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Abstract:

In this paper a multi-objective, long-term production scheduling in make-to-order manufac-

turing is considered and a lexicographic approach with a hierarchy of integer programming

formulations is proposed. The problem objective is to allocate customer orders with various

due dates among planning periods with limited capacities to minimize the number of tardy

orders as a primary optimality criterion. Then, the maximum level of the input

and output inventory is minimized as a secondary criterion, and finally the ag-

gregate production is levelled over the planning horizon as an auxiliary criterion.

A close relation between minimizing the maximal inventory and the maximum earliness of

customer orders is shown and used to simplify the inventory levelling problem. Numerical

examples modeled after a real-world make-to-order flexible flowshop in a high-tech industry

are provided and some computational results are reported. The paper indicates that the

maximum earliness of customer orders is an important managerial decision variable, and its

minimum value can be applied to control the inventory of purchased materials and finished

products, given the customer service level.

Key words:

Production scheduling, Allocation of customer orders, Levelling production and inventory,

Make-to-order manufacturing, Integer programming.
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1 Introduction

In make-to-order manufacturing the performance of production planning and scheduling is

evaluated by customer satisfaction and production costs. A typical measure of the customer

satisfaction is customer service level, i.e., the fraction of customer orders filled on or before

their due dates, and a typical customer due date related performance measure is the min-

imization of the number of tardy orders, e.g. Markland et al. (1990), Silver et al.(1998),

Shapiro (2001). In some practical situations, instead of single customer due dates

a set of possible delivery dates is fixed, e.g. Lesaoana (1991), Hall et al. (2001).

On the other hand to achieve low unit production cost, renewable production resources

(e.g. machines and people) should be utilized highly and evenly and the aggregate production

levelled over time, e.g. Leachman et al. (1996), Neumann and Zimmermann (1999). In

addition, the inventory should be minimized, both the input inventory of purchased materials

waiting for processing in the system and the output inventory of finished products waiting

for delivery to the customers. Furthermore, some companies produce and deliver to

customers directly without holding output inventory, for example in the computer

and food catering industries completed orders are delivered to customers within

a short lead time, e.g. Chen and Vairaktarakis (2005).

If demand on capacity in some period exceeds available capacity, then some customer

orders with due date in such a period should be moved early or late to reach feasibility. To

minimize the number of tardy orders or, if possible, to meet all customer due dates, some

orders should be reallocated to earlier periods with excess of capacity. The smaller is the

earliness of a customer order with respect to its due date, the later can be the delivery date

of required materials. To reduce the required input inventory of purchased materials, the

materials should be delivered as late as possible, i.e., the order earliness should be as small

as possible, while achieving the minimum number of tardy orders or, if possible, meeting

all customer due dates. On the other hand the smaller the earliness of customer orders,

the smaller is the output inventory of finished products completed before customer required

shipping dates and waiting for delivery to the customers.

An important managerial decision variable for a customer order is its latest ready period

(material availability period) or, equivalently, the least earliness of its completion with respect

to due date such that during the planning horizon the minimum number of tardy orders yet

can be achieved or, if possible, all customer due dates yet can be met. If for some customer

orders the earliness is smaller than the minimum earliness, i.e., ready periods and due dates

are closer each other, then reallocation of orders to the earlier periods with surplus of capacity

is restricted due to later material availability. As a result, the number of tardy orders may

increase or even some orders may remain unscheduled during the planning horizon.

Accordingly, an important managerial decision-making problem is the minimization of the
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maximum earliness for all customer orders, i.e., the maximum length of the interval between

order due date and its ready period. The maximum earliness of customer orders determines

for each order the latest period of material availability such that the minimum number of

tardy orders is yet achieved. The smaller the maximum earliness, the lower is the required

input inventory of purchased materials and the output inventory of finished products.

The purpose of this paper is to present a lexicographic approach with a hierarchy of integer

programming formulations for a multi-objective, long-term production scheduling in make-

to-order manufacturing. The problem objective is to allocate customer orders with various

due dates among planning periods with limited capacities to minimize the number of tardy

orders and the maximum level of the input and output inventory, respectively as a primary

and secondary optimality criterion and to level the aggregate production over the planning

horizon as an auxiliary criterion.

The proposed integer programs are enhanced to consider the finite input, output or central

buffers for holding purchased materials and finished products.

In the literature on production planning and scheduling the integer programming models

have been widely used, e.g. Nemhauser and Wolsey (1988), Shapiro (1993), Silver et al.(1998),

Markland et al.(1990), Kolisch (2000). In industrial practice, however, the application of inte-

ger programming for production scheduling is limited, in particular in make-to-order manufac-

turing. For example, a hierarchical approach and integer programs for production scheduling

in make-to-order company are presented in Carravilla and Pinho de Sousa (1995), however

computational results are based on developed heuristics. An integer goal programming for-

mulation for production scheduling with a due date related criterion is also presented in

Markland et.al (1990), and the focus is again on application of heuristic approaches. Bradley

and Arntzen (1999) apply mixed integer programming for the simultaneous production, ca-

pacity and inventory planning in seasonal demand environments. A hierarchical framework

for decision making (e.g. Schneeweiss, 1999) and the integer programming formulations for

a long-term assignment of customer orders to planning periods and a short-term machine as-

signment and scheduling of production lots in a flexible flowshop with multi-capacity machines

and due date related performance measures are proposed in Sawik (2006).

