performance guarantee for the multi-product dynamic lot-size problem[END_REF] and is sometimes referred to as the coordinated replenishment problem [START_REF] Kao | A multi-product dynamic lot-size model with individual and joint set-up costs[END_REF][START_REF] Chung | The coordinated replenishment dynamic lot-sizing problem with quantity discounts[END_REF], 2000[START_REF] Robinson | A dual ascent procedure for multiproduct dynamic demand coordinated replenishment with backlogging[END_REF][START_REF] Robinson | Coordinated Capacitated Lot-Sizing Problem with Dynamic Demand: A Lagrangian Heuristic[END_REF] or the joint replenishment problem (Joneja 1990, Federgruen and[START_REF] Federgruen | The joint replenishment problem with time-varying costs and demands: Efficient, asymptotic and ε -optimal solutions[END_REF]). In the case where the orders can be shipped via multiple modes, there is a different set up structure associated with each mode [START_REF] Jaruphongsa | A dynamic lot-sizing model with multimode replenishments: polynomial algorithms for special cases with dual and multiple modes[END_REF]. Production planning models without set ups have also been considered. [START_REF] Bowman | Production Scheduling by the Transportation Method of Linear Programming[END_REF] shows that for the problem with convex cost functions, this problem can be solved as a transportation problem. Lotfi and Chen (1991) and [START_REF] Hindi | Algorithms for Capacitated, Multi-Item Lot-Sizing Without Set-ups[END_REF] discuss the capacitated case. On the other hand, sometimes the only objective is to minimize the costs of set ups or start ups. This is the case for the Changeover Scheduling Problem (CSP) (Glassey 1968, Hu et al. 1987, Blocher and Chand 1996 a,b , Blocher et al. 1999). The problem assumes a discrete production policy and is as such related to the DLSP. A changeover is performed when production is switched to another product. In the DLSP terminology, this was called a start up. No inventory holding, production or set up costs are considered. [START_REF] Miller | Tight MIP formulations for multi-item discrete lotsizingproblems[END_REF] consider the discrete lot sizing problem with set ups but without start ups. Note that there is sometimes confusion in the literature between the terms set up and start up and we use the definition according to [START_REF] Vanderbeck | Lot-Sizing with Start-Up Times[END_REF]. In the production smoothing problem (Zangwill 1966 b , Korgaonker 1977), a penalty proportional to the changes in production level is charged instead of a set up cost. Several authors (e.g. [START_REF] Manne | Programming of Economic Lot Sizes[END_REF][START_REF] Kleindorfer | A Lower Bounding Structure for Lot-Size Scheduling Problems[END_REF][START_REF] Newson | Multi-Item Lot Size Scheduling by Heuristic Part I: with Fixed Resources[END_REF][START_REF] Trigeiro | Capacitated Lot Sizing with Set-Up Times[END_REF][START_REF] Diaby | A Lagrangean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing[END_REF][START_REF] Du Merle | A Lagrangian Relaxation of the Capacitated Multi-Item Lot Sizing Problem Solved with an Interior Point Cutting Plane Algorithm[END_REF], Armantano et al. 1999[START_REF] Gopalakrishnan | A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-Up Carryover[END_REF][START_REF] Degraeve | A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot sizing problem with set up times[END_REF][START_REF] Hindi | An effective heuristic for the CLSP with set-up times[END_REF] An often considered critique on the CLSP states that this model does not allow a set up to be carried over from one period to the next, even if the last product in one period and the first product in the next are the same. This has led to new models which allow for such a set up carry over, at the expense of introducing additional binary variables [START_REF] Gopalakrishnan | A Framework for Modeling Setup Carryover in the Capacitated Lot Sizing Problem[END_REF], Sox and Goa 1999[START_REF] Gopalakrishnan | A modified framework for modeling set-up carryover in the capacitated lotsizing problem[END_REF][START_REF] Porkka | Multiperiod production planning carrying over set-up time[END_REF][START_REF] Gupta | The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times[END_REF]. This problem is also referred to as the capacitated lot sizing problem with linked lot sizes [START_REF] Suerie | The capacitated lot-sizing problem with linked lot sizes[END_REF].

Computational results show that this model leads to considerable cost savings through the set up carry over (Gopalokrishnan et al. 2001). The Proportional Lot Sizing and Scheduling Problem (PLSP) relaxes the restriction of allowing production for only one product in each time period as imposed by the DLSP and CSLP. In the PLSP at most two different items can be produced in each time period. There is still at most one set up in each period, but the set up from the previous period can be carried over to the next period. Hence, if two items are produced in period t, then the first item must be the same as the last item in the previous period. Drexl andHaase (1995, 1996) discuss this model and extensions such as set up times and multiple machines.

A further refinement allows the set up times to be split between two periods [START_REF] Suerie | Modeling of period overlapping setup times[END_REF]. Kimms (1996 a,b , 1999) presents the multi-level version of the PLSP. The PLSP and the model with set up carry over are examples of lot sizing problems that incorporate more and more sequencing aspects. A further step for the CLSP is to determine a sequence for all the products within a time period, and not just for the first and last one. This is necessary if set up costs or times are sequence dependent [START_REF] Dilts | Joint Lot Sizing and Scheduling of Multiple Items with Sequence-dependent Setup Costs[END_REF][START_REF] Haase | Capacitated lot-sizing with sequence dependent setup costs[END_REF][START_REF] Fleischmann | The general lotsizing and scheduling problem[END_REF][START_REF] Kang | Lotsizing and Scheduling on Parellel Machines with Sequence-Dependent Setup Costs[END_REF][START_REF] Laguna | A heuristic for production scheduling and inventory control in the presence of sequence-dependent setup times[END_REF][START_REF] Clark | Rolling-horizon lot-sizing when set-up times are sequencedependent[END_REF][START_REF] Haase | Lot sizing and scheduling with sequence-dependent setup costs andtimes and efficient rescheduling opportunities[END_REF][START_REF] Meyr | Simultaneous lotsizing and scheduling by combining local search with dual reoptimization[END_REF][START_REF] Gupta | The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times[END_REF]. In the General Lot Sizing and Scheduling Problem [START_REF] Fleischmann | The general lotsizing and scheduling problem[END_REF], the macro-periods are divided into a fixed number of micro-periods with variable length, which allows the sequencing of products. [START_REF] Fleischmann | The Discrete Lot-Sizing and Scheduling Problem with Sequence-Dependent Setup Costs[END_REF] considers In his review on change-over modeling [START_REF] Wolsey | MIP Modelling of Changeovers in Production Planning and Scheduling Problems[END_REF] studies sequence dependent start ups for the CSLP. Belvaux andWolsy (2000, 2001) present a comprehensive lot sizing model, including sequence dependent costs or times and switch off variables. [START_REF] Potts | Integrating scheduling with batching and lotsizing: A review of algorithms and complexity[END_REF] discuss the integration of scheduling and lot sizing from a scheduling perspective.

