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In recent years, due to stricter environmental legislations, such as the EU directives on waste electrical and electronic equipment (WEEE) and end-of-life vehicles (The European Parliament and The Council of the European Union, 2000Union, , 2003)), an increasing number of companies have started to pay attention to remanufacturing processes and to investigating the associated activities of remanufacturing, such as production, logistics, purchasing and planning. The remanufacturing activity has been transmitted from the automotive industry to several other business sectors, for instance those involving various types of electrical apparatuses, toner cartridges, or household appliances. According to a survey study by [START_REF] Lund | The Remanufacturing Industry: Hidden Giant[END_REF], it was estimated that in 1998, there were around 73 000 companies in the remanufacturing industry in USA. Its turnover reached 53 billion US$, equivalent to that of the steel industry in USA. This industry, on the other hand, is more labour intensive, for instance its total number of employees is twice the number of those in the steel industry.

The literature on remanufacturing and its relevant areas, such as closed loop supply chains and reverse logistics, has been growing rapidly in recent years. Research includes many aspects, from product design, product recovery, to reuse. [START_REF] Gungor | Issues in environmentally conscious manufacturing and product recovery[END_REF] provide a classification of research issues in this area from an environmentally conscious manufacturing and product recovery perspective. Recovery definitions and process descriptions can also be found in the early work by Thierry et al (1995), Fleishmann (1997), [START_REF] Guide | Production Planning and Control for Remanufacturing: Industry Practice and Research Needs[END_REF], and the recent book by [START_REF] Dekker | Reverse Logistics -Quantitative models for Closed-Loop Supply Chains[END_REF]. The research has also been extended from operations management issues, such as inventory control policies and disassembly scheduling (van der Laan et al, 1999[START_REF] Lambert | Disassembly Sequencing: A Survey[END_REF], to microeconomic issues such as the market segmentation problem with manufactured and remanufactured products [START_REF] Debo | Market Segmentation and Product Technology Selection for Remanufacturable Products[END_REF]. This line of research also provides us with a motive to study the production function from the microeconomic perspective of a remanufacturing system, an item which has yet not been dealt with in the literature according to our knowledge.

In various industrial sectors, remanufacturing today adds an additional production alternative, apart from the conventional manufacturing process. With remanufacturing, a used return product is often disassembled, reprocessed and then reassembled into a new component/product, essentially having the same quality as those coming directly from manufacturing. Even though remanufacturing saves a substantial cost of materials, it often requires more labour and other factor inputs. With this additional opportunity in mind, it becomes important to examine how an optimal production plan can be achieved by taking into account the substitution effect of materials and labour. In short, the system performance and production expansion depend on properties of the production function and on factor prices, which need to be appropriately described and presented.

Apart from this background, our study is also motivated by the authors' working experiences with two remanufacturing companies in Sweden. Both companies remanufacture parts of automobiles such as engines, water pumps, brake callipers and steering systems for the service market. As much as possible, parts are recovered from returned cores, and they are then reassembled with newly purchased components into finished products. Performance measures such as productivity and profitability are used in the companies to evaluate, control and improve the production process. Again, the companies have to make decisions such as if they should spend more labour hours to recover returned cores and thereby use more returned materials, or instead purchase new materials (components) so as to reduce labour input. In addition, due to the End of Life Vehicles Directive, both of these two companies foresee a growing market and production capability in remanufacturing. But still the remaining question is to identify the growth path of production so that the right amount of materials and labour are used to improve their performance. From this aspect, investigating the production function definitely helps to make sound strategic decisions. In this paper, we therefore make a first attempt to develop a model for investigating a production system with an existing remanufacturing alternative. Our model is based on the non-linear Cobb-Douglas production function, widely used in production-economic and econometric applications.

More specifically, we focus on how the costs of labour and materials influence the production decisions. The results of this study are hoped to provide insights for managers to make sound decisions when dealing with the increasingly important remanufacturing systems, as well as to provide grounds for creating further more detailed models adding realism to this theory.