This paper shows how simple mixed integer programs can be used to find the optimal value

of the maximum earliness and how to optimize long-term production schedules in make-to-

order manufacturing. The major contribution of this paper is that it proposes a lexicographic

approach with a hierarchy of integer programming formulations for the multi-objective pro-

duction scheduling in make-to-order manufacturing, where both maximization of the customer

satisfaction and levelling of production and inventory are integrated in the objective function.

In addition, the close relation between the maximum level of input and output inventory

and the maximum earliness of customer orders is shown and used to simplify the inventory
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levelling problem. The paper indicates that the maximum earliness of customer orders is an

important managerial decision variable in scheduling of make-to-order manufacturing, and its

minimum value can be applied to control the inventory of purchased materials and finished

products so as to maximize the customer service level and to minimize the production cost.

The paper is organized as follows. In the next section the description of make-to-order

production scheduling in a flexible flowshop is provided. The integer programming formula-

tions for a lexicographic approach to the multi-objective production scheduling are presented

in Section 3. In Section 4 the proposed integer programs are enhanced to consider the finite

input, output or central buffers for holding purchased materials and finished products. Nu-

merical examples modeled after a real-world, make-to-order assembly system in a high-tech

industry and some computational results are provided in Section 5. Conclusions are made in

the last section.

2 Problem Description

The production system under study is a flexible flowshop (e.g. Kis and Pesch, 2005) that

consists of m processing stages in series and each stage i ∈ I = {1, . . . ,m} is made up of

mi ≥ 1 identical, parallel machines. In the system various types of products are produced in a

make-to-order environment responding directly to customer orders. Let J be the set customer

orders that are known ahead of a planning horizon. Each order j ∈ J is described by a triple

(aj , dj , sj), where aj is the order arrival date (e.g. the earliest period of material availability),

dj is the customer due date (e.g. customer required shipping date), and sj is the size of order

(the quantity of ordered products of specified type). Denote by J(d) the subset of orders

with the same due date d ∈ D, where D = {dj : j ∈ J} is the set of distinct due dates of all

customer orders. Each order requires processing in various processing stages, however some

orders may bypass some stages. Let Ji ⊂ J be the subset of orders that must be processed in

stage i, and let pij > 0 be the processing time in stage i of each product in order j ∈ Ji. The

orders are processed and transferred among the stages in lots of various size that depends on

the ordered product type and let bj be the size of production lot for order j.

The planning horizon consists of h planning periods (e.g. working days). Let T = {1, . . . h}

be the set of planning periods and cit the processing time available in period t on each machine

in stage i.

The following two types of the customer orders are considered:

1. Small size (single-period) orders, where each order can be fully processed in a single

time period, e.g. during one day. The single-period orders are referred to as indivisible

orders.

2. Large size (multi-period) orders, where each order cannot be completed in one period

4
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and must be split and processed in more than one time period. The multi-period orders

are referred to as divisible orders.

In practice, two types of customer orders are simultaneously scheduled. Denote by J1 ⊆ J ,

and J2 ⊆ J , respectively the subset of indivisible, and divisible orders, where J1
⋃

J2 = J ,

and J1
⋂

J2 = ∅.

It is assumed that each customer order j ∈ J1 must be fully completed in exactly one

planning period, and each customer order j ∈ J2 must be completed in consecutive planning

periods.

The maximum number of planning periods required to complete a multi-period order

j ∈ J2 is maxi∈I,t∈T ⌈
pijsj

cit
⌉, where ⌈·⌉ is the least integer not less than ·.

For convenience, it is assumed that each multi-period order can be completed in at most

two consecutive planning periods, however, this assumption can be easily relaxed (Sawik,

2005a). In addition the available processing capacity is assumed to be sufficient to schedule all

the orders during the planning horizon, if all required materials are available at the beginning

of the horizon.

The objective of the long-term production scheduling is to assign customer orders to

planning periods to minimize the number of tardy orders and the maximum level of the total

(input and output) inventory, or equivalently the maximum earliness of orders, respectively

as a primary and secondary optimality criterion and to level aggregate production over the

planning horizon as an auxiliary criterion. An implicit objective is to achieve a high customer

service level by meeting customer due dates, and a low unit production cost by levelling

production and the inventory of purchased materials and finished products.

A lexicographic approach is applied, where the primary objective of maximizing customer

service level is reached at the top level. At the top level the customer orders are allocated

among planning periods to find the minimum number of tardy orders, then the maximum

level of the total inventory or equivalently the maximum earliness of orders is minimized at

the medium level and finally the aggregate production is levelled over the horizon for the

minimum number of tardy orders and the minimum value of the maximum earliness, see

Fig. 1.

Figure 1: A lexicographic approach to multi-objective production scheduling.