Small set up costs and times are essential for implementing a successful Just-In-Time approach. Set up cost and time reduction programmes require an initial capital investment and result in a more flexible production. [START_REF] Zangwill | From EOQ to ZI[END_REF] points out that some intuitive implications of a set up reduction in an EOQ environment do not necessarily hold in the context of dynamic lot sizing. [START_REF] Mekler | Setup cost reduction in the dynamic lot-size model[END_REF], [START_REF] Diaby | Optimal setup time reduction for a single product with dynamic demands[END_REF] and [START_REF] Denizel | Dynamic lot-sizing with setup cost reduction[END_REF] offer models to evaluate the tradeoff between the cost and benefits of a set up time reduction within a dynamic lot sizing framework. The set up times and costs are variables and depend on previous investment decisions. Another way to achieve lower set up costs is through learning. According to the theory of the learning curve, production costs decrease as cumulative output increases over time. [START_REF] Chand | A Dynamic Lot Sizing Model with Learning in Setups[END_REF] present a lot sizing model with learning in set ups. Set up costs depend on the total number of set ups up to now and there is a declining set up cost for successive set ups. Benefits from smaller lot sizes are captured in terms of reduced set up costs. [START_REF] Tzur | Learning in setups: Analysis, minimal forecast horizons, and algorithms[END_REF] provide a more general model where the costs of a Learning can also decrease the set up time [START_REF] Pratsini | The capacitated dynamic lot size problem with variable technology[END_REF].

Almost all of the dynamic lot sizing models assume that production is done on reliable machines. [START_REF] Kuhn | A dynamic lot sizing model with exponential machine breakdowns[END_REF] analyses the effects of set up recovery with machine breakdowns and corrective maintenance for the single item uncapacitated lot sizing problem. In a first case, the assumption is made that the set up is totally lost after a breakdown. In a second case, the costs of resuming production of the same item after a breakdown is lower compared to the original set up cost.

Extensions on the Production

In some manufacturing environments, production is done in batches (Lipmann 1969, [START_REF] Lee | A solution to the multiple set-up problem with dynamic demand[END_REF][START_REF] Pochet | Lot-Sizing with Constant Batches: Formulation and Valid Inequalities[END_REF][START_REF] Constantino | Lower Bounds in Lot-Sizing Models: A Polyhedral Study[END_REF][START_REF] Van Vyve | Algorithms for single item constant capacity lot sizing problems[END_REF]. In the mathematical formulation, the set up variable y it becomes general integer instead of binary and indicates the number of batches produced. Every time production exceeds a multiple of the batch size, a new set up cost is incurred. This is for example the case in an environment where production is limited by a tank size. Each time one has to fill the tank again a set up cost is incurred, even if the same item is produced. This can also be interpreted as a stepwise cargo cost function [START_REF] Lee | Inventory replenishment model: lot sizing versus just-in-time delivery[END_REF] where the capacity of each cargo is limited. Ben-Khedher and Yano (1994) assume that containers, which may be only partially filled, are assigned to trucks and there is a fixed charge for each truck used. [START_REF] Elmaghraby | Optimization of batch ordering under deterministic variable demand[END_REF], [START_REF] Dorsey | A production-scheduling problem with batch processing[END_REF][START_REF] Van Vyve | Algorithms for single item constant capacity lot sizing problems[END_REF] and [START_REF] Li | Dynamic lot sizing with batch ordering and truckload discounts[END_REF] impose that production is done in exact multiples of the batch size.

Hence these models assume a discrete production policy but do not consider start up interactions over time. Manufactured units may not be available instantaneously, but arrive only in inventory after the whole batch has been completed (Brüggemann andJahnke 1994, 2000). [START_REF] Stowers | Lot sizing problems with strong set-up interactions[END_REF] and [START_REF] Bhatia | A variable redefinition approach for the lot sizing problem with strong set-up interaction[END_REF] consider a variant of the joint replenishment lot sizing problem where products belonging to the same family can only be made in a fixed proportion to each other. A product can be part of several different families. This type of production occurs in the manufacturing of metal or plastic plates and die-cast parts and in some chemical production problems. It is referred to as lot sizing with strong set up interaction. In an oil refinery, sets of products are produced simultaneously in same process, but the rate depends on the mode of operation [START_REF] Persson | A tabu search heuristic for scheduling the production process at an oil refinery[END_REF]). [START_REF] Love | Bounded Production and Inventory Models with Piecewise Concave Costs[END_REF] extends the lot sizing problem by introducing lower and upper bounds on the production. Production below some level is not allowed because of technical constraints or in order to make full use of the resource [START_REF] Anderson | Capacitated lot-sizing with minimum batch sizes and setup times[END_REF][START_REF] Constantino | Lower Bounds in Lot-Sizing Models: A Polyhedral Study[END_REF][START_REF] Mercé | MIP-based heuristics for capacitated lotsizing problems[END_REF][START_REF] Lee | Inventory replenishment model: lot sizing versus just-in-time delivery[END_REF]).