Following this introduction we present a description of the system, including the flows of the production system and details of the production function. In Section 3 we then derive consequences from our model, and provide properties of the solved optimal values of the decision variables concerned. The model is then illustrated in Section 4 by numerical examples.

We conclude the paper by indicating some directions for future research.

SYSTEM DESCRIPTION

The Production System

We study a production system with a remanufacturing opportunity, as illustrated in Figure 1. The material flow is based on the case of the two companies mentioned above. Remanufacturing starts with a disassembling and reconditioning process (hereafter referred to as the reconditioning process). In the two case study companies, engine cores will pass through disassembly, cleaning, reprocessing and testing processes in order for for reconditioned components to be obtained, such as cylinder heads, crankshafts, cylinder liner kits. These processes involve a high intensity of labour input. The yield rate of the processes thus depend on the labour input (below written as L r ). Hence, the output of reconditioned components will depend on L r as well. After this reconditioning process, reconditioned materials and components, such as cylinder heads, crankshafts or cylinder liner kits, are then fed into the reassembly process in parallel with similar components acquired from a regular component production. The result is a remanufactured engine being obtained. We refer to this process as manufacturing, since it has the same production property as in a normal manufacturing process.

A portion of the output from the manufacturing process returns to the system after it has been used and consumed by customers, for instance engine cores that are returned by dealers. This return will then be used as part of the input in the reconditioning process. The cost of returned cores is usually minor (the logistics cost is often the major part), but the disassembly and reconditioning process is often labour intensive. Therefore, in this study, besides materials, labour is considered to be the second major input into the two production processes considered.

Nowadays, this type of production structure widely exists in the manufacturing industry. In the automotive industry, typically returned cars are disassembled in some detail, and then the engine, steering system, gear box, etc, will be reprocessed to become a competitive alternative to a direct-manufactured subsystem.

Notation

Decision variables L m :

Labour input into manufacturing process Cobb and Senator Paul H. Douglas in the American Economic Review in 1927 and 1948 [START_REF] Sandelin | On the Origin of the Cobb-Douglas Production Function[END_REF][START_REF] Grubbström | Modelling Production Opportunities -An Historical Overview[END_REF].

In the Cobb-Douglas function, all parameters are positive. and are technical efficiency parameters indicating the state of technology in manufacturing and reconditioning, respectively.

The exponents determine the marginal rate of technical substitution of inputs. Usually a production process has a diminishing return to scale property. Thus we let the sum of the exponents be less than unity, i. e. a+b <1 and c+d < 1.

a b m Q L M = (1) c d r r M L R =
(2)

MODEL FORMULATION

General

The optimisation model is presented in this section. The objective is to maximise the total output Q (Eq. 3), subject to a budget constraint (Eq. 4). In addition, the input of returned items R is limited by a maximum input flow R constraining the flow of reconditioned components (Eq. 5). 

a c d b m m r Q L M L R = + (3) ( ) l r m m m r P L L P M P R C + + + (4) R Q (5)
Furthermore, we require that there is no separate second-hand market for reconditioned material, preventing M m from becoming negative, i.e. M m 0.

The Lagrangian function of our basic maximisation problem may be written as

( ) d b a c m m r L M L R = + L ( ) ( ) ( ) l r m m m r C P L L P M P R Q R µ + + + ( ) ( ) 1 a c d b m m r L M L R µ = + + ( ) ( ) l r m m m r C P L L P M P R R µ + + , (6) 
where and µ are non-negative multipliers. Before we develop our main results, we state the following lemma:

Lemma1

For any positive budget C, the budget constraint in the optimum is binding.

To prove this, assume that this were not so. Then there would be an opportunity to increase the manufacturing labour input L m , which would increase output Q according to Eq. 1, contradicting the system being in an optimal state. As a consequence > 0, and we must always have L m > 0 for a positive budget.

In the continuing, we always assume a positive C and that there is some return opportunity > 0.