3 Integer Programming Models for the Multi-

Objective Production Scheduling

In this section the integer programming formulations are presented for a lexicographic ap-

proach to the multi-objective production scheduling. Decision variables are defined in Table 1.
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Table 1: Notation

Model M1: Customer orders assignment to minimize number of tardy orders

Minimize

Usum =
∑

j∈J

uj (1)

subject to

1. Order assignment constraints

- each indivisible customer order is assigned to exactly one planning period,

∑

t∈T : t≥aj

xjt = 1; j ∈ J1 (2)

- each divisible customer order is assigned to at most two consecutive planning periods,

xjt + xjt+1 ≤ 2; j ∈ J2, t ∈ T : aj ≤ t ≤ h − 1 (3)

xjt + xjt′ ≤ 1; j ∈ J2, t ∈ T, t′ ∈ T : aj ≤ t ≤ h − 2, t′ ≥ t + 2 (4)

2. Order allocation constraints

- each order must be completed,

∑

t∈T : t≥aj

yjt = 1; j ∈ J (5)

- each indivisible order is completed in a single period,

xjt = yjt; j ∈ J1, t ∈ T : t ≥ aj (6)

- each divisible order is allocated among all the periods that are selected for its assignment,

xjt ≥ yjt; j ∈ J2, t ∈ T : t ≥ aj (7)

- the minimum portion of a divisible order alloted to one period is not less than the batch

size,

yjt ≥ bjxjt/sj ; j ∈ J2, t ∈ T : t ≥ aj (8)

3. Tardy orders constraints

- an indivisible tardy order is completed after its due date,

uj =
∑

t∈T : t>dj

xjt; j ∈ J1 (9)
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- a divisible tardy order is partly assigned after its due date,

uj ≥
∑

t∈T : t>dj

yjt; j ∈ J2 (10)

uj ≤
∑

t∈T : t>dj

xjt; j ∈ J2 (11)

4. Capacity constraints

- in every period the demand on capacity at each processing stage cannot be greater than

the maximum available capacity in this period,

∑

j∈Ji

pijsjyjt ≤ citmi; i ∈ I, t ∈ T (12)

5. Variable nonnegativity and integrality constraints

uj ∈ {0, 1}; j ∈ J (13)

xjt ∈ {0, 1}; j ∈ J, t ∈ T : t ≥ aj (14)

0 ≤ yjt ≤ 1; j ∈ J, t ∈ T : t ≥ aj (15)

The objective function (1) represents the number of tardy orders to be minimized. The

solution to M1 determines the assignment of indivisible customer orders to single planning

periods and the allocation of divisible orders among the pairs of consecutive planning periods.

In model M1 all customer orders are assumed to be available for processing at the be-

ginning of the planning horizon, i.e., the order ready period (material availability period) is

aj = 1,∀j ∈ J . As a result the solution to M1 (Fig. 1) determines the smallest possible

number of tardy orders U∗
sum.

Given the minimum number of tardy orders, the next optimization step is to minimize

maximum level of the total input and output inventory. In model M2 presented below the

input inventory of product-specific raw materials only is considered with no common materials

for different product types taken into account. Furthermore, it is assumed that each product

requires one unit of the corresponding product-specific material (e.g. one printed wiring board

of a specific design per one electronic device of the corresponding type). As a result, for each

order j the required quantity of product-specific material equals the quantity of the ordered

products sj.

Model M2: Customer orders assignment to minimize maximum inventory level, given

number of tardy orders

Minimize

Imax (16)

subject to (2) - (15) and
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Order assignment constraints:

- the number of tardy orders is at minimum,

∑

j∈J

uj = U∗
sum (17)

Maximum earliness constraints

- for each early order j assigned to period t < dj, its earliness (dj − t) cannot exceed the

maximum earliness Emax,

(dj − t)xjt ≤ Emax; j ∈ J, t ∈ T : t ≥ aj (18)

Material availability constraints

- for each order j the required raw materials are available for processing Emax periods

ahead of the order due date dj , and at the latest in period dj − 1 if Emax = 1,

rjt ≤ 1 + (t − dj + Emax)/h; j ∈ J, t ∈ T : aj ≤ t ≤ dj − 1 (19)

rjt ≥ (1 + t − dj + Emax)/h; j ∈ J, t ∈ T : aj ≤ t ≤ dj − 1 (20)

Inventory constraints

- in every period the total input inventory of raw materials and output inventory of finished

products cannot exceed its maximum level Imax to be minimized,

∑

j∈J :aj≤t≤dj−1

sjrjt +
∑

j∈J :t≥dj

sj −
∑

j∈J,τ∈T :aj≤τ≤t, t≥dj

sjyjτ ≤ Imax; t ∈ T (21)

Variable nonnegativity and integrality constraints

rjt ∈ {0, 1}; j ∈ J, t ∈ T : aj ≤ t ≤ dj − 1 (22)

Emax ≥ 1, integer (23)

Imax ≥ 0 (24)

The objective function (16) represents the maximum level of the total input and out-

put inventory to be minimized, defined in the left hand side of (21). Implicitly, (16) tends

to level the total inventory over the planning horizon. The first two summation terms
∑

j∈J :aj≤t≤dj−1 sjrjt +
∑

j∈J :t≥dj
sj in the left-hand side of (22) represent the required amount

of product-specific materials. The third summation term
∑

j∈J,τ∈T :aj≤τ≤t, t≥dj
sjyjτ repre-

sents the amount of the finished products that had already been shipped to customers by

period t.

Material availability constraints (19), (20) are formulated such that binary vari-

able rjt = 1, if t ≥ dj − Emax, and rjt = 0, if t ≤ dj − Emax − 1.
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It should be noted that the actual input inventory of product-specific materials depends

on material supply schedule (e.g., Silver et al., 1998, Sawik, 2005b) and may differ from the

required amount calculated in (21), where the materials are assumed to be supplied exactly

Emax periods before each customer order due date. In contrast, (21) accounts for the actual

inventory level of finished products.