In many production processes, tools such as dies or molds are required and they are often shared among several products. Tools, machines and products are interrelated as there are compatibility requirements between them [START_REF] Brown | Production and sales planning with limited shared tooling at the key operation[END_REF]). The problem is further complicated as there is only a limited availability of both the machines and tools. Jans and Degraeve (2004 a ) model such a production planning problem for a tire manufacturer where the number of molds is a limiting factor. [START_REF] Akturk | Dynamic lot sizing and tool management in automated manufacturing systems[END_REF] also integrate a lot sizing and tool management problem.

We observed that the boundaries between lot sizing and scheduling are fading with the introduction of sequence dependent set up costs and times. [START_REF] Lasserre | An integrated model for job-shop planning and scheduling[END_REF] and Dauzère-Péres and Lasserre (1994) provide a further example of this by integrating a classical multi-period lot sizing problem with a job shop scheduling problem. The lot sizing decision determines the due dates and processing times of the jobs. The capacity constraints are modelled at machine level by the regular job-shop precedence relations and disjunctive constraints. It is also an integration of discrete and continuous time planning models.

When multiple parallel machines are available, the lot sizing problem does not only include the timing and level of production, but also the allocation of production to machines. As such the loading decision has to be considered as well. [START_REF] Özdamar | Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions[END_REF], [START_REF] Özdamar | Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem[END_REF], [START_REF] Kang | Lotsizing and Scheduling on Parellel Machines with Sequence-Dependent Setup Costs[END_REF], [START_REF] Clark | Rolling-horizon lot-sizing when set-up times are sequencedependent[END_REF] and [START_REF] Belvaux | bc-prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems[END_REF] Usually three types of quantity discounts are considered. The all-units discount [START_REF] Prentis | MRP lot sizing with variable production / purchasing costs: formulation and solution[END_REF]Khumawala 1989, Chung et al. 1996) gives a reduction in the purchase price on all the units of a product if you buy more than a specific amount. Degraeve and Roodhooft (2000) model a multi-item purchasing environment where the discount is given on the total amount bought. [START_REF] Chan | On the effectiveness of zeroinventory-ordering policies for the economic lot-sizing model with a class of piecewise linear cost structures[END_REF] propose a modified all-unit discount structure: if the total cost is higher than the total cost at the start of the next quantity interval, you only pay the lower cost. In the case of the incremental quantity discount [START_REF] Diaby | Dynamic lot sizing for multi-echelon distribution systems with purchasing and transportation price discounts[END_REF][START_REF] Chung | The coordinated replenishment dynamic lot-sizing problem with quantity discounts[END_REF], 2000), the reduction is only valid for the amounts in a specific interval. A third alternative is the truckload discount scheme [START_REF] Li | Dynamic lot sizing with batch ordering and truckload discounts[END_REF], where a less-than-truckload rate is charged until the total cost equal the truckload rate. If the total quantity is more than a truckload, this same scheme is applied for the excess quantity. [START_REF] Chu | An Economic Lot-Sizing Problem with Perishable Inventory and Economies of Scale Costs: Approximation Solutions and Worst Case Analysis[END_REF] consider a general economies-of-scale function for the ordering costs. When the production costs are actually distribution costs, van Norden and van de Velde (2005) argue that there is a dual cost structure. Any amount up to a reserved capacity is charged at a specific cost, and any amount above is charged at a higher cost.

Cyclical schedules, where the time between subsequent set ups is constant, are often used in practice. [START_REF] Bahl | A cyclical scheduling heuristic for lot sizing with capacity constraints[END_REF] use cyclical schedules in a lower bounding heuristic. [START_REF] Campbell | Cyclical schedules for capacitated lot sizing with dynamic demands[END_REF] impose such cyclical schedules for the CLSP with set up times. In their study, costs increases only by 5% on average compared to the best non-cyclical schedules.

In the distribution, inventory control and production planning literature, there is a growing interest in reverse logistics (Fleischmann et al. 1997) parts as components. Taking these aspects into consideration requires an adaptation in the production planning models (Fleischmann et al. 1997[START_REF] Guide | Production planning and control for remanufacturing: industry practice and research needs[END_REF]. Few dynamic lot sizing models have been proposed to accommodate such changes. [START_REF] Richter | Remanufacturing planning for reverse Wagner/Whitin models[END_REF] extend the ULS with remanufacturing. Demand can be met either from newly manufactured products or from return products which have been remanufactured. These two product categories have different set up costs (van den Heuvel 2004) or a joint set up cost [START_REF] Teunter | Dynamic lot sizing with product returns[END_REF]. In practice, the two categories also have different unit (re)manufacturing costs and there is the possibility of disposal of some of the returned products [START_REF] Richter | The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost[END_REF]. [START_REF] Yang | A Concave-Cost Production Planning Problem with Remanufacturing Options[END_REF] analyze the problem with concave costs. [START_REF] Beltrán | Dynamic lot sizing with returning items and disposal[END_REF] consider the case where the returned goods are in good enough condition to be resold immediately without remanufacturing. In their model, demand can be negative due to the returns and they allow for the disposal of excess inventory. [START_REF] Kelle | Purchasing policy of new containers considering the random returns of previously issued containers[END_REF] model a similar problem, but take into account the uncertainty in the arrival of the returned goods. They impose a service level constraint and next transform the problem into an ULS with negative demands. In a mathematical programming model for order quantity determination in a purchasing context, [START_REF] Degraeve | Improving the efficiency of the purchasing process using total tost of ownership information: The case of heating electrodes at Cockerill Sambre S.A[END_REF] incorporate additional revenues due to repurchases of old products by the supplier.