The reconditioning process

We first study the reconditioning sub-system alone. For any given budget for this sub-system C R , the returned material output

c d r r M L R =
must be maximised, subject to the return input limitation. For a given Q, we state the Lagrangian ( ) ( )

c d R r R R l r r R L R C P L P R Q R µ = + + L (7)
Obviously, in the optimum, the budget constraint will be binding so R > 0, and also L r > 0 and M r > 0. The first-order Kuhn-Tucker optimisation conditions are then

1 0 c d R r R l r cL R P L = = L (8) 1 0 c d R r R r R dL R P R µ = = L (9) F o r P e e r R e v i e w O n l y 11 0 R R l r r R C PL P R = = L (10) 0 R R Q R µ = L (11) ( ) 0 R R R R Q R µ µ µ = = L (12)
Using the abbreviation ( )

1 / R r r R R y P P µ = +
, the solution is found to be ( )

1 1 * r R l R L C cP c dy = + (13) 
( )

1 1 * R r R R R C dP y c dy = + ( 14 
)
and the maximal output ( )

( ) * c d c d c d d c d r R l r R R M C c d P P y c dy + + = + ( 15 
)
We distinguish between the two sub-cases that the return constraint is not binding with 0 We therefore have the cost function for any given Q

( ) ( ) ( ) 1 1 1 / / , ( ) ( / ) ( / ) , ( / ) ( ) , ( ) ( / ) ( / ) . c d c d c c c d c d c d c d r l r r r l R d c d c c c c r r l r r l c d M P c P d if M Q c d P P C QP M P Q if M Q c d P P + + + + + + + = + > ( 16 
)
This function is easily shown to be continuous at the point ( ) ( / ) ( / )

c d c c r r l M Q c d P P + = .
Furthermore, its derivative R r C M is also continuous here. It is progressively increasing in r M , since c+d < 1. We note that for a small output, the marginal cost is ( ) ( )

1 1 / / c d c d R c d c d c d c d r l r r C M P c P d M + + + + = , ( 17 
)
which is zero for a zero output 0 A more formal proof is easily established.

That M r always is positive in the optimum of the system, applies irrespective of the level of the return price P r . This might seem counter-intuitive. A popular conclusion is therefore that we should always use some returns when they exist.

Detailed consequences in the manufacturing process

Knowing that 0 r M > , 0 r L > , 0 R > , and returning to our Lagrangian in Eq 6, the first-order Kuhn-Tucker optimisation conditions are obtained as ( )

1 1 ( ) 1 0 a c c d d b m r m r l r bcL L R M L R P L µ = + + = L , (18) 
( )

1 ( ) 1 0 a c d b m m t l m aL M L R P L µ = + + = L , (19) 
( ) ( )

1 ( ) 1 0 a c d b m m r m m bL M L R P M µ = + + L , ( 20 
) ( ) ( ) 1 ( ) 1 0 a c d b m m m m r m m M M bL M L R P M µ = + + = L ( 
1 1 ( ) 1 0 a c c d d b m r m r r bdL L R M L R P R µ µ = + + = L , (22) 
( )

( ) 0 l r m m m r C P L L P M P R = + = L , ( 23 
) ( ) 0 a c d b m m r L M L R R µ = + L , (24) 
( )

( ) 0 a c d b m m r L M L R R µ µ µ = + = L , ( 25 
) 0 > , ( 26 
) 0 µ . ( 27 
)
The inequality remaining in the conditions, is Eq. 20 concerning whether or not M m should be zero. We distinguish between two basic cases. In Case I, there is no input of direct materials, i.e.

M m = 0. Case II covers the situation that both M m > 0 and M r >0. The case that there is no input of return materials M r = 0 has been ruled out by Theorem 1. In each of the two cases, the return constraint may be loose or binding, and these sub-cases are denoted a and b, respectively.