The solution to the mixed integer program M2 determines for each order its assignment

period and by this the latest period of availability the required materials. The corresponding

earliness of each early order with respect to its due date is found such that the number of tardy

orders remains at its minimum. As a result the maximum earliness Emax (the maximum length

of the interval between order due date dj and its ready period aj, i.e., material availability

period) is determined for all orders such that the maximum level Imax of the total input and

output inventory is minimized and the number of tardy orders is at minimum, U∗
sum.

Given the minimum number of tardy orders, and the minimum value of the maximum

earliness of orders, the next optimization step is to find production schedule such that levels

aggregate production over the planning horizon for a minimum number of tardy orders and

the minimum total inventory level.

The integer program M3 for the base level problem is formulated below. In model M3

each customer order is assumed to be available for processing Emax periods before its due

date, i.e., for each order j ready period (material delivery period) is aj = max{1, dj −Emax}.

Model M3: Customer orders assignment to level aggregate production, given number of

tardy orders and the latest periods of material availability

Minimize

Pmax (25)

subject to (2) - (15), (17) and

Production levelling constraints:

- in every period the aggregate production cannot exceed the maximum production level

to be minimized,

∑

j∈J

sjyjt ≤ Pmax; t ∈ T (26)

Variable nonnegativity constraints

Pmax ≥ 0 (27)

The objective function (25) tends to level the aggregate production over the planning

horizon.

The solution to M3 determines the levelled production schedule, i.e., the optimal allo-

cation of customer orders among planning periods, {x∗
jt, y

∗
jt} such that the number of tardy

9
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orders and the maximum inventory level are kept at minimum, and the aggregate production

is levelled over the planning horizon.

The following simple cutting constraint can be added to models M1, M2 or M3.

Cumulative production and demand balancing constraint

- In every period cumulative production is not less than cumulative demand minus tardy

demand

∑

j∈J,τ∈T :aj≤τ≤t

sjyjτ ≥
∑

j∈J :dj≤t

sj(1 − uj); t ∈ T (28)

All the integer programs presented in this section are obviously NP-hard prob-

lems. In particular, M1 is a resource constrained problem of assignment divisible

and indivisible tasks. It can also be viewed as a special type of ordered bin pack-

ing problem, where n ordered, m-dimensional items (customer orders ordered by

due dates) must be packed into a sequence of h, m-dimensional bins (planning

periods with limited capacities) to minimize the number of items packed into the

bins on positions later than due dates.

3.1 Maximum level of total inventory versus maximum earliness of cus-

tomer orders

This subsection shows that for a given set of tardy orders, minimizing the maxi-

mal inventory of product-specific materials and finished products can be approx-

imately achieved by minimizing the maximum earliness of customer orders.

The following formulae derived for aj = max{1, dj − Emax} indicate that the

smaller is the maximum earliness Emax for customer orders, the later the required

materials can be delivered by suppliers and the lower is the output inventory of

the finished products completed before due dates and waiting for the delivery to

customers

• Cumulative supplies of product-specific materials by period t:
∑

j∈J :dj−Emax≤t sj,

• Cumulative production by period t:
∑

j∈J,τ∈T :dj−Emax≤τ≤t sjyjτ ,

• Cumulative deliveries to customers by period t:
∑

j∈J,τ∈T :dj≤t, dj−Emax≤τ≤t sjyjτ ,

• Input inventory in period t = Cumulative supplies by period t - Cumulative

production by period t:
∑

j∈J :dj−Emax≤t sj(1 −
∑

dj−Emax≤τ≤t yjτ ),

• Output inventory in period t = Cumulative production by period t - Cumu-

lative deliveries by period t:
∑

j∈J,τ∈T :dj−Emax≤τ≤t<dj
sjyjτ ,
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• Total (input and output) inventory in period t = Cumulative supplies by

period t - Cumulative deliveries by period t:

∑

j∈J :dj≤t+Emax

sj −
∑

j∈J,τ∈T :dj≤t, dj−Emax≤τ≤t

sjyjτ .

The last formula can be rewritten as below.

∑

j∈J :dj≤t

sj(1 −
∑

dj−Emax≤τ≤t

yjτ ) +
∑

j∈J :t+1≤dj≤t+Emax

sj (29)

The first summation term in (29) is the inventory of product-specific materials

for customer orders due by period t, and the second term is the inventory of

product-specific materials and finished products of customer orders due after

period t. The first term represents the input inventory in period t of product-

specific materials for tardy orders and is greater than zero only if some customer

orders are tardy, otherwise this term is equal to zero. The second term increases

with the maximum earliness Emax. Given the tardy orders, the total inventory

increases with Emax, i.e. both the input inventory of product-specific materials

and the output inventory of finished products can be reduced when ready periods

and due dates of customer orders are closer.

Therefore, the maximum level Imax of the total input and output inventory can be implic-

itly minimized by minimizing the maximum earliness Emax of early orders, given the minimum

number U∗
sum of tardy orders. As a consequence, a complex problem of minimization the max-

imum inventory level Imax can be replaced with a much more simple problem of minimization

the maximum earliness Emax such that the minimum number of tardy orders U∗
sum is yet

achieved. Accordingly, a complex mixed integer program M2 can be replaced with a much

more simple integer program M2a, presented below.

In M2a for each early order j assigned to period t < dj , its earliness (dj −t) is determined,

and the resulting maximum earliness over all early orders Emax = maxj∈J,t∈T (dj − t)xjt is

directly minimized.

Model M2a: Customer orders assignment to minimize maximum earliness, given number

of tardy orders

Minimize

Emax (30)

subject to (2) - (15), (17), (18), (23).

