TOLERANCE TRANSFER FOR PARTS WITH 2D BLUEPRINT
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The classic tolerance charting method to allocate working dimensions and tolerances, is a particular case of tolerance transfer between different dimension schemes. Tolerance transfer allows tolerance allocation for a new dimension scheme complying initials blueprint specifications.

The classic method of tolerance charting can be substituted by methods based on equations, denominated tolerance transfer techniques. These methods allow the evaluation of dimensions and their tolerance which are equivalent to the initial blueprint. This paper suggests a new method to tolerance transfer that allows the evaluation of dimensions and their tolerance which are equivalent in 2D problems. Initially, a method that is able to consider dimensions, angles and orientation tolerances, is established. The first thing that is indicated in the proposed method is how to establish the equations for each 2D dimensional chain through 2D graphs. In an intermediate step a strategy to solve the 2D equations obtaining relations between the tolerances is proposed. Finally the equivalent tolerances are evaluated, considering both the variance accumulation theory and the deviation accumulation theory. The proposed methodology has been applied to different cases with satisfying results.

INTRODUCTION.

The study of tolerances is an important research area because tolerancing is very important in different stages of the development of a product (design, manufacturing, assembly and quality control). The study of tolerances is an important research area in all the different stages of development of a product (design, manufacturing, assembling). Different techniques regarding tolerances have been reported on papers about the state of art (Zhang andHuq 1992, Ngoi and[START_REF] Ngoi | Tolerance charting: state-of-the-art review[END_REF].

At process planning, working dimensions and tolerances for the different setups are allocated.

The set of working dimensions defines a new dimension scheme for the part (machining dimension scheme). If machining and design datums for dimensions are different, machining and design dimension scheme are different too [START_REF] Li | Optimization of machining datum selection and machining tolerance allocation with genetic algorithms[END_REF]. At each setup of process machined surfaces must be related to machining datum directly or through a dimensional chain including only surfaces machined in the same setup. If design dimension scheme violates these conditions, blueprint specification must be converted into a valid machining dimension scheme, and so tolerance transfer is required.

Among tolerancing techniques, the most frequently used one is tolerance charting, which is very used a lot in manufacturing industries in order to determine the necessary process dimensions and tolerances. In order to compute tolerance accumulation, tolerance charting needs a dimensional chain tracing method. Tolerance transfer techniques allow obtaining the inequalities that establish tolerance accumulation at final dimension scheme. A tolerance chart represents the relations between process dimensions and blueprints throughout all the different manufacturing stages of a product [START_REF] Li | Optimization of machining datum selection and machining tolerance allocation with genetic algorithms[END_REF]. Tolerance transfer techniques can substitute tolerance charting modelling the problem with equations.

Other working lines regarding tolerances are related to tolerancing algebra [START_REF] Hong | Tolerancing algebra: a building block for handling tolerance interactions in design and manufacturing. Part 2: Tolerance interaction[END_REF], tolerancing in assembly [START_REF] Jayaraman | Geometric tolerancing: I. Virtual boundary requirements[END_REF][START_REF] Ngoi | An alternative approach to assembly tolerance stack analysis[END_REF][START_REF] Ngoi | A complete tolerance charting system in assembly[END_REF], kinematic tolerance analysis [START_REF] Joskowicz | Kinematic tolerance analysis[END_REF], tolerance information models [START_REF] Kulkarni | Representation of feature relationship tolerances in solid models[END_REF][START_REF] Shah | Representation and mapping of geometric dimensions from design to manufacturing[END_REF][START_REF] Serré | Analysis of a geometric specification[END_REF][START_REF] Zhou | Form feature and tolerance transfer from a 3D model to a set-up planning system[END_REF] and quality and cost tolerance chart optimisation [START_REF] Jeang | Tolerance chart optimization for quality and cost[END_REF].

Tolerance charting is a technique that guarantees that the dimensions and tolerances of the process comply with blueprint specifications. Tolerance charting is a particular application of tolerance transfer in order for two dimensions schemes to be equivalent [START_REF] Desrochers | A three dimensional tolerance transfer methodology[END_REF]. From the very beginning this technique has mainly been used in 1D problems. According to this approach, 1D tolerance charting is applicable to square shouldered parts and is applied in industries following the manual methodology described by [START_REF] Wade | Tolerance control In[END_REF]. For these kinds of parts 2D and 3D blueprints can be simplified to various 1D tolerance charts transfers, hypothesis under which the technique is valid.