We introduce the abbreviations 

+ + + = (29) 1 (1 ) ( ) 1 1 1 ( ) c c a b a b c d c d c d H a b a b c d + = + × (1 ) 1 (1 ) 1 1 1 1 c a c d b c d c a b c d c d c d l m r P P P C + (30) 1 1 1 1 1 1 1 1 1 c d c d c d c d c d c d c d c d l m r h c d P P P C = , (31) 
all being positive and 1 y with equality when 0 µ = . We note that the agregate parameters G, (39)

The right-hand member of Eq. 37 is easily seen to be monotonically increasing in y, taking on its maximum at ( )

(1 ) 1
a bc bd a bc bd + + for y = 1. When comparing which of the sub-cases that applies for given parameters, we thus find the result Lemma 2

In Case I, if

( ) (1 ) 1 a bc bd G a bc bd > + +
, then the free Case I a applies, and, otherwise the binding constraint Case I b. This is equivalent to stating that in the latter sub-case, there is a solution I 1 y < , but not in the former.

Case II, 

0 m M > , 0 r M > ( ) 1 1 * 1 1 d l c d m aP C L hy c dy a b = + + ( 
+ + + = + + . ( 44 
)
In the sub-case of Case II a, the return flow constraint is not binding, i.e. * * R Q < with 0 µ = and so y = 1, and in Case II b, this constraint is binding, i.e. 0 µ > and so 1 y < . In Case II a, the solution in is found explicitly

( ) 1 * 1 (1 ) a b a b a b l m a b a b P P C h c d + = + , ( 45 
)
and in Case II b, the binding return constraint requires ( )

( ) 1 1 1 1 1 1 a b c d c d c d H y hy c dy + = + . ( 46 
)
The right-hand member is seen to be monotonically increasing in y and will take on the 

+ = + + . ( 48 
)
Sufficient for m M to be positive at the optimum, is therefore that the right-hand member remains positive for the maximum y = 1.

Hence, we reach A small h obtains when m P in combination with other parameters is small compared to the budget C and a sufficiently small h requires then that also materials be purchased directly, i.e. 0 m M > , quite as expected. Also, we have

Lemma 2b

If /( ) h b a bc bd + + , then either Case II is optimal with a binding return constraint

II 1 y y = < ,
or Case I is optimal.

If the former applies, then m M must be positive, which implies , then the Case I solution is optimal.

We now compare the Case I solution with the Case II solution assuming the optimal value of y.

Writing ' for the difference in maximum output between the two cases (subtracting Eq. 44 from Eq. 32), we then obtain 

+ + + + + = + + ( ) (1 ) 1 1 1 a b d b c d c d h hy c dy + + , (50) 
where ''( ) h has the same sign as '( ) h . Taking its derivative, it is easily shown that "( ) h is unimodal with a maximum equal to ( ) . At most, this unique maximum of "( ) h is zero, which happens for y =1, in which case

( ) (1 ) 
( ) * / h b a bc bd = + + . If y is smaller, then ( ) * / h b a bc bd > + +
and the maximum is less than zero as are all other values of " .

We thus arrive at the conclusion stated in As earlier argued, a reconditioning process is often more labour intensive compared to a conventional manufacturing process. Thus, we should assign a relatively higher ratio for c/d compared with that of a/b. Usually, the conventional manufacturing process is also more productive than the reconditioning one. This gives the relation > . Finally, the returned product has a lower cost (the major costs are is collection and transportation) so that we should set P m > P r . The results are presented in Table 1, where, with three different budget levels, we have solutions belonging to different solution cases. When the budget C is smaller than 118, there is no input of regular material, M m =0 and all returns are fed into the reconditioning process. As long as C is between 118 and 624, all returns are used as input into the reconditioning process. However, the output from reconditioning is not enough to supply all materials needed for manufacturing, thus M m > 0. Since further enlarging the scale of reconditioning will increase the marginal cost of this process, R is less than the total return when C is larger than 624. Part of the return ( Q -R) needs then to be disposed of.

The output from the manufacturing process increases smoothly with the budget C (Figure 3). The reconditioning process, as we have discussed before, has a breakeven point at C= 624 (Figure 4), after which its input and output remain constant. This makes the solution belong to the type Case IIa. As easily seen, with a given technology, involving known substitution effects between materials, return products and labour, and with known prices and return ratio, we straightforwardly derive the expansion curve of the intricate remanufacturing system. The optimal strategy for handling return products, as well as material and labour inputs may also be developed accordingly. 