The objective (30) represents the maximum earliness of customer orders to be minimized

or equivalently the maximum difference between order due date and its ready period, i.e., the

latest period of material availability.
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4 Finite Capacity of Input, Output or Central Buffers

In many manufacturing systems purchased materials waiting for processing in the system

and finished products waiting for the delivery to customers are stored in finite input buffer

and finite output buffer, respectively or are stored in a common central buffer of limited

capacity, e.g. Hall et al.(1988a, 1988b). Typically, the capacity of such buffers is not large to

limit material and finished product inventory and to limit early supplies of purchased

materials before their processing dates and early completion of customer orders before the

customer required shipping dates.

When the finite buffers need to be considered, additional buffer capacity constraints should

be added to the proposed integer programs.

Input buffer capacity constraints:

- in every period the total inventory of materials available for processing cannot exceed

the input buffer capacity B1,

∑

j∈J :t≥aj

sj −
∑

j∈J,τ∈T :aj≤τ≤t

sjyjτ ≤ B1; t ∈ T (31)

Output buffer capacity constraints:

- in every period the total inventory of finished products completed before their due dates

and waiting for shipping to customers cannot exceed the output buffer capacity B2,

∑

j∈J,τ∈T :aj≤τ≤t<dj

sjyjτ ≤ B2; t ∈ T (32)

The minimum input and output buffer capacity, respectively B1min(Emax) and B2min(Emax),

required to begin processing of each order j ∈ J at its ready period aj = max{1, dj − Emax}

such that the smallest number of tardy orders is yet achieved can be determined as the optimal

solutions to the following mixed integer programs:

B1min(Emax) = min{B1 ≥ 0 : (2) − (15), (17), (31)} (33)

B2min(Emax) = min{B2 ≥ 0 : (2) − (15), (17), (32)} (34)

Notice that the minimum capacity B1min(Emax) (or B2min(Emax)) is determined assum-

ing unlimited capacity of B2 (or B1) in (33) (or (34)), respectively.

If both the raw materials and the finished products are stored in a common central buffer,

then the following central buffer capacity constraints should replace (31) or (32)

Central buffer capacity constraints:
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- in every period the total inventory of raw materials and finished products stored in the

central buffer cannot exceed its finite capacity BC

∑

j∈J :t≥aj

sj −
∑

j∈J,τ∈T :aj≤τ≤t, t≥dj

sjyjτ ≤ BC; t ∈ T (35)

The minimum capacity BCmin(Emax) of the central buffer required to begin processing of

each order j ∈ J at its ready period aj = max{1, dj −Emax} such that the smallest number of

tardy orders is yet achieved can be determined as the optimal solution to the following mixed

integer program:

BCmin(Emax) = min{BC ≥ 0 : (2) − (15), (17), (35)} (36)

Notice that the optimal capacity BC∗
min(Emax) of the central buffer is identical with the

optimal value of maximum inventory level I∗max achieved for the same value of maximum

earliness Emax, i.e., for ready periods aj = max{1, dj − Emax}, j ∈ J .

5 Computational Experiments

In this section numerical examples and some computational results are presented to illustrate

possible applications of the proposed lexicographic approach with a triple of integer programs

M1, M2 or M2a and M3. The examples are modeled after a real world distribution center

for high-tech products, where finished products are assembled for shipping to customers.

Fig. 2. Distribution center: a flexible flowshop.

The distribution center can be modeled as a flexible flowshop made up of six processing

stages in series and parallel, with parallel machines. In the distribution center 10 product

types of three product groups are assembled. The processing stages are the following: material

preparation stage, where all materials required for assembly of each product are prepared,

postponement stage, where products for some orders are customized, three flashing/flexing

stages in parallel, one for each group of products, where required software is downloaded,

and a packing stage, where products and required accessories are packed for shipping.

Customer orders require processing in at most four stages: material preparation stage,

postponement stage, one flashing/flexing stage, and packing stage (see, Fig. 2). However,

some orders do not need postponement.

Customer orders are split into production lots of fixed sizes, each to be processed as a

separate job. Each large size (multi-period) customer order must be completed in at most

two planning periods (two days).

In the computational experiments four types of the test problems are constructed with

the following four regular patterns of demand:
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1. Increasing, with demand skewed toward the end of the planning horizon.

2. Decreasing, with demand skewed toward the beginning of the planning horizon.

3. Unimodal, where demand peaks in the middle of the planning horizon and falls under

available capacity in the first and last days of the horizon.

4. Bimodal, where demand peaks at the beginning and at the end of the planning horizon

and slumps in mid-horizon.

Pattern 1 requires some orders to be completed earlier, for pattern 2 a majority of orders

must be moved later in time, whereas patterns 3 and 4 require that orders are moved both

early and late to reach feasibility.

For each demand pattern, the following two scenarios will be considered with different

tightness measure tcr, (37) of the capacity constraint (12):

• scenario I with medium tightness of capacity constraints: tcr = 0.762,

• scenario II with high tightness of capacity constraints: tcr = 0.955.

where tcr (total capacity ratio) is defined below as the maximum over all processing stages of

the total demand on capacity to total available capacity

tcr = max
i∈I

(

∑
j∈J pijsj

mi

∑
t∈T cit

) (37)

A brief description of the production system, production process, products and customer

orders is given below.