Mathematical relations between the dimensions and tolerances of the process and the blueprint specification [START_REF] Zhang | Tolerancing techniques: the state-of-the-art[END_REF]) can be found through dimensional chains in 1D problems. By means of these relations one can calculate the equivalence between these two groups of tolerances that represent both the design and manufacturing specifications respectively. It is also necessary to use dimensional chains in 2D and 3D problems, but their formulation is more complex than in 1D problems [START_REF] Ji | A three approach for tolerance charting[END_REF]Xue 2002, Rosado et al. 2002).

Different methods to identify the dimensional chains have been proposed. [START_REF] Xiaoqing | Computer aided dimensional planning[END_REF] proposed a matrix representation of the tolerance chart which, through matrix operations, solves the problem parallel to that of the manual solution. Graphic methods have also been proposed [START_REF] Irani | Tolerance chart optimization[END_REF]. Other approximations are based on a representation tree (Ji, 1993, Ngoi and[START_REF] Ngoi | Computer-aided tolerance charting[END_REF]. All these works permit to work with 1D problems.

Tolerance charting in 2D and 3D cases is equivalent to a multidimensional tolerance transfer. Some studies dealing with 2D and 3D tolerance chart problems like the one carried out by [START_REF] Ngoi | Tolerance charting: state-of-the-art review[END_REF] apply a double tolerance chart to parts that have blueprint in two orthogonal directions, the dimensions of which are independent. Thus, this case is only a double 1D problem, not really a 2D problem. [START_REF] Ji | Extending the algebraic method to identify dimensional chains for angular tolerance charting[END_REF], on another hand, have developed a method to integrate angular features that relate, for example, the radial and axial dimensions in a revolution part. Their analysis faces the problematic of a 2D problem by using real 2D dimensional chains.

Studies representing dimensional and geometric tolerances have been carried out in 3D tolerancing [START_REF] Serré | Analysis of a geometric specification[END_REF]. [START_REF] Shah | Representation and mapping of geometric dimensions from design to manufacturing[END_REF], suggest a model of representing 3D tolerances through design features. [START_REF] Gupta | Variational solid modeling for tolerance analysis[END_REF] 2001) and [START_REF] Vignat | 3D transfer of tolerances using a SDT approach: application to turning process[END_REF] should be highlighted. Here tolerances and deviations are modelled in the drilling and turning process by applying the small displacements torsor. Thus, the relationship between design tolerances and the deviations and capacities of the productive resources is established. This paper proposes a new approach for tolerance transfer in 2D parts with real 2D blueprint.

The method proposed is based on 2D graphs of tolerances to obtain 2D chains equations. This is a general approach, and it has been applied both to dimensional and orientation tolerances.

Through this method it is possible to obtain the equations that relate design dimensions and tolerances (blueprints) to process dimensions and tolerances. Relations between the tolerances of the process and the blueprint of the part (inequalities) can be obtained by applying equivalence conditions. In order to solve inequalities allocating the new tolerances, an objective function and additional tolerance constraints must be added. Usually objective function is the manufacturing cost and the process tolerances are used as additional constraints. In order to solve in the best possible way to determine the processes with sufficient capacity and minimum cost, the suggestions given in the bibliography regarding the issue can be followed [START_REF] Jeang | Tolerance chart optimization for quality and cost[END_REF][START_REF] Tseng | Alternative tolerance allocations for machining parts represented with multiple sets of features[END_REF][START_REF] Li | Optimization of machining datum selection and machining tolerance allocation with genetic algorithms[END_REF].

THEORETICAL FORMULATION.

The tolerance transfer problem can be defined as the search for tolerances T Aj that should affect dimensions A j so that their compliance guarantees that the part fulfils its design specifications defined by dimensions C i and its tolerances T Ci . A dimension scheme A which fulfils the previous condition will be equivalent to dimension scheme C.

In order to establish the value that tolerances T Aj should have, the C i initial dimensions should be expressed according to the final dimensions: 
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Being V Ci the maximum variation in dimension of C i due to the variations of dimensions A j therefore
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Since these variations must be lower or equal to those admitted in the initial dimensions
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and using (4), we can establish:
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These equations formulate the constraints to assign T Aj using an objective function, usually the manufacturing process cost.

Since operations among dimensions are sums and subtractions, in the case of a 1D dimensional transfer, the values of  i f ∂ / j A ∂  are always 1. However, in a 2D or 3D

dimensional scheme the values of  i f ∂ / j A ∂  will have to be calculated [START_REF] Xue | Process tolerance allocation in angular tolerance charting[END_REF].