Extensions on the inventory

The inventory can also be bounded by upper and lower limits [START_REF] Love | Bounded Production and Inventory Models with Piecewise Concave Costs[END_REF][START_REF] Swoveland | Deterministic Multi-Period Production Planning Model with Piecewise Concave Production and Holding-Backorder Costs[END_REF], Erenguc and Aksoy 1990[START_REF] Sandbothe | Decision horizons for the capacitated lot size model with inventory bounds and stockouts[END_REF][START_REF] Gutiérrez | A new characterization for the dynamic lot size problem with bounded inventory[END_REF][START_REF] Jaruphongsa | Warehouse space capacity and delivery time window considerations in dynamic lot-sizing for a simple supply chain[END_REF]). Loparic Lot sizing problems have also been extended with the issue of perishable inventory. [START_REF] Veinott | Minimum concave-cost solution of Leontief substitution models of multi-facility inventory systems[END_REF] permits the proportional growth or deterioration of inventory. [START_REF] Hsu | Dynamic Economic Lot Size Model with Perishable Inventory[END_REF] and [START_REF] Chu | An Economic Lot-Sizing Problem with Perishable Inventory and Economies of Scale Costs: Approximation Solutions and Worst Case Analysis[END_REF] consider the uncapacitated single item lot sizing problem with an age dependent inventory cost as well as an age dependent deterioration rate where a part of the inventory is lost by carrying it to the next period. [START_REF] Jain | Lot Sizing for a Product Subject to Obsolescence or Perishability[END_REF] look at the problem with random life time perishability. According to some stochastic process, the total inventory becomes either worthless or remains usable for at least the next period.

Extension on the demand

By allowing backlogging (e.g. Zangwill 1966 a , [START_REF] Pochet | Mathematical Programming Models and Formulations for Deterministic Production Planning Problems[END_REF]Wolsey 1988, Federgruen and[START_REF] Federgruen | The Dynamic Lot-Sizing Model with Backlogging: A Simple O(n log n) Algorithm and Minimal Forecast Horizon Procedure[END_REF] demand can be met by production in a later period at a specific cost.

Backlogging corresponds in fact to a negative inventory level. The objective function includes the backlog cost. We can use inventory from the previous period, allow backlog or produce now to satisfy demand, build up inventory or satisfy backlog from a previous period. The case with backlogging is also a single source fixed charge network problem [START_REF] Zangwill | A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System -A Network Approach[END_REF]. Backlogging results in a flow from demand point t to t-1, in the opposite direction of the inventory flow. [START_REF] Swoveland | Deterministic Multi-Period Production Planning Model with Piecewise Concave Production and Holding-Backorder Costs[END_REF] imposes that orders are not backlogged for more than a prescribed number of periods. The extension with backlogging is also considered for the DLSP (Jans and Degraeve 2004 a ) and for the coordinated replenishment problem [START_REF] Robinson | A dual ascent procedure for multiproduct dynamic demand coordinated replenishment with backlogging[END_REF] Lot sizing models with stockouts [START_REF] Sandbothe | A Forward Algorithm for the Capacitated Lot Size Model with Stockouts[END_REF], 1993[START_REF] Aksen | The single-item lot-sizing problem with immediate lost sales[END_REF] have been proposed as an alternative to situations where backlogging is allowed.

When demand cannot be met in time, lost sales are incurred instead of backlogging. A variable l t representing the lost sales is added into the demand equation and the cost of a stockout is properly accounted for in the objective function.

Considering sales [START_REF] Brown | Production and sales planning with limited shared tooling at the key operation[END_REF][START_REF] Kang | Lotsizing and Scheduling on Parellel Machines with Sequence-Dependent Setup Costs[END_REF][START_REF] Loparic | The Uncapacitated lot-Sizing Problem with Sales and Safety Stock[END_REF]) instead of fixed demands leads to a profit maximization approach instead of the traditional cost minimization. The demand equation is extended with a variable v t for the sales and an upper bound of d t is imposed on these potential sales. The unit selling price is given. [START_REF] Hung | A multi-class multi-level capacitated lot sizing model[END_REF] model a profit maximization approach with different demand classes that have different profitibilities. The two models of maximizing sales and minimizing costs with lost sales are equivalent as demand can be rewritten as the sum of the sales and lost sales. [START_REF] Lee | A Dynamic Lot-Sizing Model with Demand Time Windows[END_REF] discuss the single item uncapacitated dynamic lot sizing problem with a demand time window. For each demand an earliest and latest delivery date is specified and demand can be satisfied in this period without penalty. They prove that there exists an optimal solution in which demand is not split: the complete demand for a specific order is covered by production from the same period. [START_REF] Hwang | Dynamic lot-sizing model with demand time windows and speculative cost structure[END_REF] analyse the case with a speculative cost structure. An extension to a two-echelon supply chain is provided in [START_REF] Jaruphongsa | Warehouse space capacity and delivery time window considerations in dynamic lot-sizing for a simple supply chain[END_REF]. Another extension is the incorporation of time windows for the suppliers who are shipping the goods via a crossdock [START_REF] Lim | Transshipment through Crossdocks with Inventory and Time Windows[END_REF]. Also [START_REF] Wolsey | Lot-sizing with production and delivery time windows[END_REF] makes a distinction between production time windows and delivery time windows.

Time Horizon

Schedules are usually implemented in a rolling horizon fashion. Only the first period of a plan is implemented and the demand forecast is updated by looking one period further. A new plan is calculated using this updated input. Experiments (Baker 1977, Blackburn and[START_REF] Blackburn | Heuristic Lot-Sizing Performance in a Rolling Schedule Environment[END_REF] have indicated that the Wagner-Whitin algorithm is no longer optimal in a rolling horizon framework and simple lot sizing heuristics may outperform optimal algorithms for small planning horizons. New research [START_REF] Simpson | Questioning the relative virtues of the dynamic lot sizing rules[END_REF], however, indicates that the Wagner-Whitin rule still outperforms all the other heuristics in a wide variety of cases. For an extensive review on rolling horizons and related literature we refer the reader to Chand et al. (2002). The rolling horizon approach can result in nervousness of the planning in the sense that schedules must be frequently changed. These changes might result in extra costs [START_REF] Kazan | New lot-sizing formulations for less nervous production schedules[END_REF].