1. Production system

• six processing stages: 10 parallel machines in each stage i = 1, 2; 20 parallel ma-

chines in each stage i = 3, 4, 5; and 10 parallel machines in stage i = 6.

2. Products

• 10 product types of three product groups, each to be processed on a separate group

of flashing/flexing machines,

• 100 customer orders, each consisting of several suborders (customer required ship-

ping volumes), known ahead of a monthly planning horizon. Every suborder has

a different volume ranging from five to 6345 products (scenario I) or from five to

7930 products (scenario II). The total number of suborders is ranging from 669 to

816 depending on demand pattern and the capacity scenario. The total demand

for all products is 429685 and 537995, respectively for scenario I and II.
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• production (and transfer) lot sizes: 200,200,300,100,100,100,200,200,300,100, re-

spectively for product type 1,2,3,4,5,6,7,8,9,10.

3. Processing times (in seconds) for product types:

product type/stage 1 2 3 4 5 6

1 20 0 120 0 0 15

2 20 0 140 0 0 15

3 10 0 160 0 0 10

4 15 5 0 120 0 15

5 15 10 0 140 0 15

6 10 5 0 160 0 10

7 15 10 0 180 0 15

8 20 5 0 0 120 15

9 15 0 0 0 140 10

10 15 0 0 0 160 10

4. Planning horizon: h = 30 days, each of length L = 2 × 9 hours.

The number of large size (multi-period) customer orders is not greater than 10 orders for

each capacity scenario and demand pattern.

Notice that the suborders in the computational examples play the role of orders in the

mathematical formulation. Now, the problem objective is to determine an assignment of

customer suborders over the planning horizon to minimize number of tardy suborders as a

primary criterion.

Table 2: Computational results for scenario I: Model M1.

Table 3: Computational results for scenario I: Model M2.

Table 4: Computational results for scenario I: Model M2a.

Table 5: Computational results for scenario I: Model M3.

The characteristics of integer programs M1, M2, M2a and M3 for the two capacity

scenarios and various demand patterns and the solution results are summarized in Tables

2 - 9. The size of each integer program is represented by the total number of variables,

Var., number of binary variables, Bin., number of constraints, Cons., and number of nonzero

elements in the constraint matrix, Nonz. The counts presented in the tables are taken
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from the models after presolving. The last two columns of each table present the solution

values Usum for M1, Imax for M2, Emax for M2a, Pmax for M3, and CPU time in seconds

required to prove optimality of the solution (or % GAP if optimality is not proven

within the limit of 3600 CPU seconds). The solution value Imax for M2 and Emax

for M2a is presented along with the corresponding associate value of Emax and Imax (in

brackets), respectively.

Table 6: Computational results for scenario II: Model M1.

Table 7: Computational results for scenario II: Model M2.

Table 8: Computational results for scenario II: Model M2a.

Table 9: Computational results for scenario II: Model M3.

If cutting constraint (28) is applied, the CPU time can be reduced by up to 15%. The

greater is the number of tardy orders in the optimal solution, the more efficient is the con-

straint. Tables 2-9 presents computational results without application of cut (28),

except for model M2a and scenario II with decreasing demand pattern in Table

8.

For the optimal values of maximum earliness E∗
max, various demand patterns and capacity

scenario II, Fig. 3 shows the difference of cumulative aggregate production and cumulative

aggregate demand, Fig. 4 shows the aggregate production schedules, and Fig. 5 shows the

required input inventory of purchased materials and the output inventory of finished products.

(For the total inventory, sum of the input and output inventories, see the corresponding charts

for E∗
max in Fig. 7.)

The negative values in Fig. 3 indicate the tardy demand. Fig. 4 shows that the aggregate

production is best levelled over time for the increasing demand pattern. Finally, Fig. 5

indicates that the required material inventory and the finished product inventory are varying

over time similarly, following or anticipating the demand pattern.

Fig. 3. Cumulative difference of aggregate production and demand for scenario II and E∗
max.

Fig. 4. Levelled production schedules for scenario II and E∗
max.

Fig. 5. Input and output inventory for scenario II and E∗
max.

A comparison of the solution values Imax achieved for M2 and M2a indicate that M2a

generates the same optimal values for all demand patterns except of a slight difference for

decreasing demand: I∗max = 31970 for M2 versus Imax = 33280 for M2a, for scenario I, and

I∗max = 95635 for M2 versus Imax = 97395 for M2a, for scenario II. The difference is due to a

different allocation of some orders among planning periods, in particular, a different tardiness

of tardy orders.

16

Page 16 of 30

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Table 10: Minimum capacity of input, output, and central buffer for scenario II.

For a comparison, Table 10 presents the minimum capacity of the common buffer storage

BCmin(Emax) for the input and output inventory as well as the minimum capacity of separate

input buffer B1min(Emax) and output buffer B2min(Emax). The minimum capacities are

obtained as solutions to the mixed integer programs (34), (35) and (37), for the optimal values

of the maximum earliness E∗
max for each demand pattern. The solution results in Table 10

indicate that the minimum capacity of the central buffer BCmin(E∗
max) and the corresponding

optimal value I∗max of maximum inventory are identical for all demand patterns.

Table 11: Minimum number of tardy orders vs. maximum earliness for scenario II.