From a different point of view, the dimensions transfer problem can be treated as the accumulation of the uncertainty of dimensions. The tolerances of dimensions are related to their uncertainty. that have an uncertainty which is established by its tolerances. Thus, the tolerance of a dimension is only its uncertainty, which can be expressed as a variance (U 2 ) by a factor of uncertainty (k) that depends on the level of confidence. Thus:
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By applying the law of accumulation of variances to expression (1), and variables A j being independent, the variance of dimensions C i ( 2Ci U ) can be evaluated as
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which, taking the same uncertainty factor for all of the dimensions and ( 5), leads us to
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The application of ( 9) in a 1D problem leads us to the quadratic composition of tolerances.

Similarly to that presented previously, for 2D problems it is necessary to evaluate
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Other accumulation methods can be proposed but they are formulated as function of terms

i f ∂ / j A ∂ .

DEFINITION OF THE 2D TRANSFER PROBLEM.

Transfer between two 2D dimension schemes can include different types of dimensions and tolerances or specifications. Among the different types, dimensional tolerances and form/geometric tolerances should be distinguished. Whereas the first one establishes the possible variations in the distances or angles between sides and/or points of the part, the second one limits the possible variations in the shapes and orientation of its sides. In the suggested methodology a homogeneous treatment of both types of tolerances, dimensional and geometrical, is followed. However, restrictions that are presented next should be taken into consideration. The methodology presented can work both with dimensional tolerances and geometric tolerances. All dimensional blueprints and its corresponding tolerances can be included in the dimension scheme. Nevertheless, not all geometric tolerances are liable to be treated. Geometric tolerances can be classified into five three basic types: form, profile, orientation, runout and location/position. Form and individual profile with no datum tolerances limit the variation that a surface or side of the part can have, for example straightness. This type of tolerances can not be transferred because they involve only individual features and so they limit the intrinsic form of the surface. Something similar happens with the run-out tolerances, which imply functional conditions of radial and/or axial run-out as regards an axis of reference [START_REF] Tseng | Evaluation of alternative tolerance allocations for multiple machining sequences with geometric tolerances[END_REF].

Location/position tolerances will not be dealt with in this study, although the authors are working on them at present.

Unique and complete dimensional schemes.

In order to do the tolerance transfer between two dimensional schemes of a part, both schemes must only define the part and its geometry. Thus, the group of dimensions of each one of them must define the situation and orientation of all of its sides and/or points with at least another side of the part. This restriction implies that the blueprints of a dimension scheme as a whole should keep the geometry of the part from loosing its nominal shape indefinitely when fulfilling the tolerances. [START_REF] Clement | Global consistency of dimensioning and tolerancing[END_REF].

The necessary number of dimensions and tolerances to define a 2D geometry sufficiently can be established according to the number of nodes or vertices of the dimension scheme. A node is the intersection between the geometry lines. A sufficient dimensional scheme should establish the position of each of its nodes, and thus restrict its two degrees of freedom [START_REF] Serré | Analysis of a geometric specification[END_REF]).

Nevertheless, considering the part as a rigid solid, we should eliminate the degrees of freedom corresponding both to the global position of the part and to its rotation. If we refer to the number of nodes of the part as n, in accordance with that mentioned previously, the number of dimensions and its tolerances (N T ) will be defined by
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Each of the dimension, in accordance to its type, eliminates a number of degrees of freedom. Thus, a dimension which is between sides eliminates two degrees of freedom. The rest of dimensions that have been mentioned eliminate one degree for freedom each one.

If the number of dimensions is not sufficient, additional dimensions and tolerances will have to be established. The values of which will be set in accordance with the general drawing office specifications.

Principle of independence.

On another hand, the blueprints of a dimensional scheme will be interpreted according to the principle of independence (ISO 8015), according to which its compliance is independent from the compliance or not of the rest of the specifications of the part [START_REF] Clement | Global consistency of dimensioning and tolerancing[END_REF].

Formulation of the dimension schemes.

All the different types of dimensions considered will be formulated according to longitudinal and angular variables, the basic working variables. 

2D DIMENSIONAL TRANSFER METHODOLOGY.

The proposed methodology to carry out the 2D dimensional transfer is as follows. This methodology obtains what we denominate fundamental transfer equations (3). The methodology can be summarised in three steps:

1. Formulate Dimensional Chains. Dimensional Chains are a group of equations that relate initial and final dimensions, both of them expressed according to longitudinal and/or angular variables. Two kinds of variables can be distinguished: variables defining the problem, which correspond to tolerances, and 'virtual' variables, which do not correspond to any tolerances.