Recently, two methods have been proposed to mitigate the end-of-horizon effect basically by looking beyond the current planning horizon. [START_REF] Stadtler | Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem[END_REF] takes only a fraction of the costs for the last set up period into account. The last set up may be advantageous beyond the planning horizon, so only a proportion of the set up cost has to be borne within the planning horizon. 2001) is mainly due to the availability of accurate information about future demand.

Tactical and strategic models

Hierarchical production planning [START_REF] Hax | Hierarchical Integration of Production Planning and Scheduling[END_REF][START_REF] Bitran | Hierarchical Production Planning: A single Stage System[END_REF][START_REF] Graves | Using Lagrangean Techniques to Solve Hierarchical Production Planning Problems[END_REF][START_REF] Bitran | Hierarchical production planning[END_REF]) is a sequential procedure for solving production planning at different levels of aggregation. First, decisions are taken at the highest level and they set the limitations for the decisions at a lower level. Items are aggregated into families and families into types. A type is a set of items that have a similar demand pattern and have one aggregate production rate. Within a family, items share the same set up. In the aggregate model, at the type level, the main decision is the determination of the level for regular and overtime capacity and the total production for a type. This decision sets bounds on the model for the family production planning. Here the objective is to minimize the total set up cost for all families within a type. Within the limits of the family batch sizes, production quantities are determined for each item. An application of this type of planning is described in [START_REF] Liberatore | A Hierarchical Production Planning System[END_REF] and [START_REF] Oliff | Multiproduct production scheduling at Owens-Corning Fiberglas[END_REF]. There is a lot of interaction between the different levels and the sequential optimization does usually not result in a global optimum. The reason that detailed integrated models are yet scarce is of course their complexity, which make them difficult to solve. Yet there exist some models which integrate lot sizing and decisions at higher hierarchical levels.

Aggregate planning extends the lot sizing models further at a more tactical level by including labor resource decisions such as hiring and firing (e.g. [START_REF] Dzielinski | Simulation Tests of Lot Size Programming[END_REF][START_REF] Thomas | An Overview of Production Planning[END_REF][START_REF] Nam | Aggregate Production Planning -A Survery of Models and Methodologies[END_REF][START_REF] Aghezzaf | Lot-sizing with setup times in labor-based capacity production systems[END_REF]. The decision on set up cost and time reduction, as discussed in the previous section, can also be viewed as the integration of lot sizing in a more tactical decision.

Another example is the integration of lot sizing and capacity expansion decisions. [START_REF] Rao | Optimal capacity expansion with inventory[END_REF] considers a lot sizing model where additional capacity can be bought in each period. The extra capacity is also available in all the subsequent periods, in contrast with temporary capacity expansion from overtime. [START_REF] Rajagopalan | A Coordinated Production Planning Model with Capacity Expansion and Inventory Management[END_REF] optimize the capacity acquisition, production and inventory decisions over time in an environment with increasing demand. There is the following trade-off: Capacity investments can be postponed by building up inventory earlier. On the other hand, buying additional capacity can lead to smaller inventories by reducing lot sizes. [START_REF] Bradley | The Simultaneous Planning of Production, Capacity and Inventory in Seasonal Demand Environments[END_REF] discuss a case study where simultaneously considering capacity and inventory decisions leads to superior financial results. In the model of [START_REF] Atamturk | Capacity Acquisition, Subcontracting, and Lot Sizing[END_REF] variable demand can be met by production, inventory, subcontracting or capacity acquisition. A second way of modeling capacity expansion problems is to define the demand as the demand for the incremental capacity [START_REF] Luss | Operations research and capacity expansion problems: A survey[END_REF][START_REF] Chand | A model for parallel machine replacement with capacity expansion[END_REF][START_REF] Hsu | Dynamic Capacity Expansion Problem with Deferred Expansion and Age-Dependent Shortage Cost[END_REF]) and there is no modeling of the underlying production lot sizing anymore.

Interest in modeling the interaction between the production stage and upstream (suppliers) and downstream (distribution) activities is growing. Whereas previously these relationships were considered at an aggregate level, it is useful to consider inbound logistics, production and distribution simultaneously at an operational level.

The general message of these models is that strategic or tactical decisions, such as The lot sizing structure shows up as a subproblem in the supplier selection problem considered by Degraeve andRoodhooft (1999, 2000) and [START_REF] Degraeve | An Evaluation of Vendor Selection Models from a Total Cost of Ownership Perspective[END_REF]. They model the total cost of ownership at four different levels, i.e.

supplier, order, batch and unit level. These costs include the regular order cost, purchase price and inventory holding cost, but can also take into account quality differences, discounts, reception costs for batches and the cost for managing the relationship with the supplier. [START_REF] Basnet | Inventory lot-sizing with supplier selection[END_REF] study a special case with a supplier-dependent order cost.

Global models for supply chain optimization simultaneously consider production, transportation and demand planning. The coordination of production and distribution planning results in cost savings compared to separate optimization of these activities [START_REF] Chandra | Coordination of production and distribution planning[END_REF]. [START_REF] Herer | The Dynamic Transshipment Problem[END_REF] consider a multi-location singleitem problem where transshipments of stock between locations at the same distribution level are allowed. Transhipments can be beneficial in a deterministic environment due to the presence of fixed order costs or differences in holding costs.