*** Insert

CONCLUSIONS

In this paper we have presented a production model to illustrate the optimal production conditions for a remanufacturing system. The optimal production decisions are developed as explicit conditions of price parameters, technical efficiency parameters, the marginal rate of substitution of inputs and the budget level. It is shown under Cobb-Douglas properties of production (and decreasing marginal returns to scale) that some reconditioning is always necessary if such an opportunity exists.

Intervals, given by relatively simple expressions of the parameters, provide necessary and sufficient conditions for the optimal choice of production, whether or not all returns must be used, and whether or not fresh material must be purchased. Given the prices and production function properties, the type of solution is explicitly found. However, for determining intervals explaining which sub-case that is optimal, requires in certain cases that non-linear equations are to be solved. But the uniqueness of solutions is guaranteed by the theorems derived.

Further studies should be conducted towards applying general transformation opportunities, in which more unspecified production functions or production sets are used. It would be expected that leaving the Cobb-Douglas structure, at least having a positive initial marginal cost, this would create opportunities when positive return flows would not necessarily belong to the optimal solution. A future line of development could be to replace the disassembly/reconditioning unit in Figure 1 by a linear production-economic system with an arborescent product structure, having used end products and labour as inputs (as above) but with two or more reconditioned components of varying quality as outputs. Certain outputs of sufficient quality would be entered as input components into the manufacturing process, whereas those of low condition would be scrapped and possibly sold at some low price. An approach of this kind would be expected to add realism and detail, but at the same time the model transparency would be lowered (cf [START_REF] Grubbström | Some Aspects on Modelling as a Base for Scientific Recommendations[END_REF].

There is also ample space for determining comparative-static investigations as to the effects of parameter changes on solution properties. 

F

  Total material input into manufacturing process, M = M m + M r Q: Output from manufacturing Parameters : Return ratio, < 1. Q is the maximum input to the recovery of components, The production opportunities in the two processes are represented by the Cobb-Douglas function, cf Eqs. 1 and 2. This nonlinear production function was first introduced by the Swedish economist Knut Wicksell in 1900 and later became popular due to publications by Charles W.

rM

  = . Therefore, the initial marginal production of reconditioned components is infinitely cheap and will always compete successfully with any other similar source of supply (such as m M ). That r M must be positive in the optimum,

H

  and h only depend on given parameters, and not on the multipliers. Applying the optimisation conditions Eqs. 18-20 and 22, the following solutions are derived:

  falls short of H in the left-hand member, Case II b is ruled out, and the constraint is loose with 0 µ = , whereas if it is larger, the constraint must be binding with a y smaller than unity. This solution we denote II y As in Case I b, values of and µ are easily determined, once y is solved.Studying the definitions of h and H, we therefore find that a small budget C or a low return price r P , other parameters kept, creates a binding return flow constraint, quite in accordance with intuition.We now turn our attention to what might create a solution with 0 m M = . The right-hand member of Eq. 41 is monotonically decreasing in y

  Case II solution is optimal.

  Our model from above is illustrated in this section by some numerical examples. Due to the availability of the full analytical results from Section 3, our purpose of this section is not conducting an extensive numerical experiment to reach a managerial conclusion, but rather to demonstrate how the model can be implemented. The following parameters are assigned a = 0.1, b = 0.7, c = 0.2, d = 0.4, = 10, = 5, P l = 3, P m = 5, P r = 1, = 0.3. Since production processes overwhelmingly have a diminishing returns to scale property, we set (a + b) < 1. Furthermore, this property should be even more pronounced in a reconditioning process, we have (c + d) < 1.
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 23 Figure 1. A remanufacturing system
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 4 Figure 4. Optimal inputs and outputs in the reconditioning process with an increasing budget C.
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Table 1 :

 1 Optimal results

	C	L r	R	L m	M m	M r	Q	Solution
	100	10.51	45.96	7.51	0.00	37.00	153.21	Case I
	500	20.01	111.65	26.19	49.95	60.03	372.16 Case IIb
	1000	21.52	129.10	47.05	133.04	64.55	594.69 Case IIa
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