When order ready periods (i.e., material availability periods) and due dates are closer

than E∗
max, the limited order earliness due to later material availability restricts reallocation

of orders to the earlier periods with surplus of capacity, which may result in a greater number

of tardy orders or even infeasible schedules with some customer orders unscheduled during the

planning horizon. Table 11 shows how the number of tardy (or unscheduled) orders increases

as the maximum earliness decreases below the optimal value E∗
max for various demand patterns

and capacity scenario II. For example, for the increasing demand pattern and E∗
max =

6, the number of unscheduled orders increases from 1 to 9 as the maximum

earliness Emax decreases from 5 to 1.

The difference of cumulative aggregate production and demand for various demand pat-

terns and capacity scenario II is shown in Fig. 6 to illustrates examples with the maximum

earliness Emax = 1. Now, for each demand pattern the number of tardy orders has increased,

in particular, infeasible schedules with unscheduled orders have been obtained for increasing,

unimodal and bimodal demand pattern.

On the other hand, both the input inventory of raw materials waiting for processing in

the system and the output inventory of the finished products completed before due dates

and waiting for delivery to the customers can be reduced when orders ready periods and due

dates are closer. For a comparison, Fig. 7 presents total (input and output) inventory for

the maximum earliness Emax = 1, Emax = 10 and E∗
max, for various demand patterns and

capacity scenario II.

For the maximum earliness Emax ≥ E∗
max, the total inventory is varying over time similarly

to demand pattern, and is best levelled over the planning horizon for E∗
max. For Emax = 1,

the ending inventory level is greater than zero due to remaining materials for the unscheduled

customer orders, except for the decreasing demand pattern.

Fig. 6. Cumulative difference of aggregate production and demand for scenario II and

Emax = 1.
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Fig. 7. Total inventory for scenario II and different maximum earliness Emax.

The computational experiments were performed using AMPL programming language and

the CPLEX v.9.1 solver on a laptop with Pentium IV at 1.8GHz and 1GB RAM. The results

have indicated that the lexicographic approach is capable of finding proven optimal production

schedules in a reasonable CPU time for large size problems with typical patterns of demand

that can be encountered in the industrial practice.

Notice that the proposed approach is deterministic in nature and is capable of scheduling

customer orders in a static environment, where a set of customer orders is known ahead of

the planning horizon. Numerical examples presented in this section have been modelled after

an assembly system in such a static environment, where virtually no new orders need to be

considered during the horizon. The approach and the proposed mixed integer programming

models, however, can also be used for reactive scheduling (e.g. Vieira et al., 2003) to iteratively

update the schedule in a dynamic environment. A dynamic scheduling horizon can be used to

successively solve the mixed integer programs when new orders arrive or old, yet uncompleted

orders are cancelled or modified during the horizon. The fact, that the scheduled orders

can be completed in one or at most in two consecutive periods, makes a reactive scheduling

based on the proposed simple mixed integer programming models a valid approach for such

a make-to-order dynamic environment.

6 Conclusions

In this paper a lexicographic approach with a hierarchy of mixed integer programming formu-

lations for a multi-objective, long-term production scheduling in make-to-order manufacturing

has been proposed. First, the customer orders are allocated among planning periods to find

the minimum number of tardy orders, then the maximum level of the total inventory or equiv-

alently the maximum earliness of orders is minimized, and finally the aggregate production

is levelled over the horizon for the minimum number of tardy orders and the minimum value

of the maximum earliness. An implicit long-term scheduling objective has been to achieve a

high customer service level by meeting all customer due dates and a low unit production cost

by levelling production and the inventory of purchased materials and finished products.

The mixed integer programs have been enhanced to consider the finite input, output or

central buffers for holding purchased materials and finished products.

The proposed approach has been applied to optimize the long-term production schedule

in a flexible flowshop. The computational experiments modeled after a real world make-to-

order manufacturing environment in a high-tech industry have indicated that the approach is

capable of finding proven optimal production schedules for large size problems in a reasonable

computation time, using commercially available software for mixed integer programming.
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This paper has also indicated that the maximum earliness of customer orders is an im-

portant managerial decision variable, and its minimum value can be applied to control the

inventory of purchased materials and finished products so as to maximize the customer ser-

vice level and to minimize the production cost. To ensure that the materials are available for

processing not later than it is required by the minimum value of the maximum earliness, a

real-time monitoring of raw materials inventory in a factory as well as during transportation

from a supplier to the factory should be applied, e.g., by using RFID technology. Such a

solution combined with a Vendor Managed Inventory installed in the factory by the supplier

could guarantee that the materials are available the required number of days in advance with

respect to order due date, and, as a result, that the customer service level is maximized.
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Customer Orders: {aj = 1, dj , sj}

Number of Tardy Orders: U∗
sum

Maximum Inventory Level: I∗max

Maximum Earliness: E∗
max

Material Delivery Dates: aj = max{1, dj − E∗
max}

Maximum Production Level: P ∗
max

Production Schedule: {xjt, yjt}

Figure 1: A lexicographic approach to multi-objective production scheduling.

Figure 2: Distribution center: a flexible flowshop.