Another extension is the inclusion of capacitated vehicles to model the transportation between two stages (Anily andTzur 2005, 2006). A case study in the fertilizer industry [START_REF] Haq | An integrated production-inventory-distribution model for manufacture of urea: a case[END_REF] describes a multi-level structure with plants, warehouses and retailers and incorporates set up costs and times, production and distribution lead times and the costs for production, set up, inventory and transportation. [START_REF] Martin | Integrated production, distribution, and inventory planning at Libbey-Owens-Ford[END_REF], [START_REF] Diaby | Dynamic lot sizing for multi-echelon distribution systems with purchasing and transportation price discounts[END_REF], Kaminksy and Simchi-Levi (2003), [START_REF] Lee | A Dynamic model for inventory lot sizing and outbound ship scheduling at a third-party warehouse[END_REF], [START_REF] Jolayemi | A deterministic model for planning production quantities in a multi-plant, multi-warehouse environment with extensible capacities[END_REF] and [START_REF] Sambasivan | A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers[END_REF] discuss models for integrated production, distribution and inventory planning. [START_REF] Bhutta | An integrated location, production, distribution and investment model for a multinational corporation[END_REF] also take capacity investment decision into account, next to the production and distribution problems. [START_REF] Federgruen | Time-partitioning heuristics: Application to One warehouse, multiitem, multiretailer lot-sizing problems[END_REF] chain with one manufacturer and multiple warehouses and they globally optimize the production, inventory and transportation decisions. A general overview of interesting issues for global supply chain optimization at the supplier, plant and distribution stage is given in [START_REF] Erengüç | Integrated production/distribution planning in supply chains: An invited review[END_REF].

Conclusions and New Research Directions

While some extensions are motivated from the literature or general practical observations (e.g. Jaruphongsa et al. 2005, Van Vyve and[START_REF] Van Vyve | Lot-sizing with fixed charges on stocks: the convex hull[END_REF], many of the extensions discussed in Section 3 are inspired by a specific real life problem.

Typically, the authors relate their model to a case observed in practice: "This paper was motivated by a production planning problem encountered while working with a multinational manufacturing firm" [START_REF] Miller | Tight MIP formulations for multi-item discrete lotsizingproblems[END_REF]; "Motivated by a problem faced by a large manufacturer of a consumer product, we explore the interaction between production planning and capacity acquisition decisions." [START_REF] Rajagopalan | A Coordinated Production Planning Model with Capacity Expansion and Inventory Management[END_REF]; "A real-world problem in a company manufacturing steel rolled products provided motivation to this research" [START_REF] Sambasivan | A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers[END_REF]. This provides sound industrial validation for the research on extended lot-sizing models. Some of these papers try to fit the real life case into a more generally applicable model and test it on randomly generated data sets. This is usually done to analyse their algorithm and check the impact of some specific parameters (e.g. Gupta and Mangusson 2005, Haase and Kims 2000[START_REF] Porkka | Multiperiod production planning carrying over set-up time[END_REF][START_REF] Robinson | Coordinated Capacitated Lot-Sizing Problem with Dynamic Demand: A Lagrangian Heuristic[END_REF][START_REF] Sambasivan | A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers[END_REF]. Other papers analyse the real life problem, provide a new formulation and perform computational experiments on real life data (e.g. Belvaux and Wolsey 2000, 2001, Degraeve and Roodhooft 1999, De Matta and Guignard 1994, Grunow et al. 2002, Jans and Degraeve 2004 a , Kang et al. 1999, Meyer 2000, Miller and Wolsey 2003, Rajagopalan and Swaminathan 2001). For some case studies, the practical implementation and actual company impact is also discussed in the paper [START_REF] Bradley | The Simultaneous Planning of Production, Capacity and Inventory in Seasonal Demand Environments[END_REF][START_REF] Haq | An integrated production-inventory-distribution model for manufacture of urea: a case[END_REF][START_REF] Lee | BASF Uses a Framework for Developing Web-Based Production-Planning-Optimization Tools[END_REF][START_REF] Liberatore | A Hierarchical Production Planning System[END_REF][START_REF] Martin | Integrated production, distribution, and inventory planning at Libbey-Owens-Ford[END_REF][START_REF] Oliff | Multiproduct production scheduling at Owens-Corning Fiberglas[END_REF][START_REF] Timpe | Optimal planning in large multi-site production networks[END_REF][START_REF] Van Wassenhove | Capacitated Lot Sizing for Injection Moulding: a Case Study[END_REF]. The applications of deterministic lot-sizing can be found in many different industries: injection moulding (Brown et al. 1981, Van Wassenhove and[START_REF] Van Wassenhove | Capacitated Lot Sizing for Injection Moulding: a Case Study[END_REF], glass industry [START_REF] Martin | Integrated production, distribution, and inventory planning at Libbey-Owens-Ford[END_REF] [START_REF] Grunow | Campaign planning for multi-stage batch processes in the chemical industry[END_REF][START_REF] Haq | An integrated production-inventory-distribution model for manufacture of urea: a case[END_REF][START_REF] Kallrath | Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization[END_REF][START_REF] Lee | BASF Uses a Framework for Developing Web-Based Production-Planning-Optimization Tools[END_REF][START_REF] Persson | A tabu search heuristic for scheduling the production process at an oil refinery[END_REF][START_REF] Robinson | Coordinated Capacitated Lot-Sizing Problem with Dynamic Demand: A Lagrangian Heuristic[END_REF][START_REF] Timpe | Optimal planning in large multi-site production networks[END_REF], pharmaceutical industry [START_REF] Grunow | Plant co-ordination in pharmaceutics supply networks[END_REF], steel industry [START_REF] Degraeve | Improving the efficiency of the purchasing process using total tost of ownership information: The case of heating electrodes at Cockerill Sambre S.A[END_REF][START_REF] Dutta | A Survey of Mathematical Programming Applications in Integrated Steel Plants[END_REF][START_REF] Sambasivan | A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers[END_REF], paper industry (Gupta andMangusson 2005, Porkka et al. 2003), tile manufacturing (De Matta and Guignard 1994), and the electronics industry [START_REF] Bradley | The Simultaneous Planning of Production, Capacity and Inventory in Seasonal Demand Environments[END_REF]. The many academic papers that are inspired by or solve real life lot sizing problems provide support for the applicability of the models and indicate the possible benefits of lot sizing in practice.