2. Auxiliary equations. These are a group of equations that relate 'virtual' variables to the variables defining the problem of its dimension scheme. Obviously, the number of auxiliary equations should be the same as the number of 'virtual' variables used in the previous step.

These equations are divided into two groups that correspond to the initial problem and to the final one. Each one of them allows the elimination of 'virtual' variables according to the variables of the dimension scheme.

3. Fundamental equations. Fundamental equations are the result of combining the two previous groups in order to establish the group of equations that relate the two dimension schemes, in which 'virtual' variables have been eliminated. The equations (3) can be cleared out of this last group of equations. As result, the fundamental equations link the final dimension scheme with the initial one. 6) and/or (9) are applied to establish the equations system of inequalities that will mark the values of the final dimension tolerances.

In order to facilitate the operation of the group of equations, these are transferred into their derived form, becoming linear equations due to the fact that the new unknown become the derivatives of the variables of the problem.

The solution to the problem is guaranteed through the dimensional scheme hypothesis carried out, which guarantees the unique definition of the degrees of freedom of all nodes. This insures both the existence of equations of equivalence (among different dimension schemes) and of auxiliary equations for any 'virtual' variable considered.

Dimensional Chains.

Dimensional chains identify shape mathematical relations between initial dimensions and tolerances and final ones. In order to determine these relations, some graphical representations which we will refer to as 'graphs', are used. These are of two types: dimensional graphs and angular graphs. Each connecting line has an expression using the problem variables.

Graphs have two parts: left, where the relations of the initial dimension scheme are represented, and right, where the relations of the final dimension scheme are represented (Figure 4). Dimensional graphs are proposed for the representation of all the dimensions of the initial dimension scheme. The number of graphs should be equal to the number of different directions that define these dimensions. If the dimensions do not imply generating at least two graphs, these two directions are established in an arbitrary way since, due to the fact that it is 2D dimension schemes, at least two graphs are necessary.

Considering the references of the dimensions as references for the graphs ensures finding the relation of the dimensions of the initial with that of the final (dimensional chains) in a direct way.

Each dimension in the initial dimension scheme is represented in only one graph. If the dimension affects one side, it is represented on the graph that has that side as a reference. If the dimension affects two sides, it is represented on the graph that has one of the sides as a reference, introducing the necessary additional 'virtual' variables. If the dimension only defines the distance between two points, its projection is represented on one of the graphs already created, introducing the necessary additional 'virtual' variables.

Dimensions on the final dimension scheme are represented on the right side of the graphs.

Dimensions between two points will be represented, introducing the necessary additional 'virtual' variables. Dimensions affecting one side will be placed in a graph constructed from that sides' direction. If a graph to represent them does not exist, this will be contemplated subsequently in order to cause auxiliary equations.

From Parting from the example of Figure 5 and using the notation on Figure 6, the dimensional graphs will be those shown in Figures 7 and8. The part blueprint specifications shown by the initial dimension scheme, will be transferred for a new specifications set. In the new dimension scheme the dimension B is replaced by the dimension F. The equivalence between tolerance schemes require that the other tolerances of initial blueprint must be newly valuated in the final tolerance scheme. These tolerances are G and E. Angular graphs show the angles between the directions defined by the different pairs of nodes of the dimension scheme, which do not have to coincide with the sides of the part. Two graphs are proposed, one for the initial node and another for the final one. These graphs have to be constructed using a unique criterion for angle measure (clockwise or anticlockwise). The angular graphs of the example are shown in Figure 9. Similarly to 1D problems, chains of dimensions are formulated following the suggested dimensional and angular graphs. In order to do that, an equivalent path is searched for in the final graph for each of the connecting lines of the initial graph. Thus, all relation on the left side of a dimensional graph are equalized to the relations that have the same path constructed with the available connecting lines on the right side. These equations are derived in order to obtain the equations of equivalence.

Similarly, equations of equivalence for angular dimensions are established by searching the equivalent path in the final angular graph for each of the angular dimensions appearing in the initial angular graph. If throughout this process it is necessary to consider new 'virtual' variables, those that most directly define the required path are added.

In the example the dimensional chains are: Transfer auxiliary equations permit the removal of 'virtual' variables that have been introduced in the dimensional chains. The number of independent auxiliary equations will be the same as that of introduced 'virtual' variables. The search of these equations will be carried out separately for the initial dimension scheme and for the final one. Its formulation is set out through three means:

F
• Equations of definition. The equations of definition of the dimensions themselves are added, as shown previously. These equations relate the dimensions to the variables used for their representation.