Page 21 of 30

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Table 1: Notation

Indices

i = processing stage, i ∈ I = {1, . . . ,m}

j = customer order, j ∈ J = {1, . . . , n}

t = planning period, t ∈ T = {1, . . . , h}

Input Parameters

aj, dj , sj = arrival date, due date, size of order j

bj = production lot for order j

cit = processing time available in period t on each machine in stage i

mi = number of identical, parallel machines in stage i

pij = processing time in stage i of each product in order j

D = {dj : j ∈ J} set of distinct due dates of all customer orders

J1 = subset of small (single-period) customer orders

J2 = subset of large (multi-period) customer orders

J(d) = {j ∈ J : dj = d} subset of customer orders with identical due date d

Ji = {j ∈ J : pij > 0} subset of customer orders to be processed in stage i

Decision variables

rjt = 1, if material required for processing order j is available in period t; oth-

erwise rjt = 0 (material availability variable)

uj = 1, if order j is completed after due date; otherwise uj = 0 (unit penalty

for tardy orders)

xjt = 1, if order j is performed in period t; otherwise xjt = 0 (order assignment

variable)

yjt ≥ 0 = fraction of customer order j to be processed in period t (order allocation

variable)

Emax = maximum earliness of orders

Imax = maximum level of total (input and output) inventory

Pmax = maximum level of aggregate production

Usum = number of tardy orders
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Table 2: Computational results for scenario I: Model M1.

Demand pattern Var. Bin. Cons. Nonz. Usum CPU†

Increasing 49759 24880 28696 217772 0 2

Decreasing 49813 24907 28750 223519 2 8

Unimodal 43253 21627 25052 191630 0 1

Bimodal 41089 20545 23833 182233 0 1

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

Table 3: Computational results for scenario I: Model M2.

Demand pattern Var. Bin. Cons. Nonz. Imax, (Emax) CPU†

Increasing 45464 29752 60915 360899 63380, (2) 274

Decreasing 58233 33327 53670 511969 31970, (1) 703

Unimodal 32146 20944 42908 299110 95250, (3) 650

Bimodal 29786 19394 39394 274899 102260, (3) 266

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

Table 4: Computational results for scenario I: Model M2a.

Demand pattern Var. Bin. Cons. Nonz. Emax, (Imax) CPU†

Increasing 31361 15680 33515 163339 2, (63380) 38

Decreasing 49747 24872 36700 240013 1, (33280) 86

Unimodal 22341 11170 23998 115402 3, (95250) 73

Bimodal 20721 10360 22264 106883 3, (102260) 38

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

Table 5: Computational results for scenario I: Model M3.

Demand pattern Var. Bin. Cons. Nonz. Pmax CPU†

Increasing 4791 2395 5127 59932 18495 9

Decreasing 32845 16421 20000 429639 20685 25

Unimodal 5503 2751 5185 80637 18565 38

Bimodal 5231 2615 4941 77577 17855 33

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1
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Table 6: Computational results for scenario II: Model M1.

Demand pattern Var. Bin. Cons. Nonz. Usum CPU†

Increasing 50004 25003 29298 219734 0 11

Decreasing 50060 25031 29354 225520 7 37

Unimodal 43437 21720 26085 194241 2 40

Bimodal 41334 20669 25365 185985 1 37

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

Table 7: Computational results for scenario II: Model M2.

Demand pattern Var. Bin. Cons. Nonz. Imax, (Emax) CPU†

Increasing 45674 29890 61389 363060 175355, (6) 2335

Decreasing 58592 33531 54949 942010 95635, (2) >3600, (0.44% ‡)

Unimodal 53282 31533 55586 489773 146785, (4) 993

Bimodal 30105 19583 41856 281577 173775, (5) 240

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

‡ % GAP after 3600 seconds of CPU time

Table 8: Computational results for scenario II: Model M2a.

Demand pattern Var. Bin. Cons. Nonz. Emax, (Imax) CPU†

Increasing 31507 15753 33863 164653 6, (175355) 247

Decreasing 50059 25029 38676 613618 2, (97395) 1438‡

Unimodal 43438 21720 36630 462309 4, (146785) 471

Bimodal 20985 10494 24403 150177 5, (173775) 972

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

‡ solution cannot be proven within 3600 CPU seconds without cut (28)
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Table 9: Computational results for scenario II: Model M3.

Demand pattern Var. Bin. Cons. Nonz. Pmax CPU†

Increasing 10813 5406 8248 146203 17935 440

Decreasing 34581 17290 21822 459781 22655 317

Unimodal 27848 13925 17834 349848 20245 512

Bimodal 7915 3959 7455 123848 20394 180

† CPU seconds for proving optimality on a PC Pentium IV, 1.8GHz/CPLEX v.9.1

Table 10: Minimum capacity of input, output, and central buffer for scenario II.

Demand pattern/E∗
max B1min(E∗

max) B2min(E∗
max) BCmin(E∗

max)

Increasing/6 54780 43830 175355

Decreasing/2 68715 17220 95635

Unimodal/4 58090 58351 146785

Bimodal/5 71580 55500 173775

Table 11: Minimum number of tardy orders vs. maximum earliness for scenario II.

Demand pattern/E∗
max Maximum earliness

1 2 3 4 5 6

Increasing/6 9‡ 4‡ 3‡ 1‡ 1‡ 0†

Decreasing/2 9 7† - - - -

Unimodal/4 11‡ 7 3 2† - -

Bimodal/5 12‡ 8 3 2 1† -

† minimum number of tardy orders for E∗
max

‡ number of unscheduled orders (no feasible solution)

Page 25 of 30

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 3: Cumulative difference of aggregate production and demand for scenario II and E∗
max.
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Figure 4: Levelled production schedules for scenario II and E∗
max.
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Figure 5: Input and output inventory for scenario II and E∗
max.
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Figure 6: Cumulative difference of aggregate production and demand for scenario II and

Emax = 1.

Page 29 of 30

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 7: Total inventory for scenario II and different maximum earliness Emax.
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