The numerous extensions of the basic lot sizing problem show that it can be used to model a variety of industrial problems. Boundaries between lot sizing and scheduling are fading and further integration of lot sizing, sequencing and loading constitute a challenging research track. Lot sizing on parallel machines is just one example for new research opportunities. Also the increased attention to model specific characteristics of the production process and to accurately represent costs will be valuable in solving real life planning problems. Further, the integration of lot sizing into more global models opens an interesting area for further research. In the case where products have to be manufactured and shipped to different distribution centers, retailers or end customers, it makes sense to consider production and distribution simultaneously at an operational level. In such a situation we should consider fixed and variable costs for both production and transportation and coordinate lot sizing, vehicle loading and routing decisions. New models could also take into account the coordination between multiple plants or further downstream activities such as packing.

Another research direction is coordination of lot sizing with decisions from other functional areas such as demand planning and pricing decisions (van den Heuvel and Wagelmans 2006, Geunes et al. 2006, Deng and[START_REF] Deng | Joint Production and Pricing Decisions with Setup Costs and Capacity Constraints[END_REF] in marketing, as is done for other lot sizing models [START_REF] Goyal | An integrated production-inventory-marketing model for deteriorating items[END_REF][START_REF] Kim | Optimal joint pricing and lot sizing with fixed and variable capacity[END_REF][START_REF] Abad | Optimal pricing and lot-sizing under conditions of perishability and partial backordering[END_REF], 2003). [START_REF] Pochet | Mathematical Programming Models and Formulations for Deterministic Production Planning Problems[END_REF] indicates that modeling production planning problems in the process industry constitute a promising area for new research, whereas most of the lot sizing literature is focused on discrete manufacturing. Some distinguishing characteristics, such as the use of flexible recipes, the existence of by-products, the integration of lot sizing and scheduling, storage constraints and a focus on profit maximization, affect the planning and scheduling. A further general discussion can be found in [START_REF] Crama | Production planning approaches in the process industry[END_REF] and [START_REF] Kallrath | Planning and scheduling in the process industry[END_REF][START_REF] Kallrath | Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization[END_REF], whereas some specific problems are presented in Smith-Daniels and Ritzman (1988), [START_REF] Selen | Operational production planning in a chemical manufacturing environment[END_REF], [START_REF] Heuts | A comparison of two lot sizing-sequencing heuristics for the process industry[END_REF], [START_REF] Grunow | Campaign planning for multi-stage batch processes in the chemical industry[END_REF][START_REF] Grunow | Plant co-ordination in pharmaceutics supply networks[END_REF], [START_REF] Rajaram | Campaign planning and scheduling for multiproduct batch operations with applications to the food-processing industry[END_REF], [START_REF] Persson | A tabu search heuristic for scheduling the production process at an oil refinery[END_REF].

One of the major limitations of the lot sizing models that we discuss in this review is the assumption of deterministic demand and processing times. In many manufacturing environments, there is some degree of uncertainty. As a consequence, the performance evaluation criteria differ in a deterministic and stochastic environment.

The deterministic lot sizing models formulate the problem as a trade-off between inventory costs and set up costs. However, they fail to capture the problem of queuing and congestion found in stochastic manufacturing environments [START_REF] Banker | Relevant costs, congestion and stochasticity in production environments[END_REF][START_REF] Rummel | An empirical investigation of costs in batching decisions[END_REF]. [START_REF] Karmarkar | Lot Sizes, Lead Times and In-Process Inventories[END_REF] examines the relationship between lot sizes and lead times in such a stochastic environment. He argues that the lead time is a good proxy for many costs, as larger lead times adversely affect the work-in-process inventory, the safety stock and responsiveness to the customer. Karmarkar shows that there exists a convex relationship between lot sizes and lead times. Small batches lead to more set ups, a higher utilization rate and consequently to longer lead times. This is the saturation effect. On the other hand, larger lot sizes lead to increased lead times due to the batching effect. Deterministic and stochastic lot sizing models also suggest qualitatively different optimal solutions. From basic queuing theory it is known that when the capacity utilization increases to 100%, the waiting times become infinite.

This suggests that some slack capacity should be included in the planning. In deterministic capacitated lot sizing models, however, the capacity constraint will be binding in many periods and so there is no slack capacity available. In a stochastic environment, the schedule stability also becomes an important objective [START_REF] Bourland | The Strategic Use of Capacity Slack in the Economic Lot Scheduling Problem with Random Demand[END_REF]. Stochastic inventory models (e.g. [START_REF] Eppen | Determining Safety Stock in the Presence of Stochastic Lead Time and Demand[END_REF]Martin 1988, Zipkin 2000) and lot sizing models based on queuing theory (e.g. [START_REF] Karmarkar | Lot Sizes, Lead Times and In-Process Inventories[END_REF][START_REF] Suri | Performance Evaluation of Production Networks[END_REF][START_REF] Lambrecht | ACLIPS: A Capacity and Lead Time Integrated Procedure for Scheduling[END_REF] ). Hence, one should be careful in the choice of model and verify that the underlying assumptions and trade-offs are a good approximation of the reality. For a further discussion of deterministic versus stochastic planning models, we refer to [START_REF] Karmarkar | Manufacturing Lead Times, Order Release and Capacity Loading[END_REF]. [START_REF] Zhang | Cyclic Scheduling in a Stochastic Environment[END_REF] incorporate random machine failures in their analysis of cyclic schedules for products with a stable demand rate. Some research has been done to incorporate uncertainty into the dynamic lot sizing problem as well such as stochastic demand [START_REF] Bookbinder | Strtategies for the probabilistic lot-sizing problem with service-level constraints[END_REF][START_REF] Sox | Multi-item, multi-period production planning with uncertain demand[END_REF], 1997, Sox et al. 1999[START_REF] Tarim | The stochastic dynamic production/inventory lot-sizing problem with service-level constraints[END_REF][START_REF] Guan | On formulations of the stochastic uncapacitated lot-sizing problem[END_REF], stochastic lead times [START_REF] Nevison | The Dynamic Lot-Size Model with Stochastic Lead Times[END_REF], uncertainty in demand timing [START_REF] Burstein | Dynamic Lot-Sizing when Demand Timing is Uncertain[END_REF][START_REF] Gutiérrez | The multiscenario lot size problem with concave costs[END_REF], or a combination of demand and supply uncertainty [START_REF] Anderson | A Note on the Dynamic Lot-Size Model with Uncertainty in Demand and Supply Chain Processes[END_REF].