• Graph closed paths. All of the paths that can be closed with the defined connecting lines or by introducing new connecting lines to complete new paths, are expressed on the graphs. These paths are searched for dimensional and angular graphs for both the initial and the final dimension schemes.

• New graphs. When there are dimensions of the final dimension scheme which have not been able to be represented in any of the graphs due to not having a reference direction, a new graph is created, only with the part of the final dimension scheme, which will use that direction as a reference. Auxiliary equations are set out over this graph, as in the previous case.

The process of generating auxiliary equations can entail the consideration of new 'virtual' variables. The problem is defined when there are as many equations, linearly independent, as the number of 'virtual' variables considered in each of the initial and final dimensions schemes. In order to automate the methodology, all of the above can be generalised, presenting all the possible closed paths for all of the graphs. This would entail introducing more 'virtual' variables, though there would be more auxiliary equations to clear them out. Finally, among those left, the linearly independent ones would be extracted, clearing out the whole of the 'virtual' variables depending on the dimensions.

On applying it to our example, due to the definition of dimensions, the following equations would remain in first place. Once these auxiliary equations have been obtained, the values of the differentials of the 'virtual' variables are differentiated and cleared up according to the values of the differentials that the dimensions represent.
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On Applying it to our example, the fundamental transfer equations ( 3 
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Using the tolerance notation the fundamental transfer equations are 
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that applying (6) give the inequality system, formulating the constraints governing transference. 
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value representing a parallelism is compatible with the tolerance for dimension A. In the solution the cero value is assigned to
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. This assignment allows to increase the tolerances of dimensions E, F and G, and is possible because 3.4 1.2

β -and 2.3 1.4 β - are "virtual" variables and so they are not necessary to guarantee the final unique and complete dimension scheme. In the same way, 

RESULTS.

In order to give an example of the method suggested, its application on the dimensional transfer is going to be shown for the part of Figure 13-a. It is a 2D part with 2D blueprint.

Through this example we intend to evaluate the machining dimensional scheme process dimensions and tolerances (Figure 13 In order to eliminate 'virtual' variables, auxiliary equations are formulated, and new connecting lines in the dimensional graphs of both the initial and final (Figure 19) problems are needed (Figure 19). Considering new connecting lines usually implies new 'virtual' variables.

In this example only length LL 56 has been added for the final problem. When determining the new connecting line it is necessary to search for angles between bars through the angular graphs of the initial and final problem. Next, the auxiliary equations of the transfer are shown, which will allow us to eliminate the 'virtual' variables of the dimensional chains.

Auxiliary equations of the initial dimension scheme are: 
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By working with the derivative form of auxiliary equations it is possible to obtain the expression of the derivatives of 'virtual' variables, according to the derivatives of the dimensions that define both the initial and final problem.

By transforming dimensional chains into their derivative form and substituting the derivatives of the 'virtual' variables, it is possible to obtain the derivatives of the dimensions of the initial problem according to the derivatives of the final problem. These are what we have called fundamental transfer equations (3), the coefficients of which are the expressions We can obtain the solutions for the new tolerances applying (9): β -is a "virtual" variable, a cero value has been assigned to its tolerance, allowing a great value for the other tolerances. In the same way,
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is the parallelism related to dimension K.

CONCLUSIONS.

This paper has presented a methodology which, based on dimensional and angular graphs, allows tolerance transfer between two 2D dimension schemes of a part. The methodology also allows the homogeneous treatment of dimensional and orientation tolerances by representing them with longitudinal and angular variables. A main characteristic of that differentiates this methodology from the rest is that allows to make tolerance transfers among complex 2D dimension schemes. It is based on graphs and equations and can be automated.

Since it is a general methodology, it can be applied to all kinds of transfers between dimension schemes. For example it can be used in order to establish the dimension scheme of manufacturing, of editing or of verification, from the dimension scheme of design. Also, since dimension schemes are represented through variables, this methodology can be used in order to establish the dimension scheme of a part from its functional conditions.

Finally we would like to point out that this methodology can be automated, and when following a similar working procedure it can be extended to problems of transfer among 3D dimension schemes, as well as to the consideration of location position tolerances. 
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  , enabling the application of the desired method of tolerance accumulation.

Figure 1 .

 1 Figure 1.Variables that represent dimensional tolerances.

Figure 2 .

 2 Figure 2. Variables that represent angular tolerances.

Figure 3 .

 3 Figure 3. Variables that represent orientation tolerances.

  Figure 4. Dimensional graph.

  Figure 5. Example of 2D transference.

  Figura 15. Variables of initial (a) and final (b) problems.

  Figura 16. Dimensional graphs and dimensional chains.
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