Finally, the interaction between modeling and algorithms will play an important role in future research. The inclusion of industrial concerns lead to larger and more complex models and consequently more complex algorithms are needed to solve them.

Solution approaches for integrated models will be based on previous research on the separate models. Existing knowledge about the structure and properties of a specific subproblem can be exploited in solving integrated models. Lot sizing problems are challenging because many extensions are very hard to solve. Jans and Degraeve 

  , Jans and Degraeve 2004 b ) consider set up times for the CLSP. The set up times represent the capacity lost due to cleaning, preheating, machine adjustments, calibration, inspection, test runs, change in tooling, etc., when the production for a new item starts. The set up time must be accounted for in the capacity constraint. Salomon et al. (1991) and Cattrysse et al. (1993) consider start up times for the DLSP. They assume that start up times must equal an integral multiple of the time bucket, but it is also possible to model start up times which are a fraction of the time bucket (De Matta and Guignard 1994 b , Jans and Degraeve 2004 a ). Vanderbeck (1998) formulates a CSLP with fractional start up times.

  the DLSP with sequence dependent start up costs. His heuristic procedure is based on the transformation of the problem into a Traveling Salesman Problem with Time Windows. Salomon et al. (1997) describe an algorithm for the DLSP with both sequence dependent start up costs and start up times. De Matta and Guignard (1994 b ) also model sequence dependent cost and set up times in a DLSP in the process industry.

  depend on the number of previous set ups, but can both decrease or increase, as long as the total set up costs are nondecreasing. Examples of increasing set up costs are the cases where the set up cost increases with the usage of the machine or when some maintenance is necessary after a specific number of set ups.

  schemes result in a piecewise linear cost function(Shaw and Wagelmans 1998).

  ,[START_REF] Loparic | The Uncapacitated lot-Sizing Problem with Sales and Safety Stock[END_REF] consider safety stocks by imposing a lower bound on the inventory in each period. Fixed charges on the stocks (Van Vyve and Ortega 2004) are useful for an environment with complex stocking operations or for situations where there are combinatorial constraints on stocks, such as in the chemical industry where only one type of product can be stored in a tank.[START_REF] Martel | Dynamic lot-sizing with price changes and price-dependent holding costs[END_REF] make a subtle change to the classical uncapacitated lot sizing problem in a purchase context. The unit purchase cost can vary over time and the holding cost is price-dependent, whereas in the standard model, the unit inventory vary, but is known in advance and does not depend on the purchase price. The inventory cost is calculated as the purchase price multiplied by a constant inventory holding charge.

  [START_REF] Fisher | Ending Inventory Valuation in Multiperiod Production Scheduling[END_REF] impose an appropriate level of ending inventory by assigning a positive value to this ending inventory in the objective function. This positive value is calculated by estimating the future set up costs that are avoided as a result of the ending inventory. Experiments in both papers indicate that these adaptations are quite effective in general and they usually outperform simple heuristics or the unadapted WW algorithm.[START_REF] Van Den Heuvel | A comparison of methods for lot-sizing in a rolling horizon environment[END_REF] point out that the superior performance ofFisher et al. (

  supplier selection, should take operational concerns, in this case lot sizing, into account.

  study a two-echelon distribution network with one warehouse and many retailers and model it as a dynamic lot sizing problem.[START_REF] Timpe | Optimal planning in large multi-site production networks[END_REF] describe an actual application in the chemical process industry combining batch and campaign production with change-overs in a multi-site setting, raw materials inventory management, transportation between production sites and sales point, inventories at the sales points, different prices for different customers and external purchase possibilities. Their objective function is maximizing the total contribution.[START_REF] Van Hoesel | Polynomial time algorithms for some multi-level lot-sizing problems with production capacities[END_REF] consider a serial supply

  , are more appropriate to capture the complexity of a stochastic environment. The combination of such models are used to analyse integrated production-inventory systems where inventory replenishment rules trigger production and can cause queues in the manufacturing environment (e.g.Van Nyen et 

( 2005 )

 2005 review several techniques to tighten the formulations (Dantzig-Wolfe decomposition, Lagrange relaxation, cutting planes and variable redefinition) and to obtain good quality solutions using (meta-) heuristics. The development of algorithms based on the combination of some of these techniques has already led to promising results.[START_REF] Vanderbeck | Lot-Sizing with Start-Up Times[END_REF] combines branch-and-price and cutting planes for solving the CLSP. Dantzig-Wolfe decomposition can be combined with Lagrange relaxation to speed up the column generation process, either by using Lagrange relaxation to solve the master(Cattrysse et al. 1993, Jans and Degraeve 2004 a ) or by using Lagrange relaxation to generate new columns[START_REF] Degraeve | A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot sizing problem with set up times[END_REF]. To obtain stronger bounds, Lagrange relaxation is applied to a variable redefinition reformulation(Jans and Degraeve 2004 b 

  of all these items. In each period, only a limited production capacity cap t is available. Producing one unit of product i consumes vt i units of capacity. The formulation is as

	follows:																		
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The capacitated multi-item lot sizing problem (CLSP) is the typical example of a large bucket model. There are n different items that can be produced and P is the set

  ). Many more opportunities for combining algorithms are still largely unexplored.
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