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The manufacturing systems Cell (or Cluster) Formation Problem (CFP) addresses the problem of creating manufacturing cells with minimum interactions, a central issue in the area of Group Technology. The aim is to decentralise production by first grouping the machines into clusters and the various part types into part families, and then allocate the processing of each part family to a machine cluster. The benefits from such an arrangement include the reduction of transport, queuing and processing times, the elimination of the need for frequent set-ups and tool changes in the machines, the reduction of inventories and the simplification of the production plan. These benefits lead naturally to better delivery times, quality improvements, more efficient management and customer satisfaction. The application of cellular manufacturing is also an appropriate first step towards a JIT production scheme.

In practice, the creation of completely autonomous manufacturing cells is very seldom feasible [START_REF] Wemmerlov | Cellular manufacturing in the U.S. industry: A survey of users[END_REF] and one uses additional equipment, parts subcontracting and alternative process plans, in an attempt to decrease as much as possible the intercellular traffic, that is the traffic generated by parts visiting machines in different cells.

In the presence of alternative routings for some part families (due to genuine multiple process plans or duplicated machines), one has to solve a very large number of CFP problems, each corresponding to a specific Exact algorithms (see for example Chen and[START_REF] Chen | Stepwise decomposition approaches for large scale formation problems[END_REF][START_REF] Heragu | Optimal solution of cellular manufacturing system design: Bender 's decomposition approach[END_REF]) are computationally expensive, therefore the usual approach for solving multiple CFP problems is to use a heuristic technique to obtain nearoptimal solutions, see indicatively the algorithms given in [START_REF] Sofianopoulou | Part and machine partitioning problem in cellular manufacturing: multiple machine environment[END_REF][START_REF] Sofianopoulou | Application of simulated annealing to a linear model for the formation of machine cells in group technology[END_REF], [START_REF] Lozano | A one-step tabu search algorithm for manufacturing cell design[END_REF] and [START_REF] Spiliopoulos | Designing manufacturing cells: a staged approach and a tabu search algorithm[END_REF].

Necessarily, in an alternative routings setting, the above have led to algorithms which have a doubly stochastic nature, that is both the cell formation and the selection of routings are examined in a heuristic framework. For example, the method in [START_REF] Sofianopoulou | Manufacturing cells design with alternative process plans and/or replicate machines[END_REF] first In this work, we attempt to eliminate half of the stochastic component and reduce the complexity of the solution space, by examining all combinations of process plans, thereby limiting the heuristic computations to solving distinct CFP sub-problems. The advantage of this approach is in the increased reliability of the solutions obtained. We apply a bounding technique and show that the number of CFP sub-problems that actually need to be solved is very small compared to the total number of CFP problems that arise (one for each combination of process plans). The proposed approach is shown to be practical when the average intercellular traffic (of the CFP sub-problems solved) is not excessive. This situation appears frequently in practice, when the initial design is adequate, and additional equipment and/or alternative process plans are used to eliminate the remaining intercellular traffic.
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The relation of the proposed procedure with the CFP is shown in the following figure 1. As shown in this figure, the actual search is done on a subset of the combinations of process plans, as many of them lead to equivalent CFP sub-problems.
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The problem statement is presented in section 2, including the IP formulation for the CFP problem and the method for the calculation of machines "distances" used. Section 3 presents the description of the algorithm and computational results with test cases are given in section 4.

Finally, conclusions are given in section 5.

Problem Statement
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For any fixed assignment of parts to alternative routings, the objective function (2.3) minimizes the inter-cellular moves. Constraint (2.4) ensures that any machine is in the same cell with at most M-1 other machines, and constraints (2.5), the "triangular" constraints, enforce the integrity of cells.

Therefore, the overall problem is a series of CFP sub-problems, i.e. to find a combination of routings r(1), r(2),..., r(P) so as to minimize the solution of

(2.3) -(2.6).
This formulation for the CFP was first given in [START_REF] Sofianopoulou | A mathematical programming approach to the manufacturing systems cell formation problem[END_REF][START_REF] Sofianopoulou | Part and machine partitioning problem in cellular manufacturing: multiple machine environment[END_REF] and takes into account the most important parameters, namely the sequencing order of the part families in the routings and the maximum allowed size for the cells. The importance of considering the sequencing order of the parts in a routing, a somewhat neglected factor, is discussed in [START_REF] Harhalakis | An efficient heuristic in manufacturing cell formation for group technology applications[END_REF]. This formulation combines simplicity and adequate fit to realistic situations. Other considerations, such as having volume weighting in the routings and separation and/or co-location constraints for the machines, although not implemented in this work, can be easily incorporated in the proposed algorithm, as discussed in section 3.

CFP is known to be NP-hard, see [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. In fact, when the cell sizes are fixed, it can be equivalently formulated as a Quadratic Assignment (QAP), a Quadratic Transportation (QTP) or a Matrix Norm Minimisation problem, see for example [START_REF] Spiliopoulos | An optimal tree search method for the manufacturing systems cell formation problem[END_REF]. As it will be explained in section 3, we do transform the problem to an equipartition one, by adding dummy machines without parts traffic, in order to exploit some advantages of the QTP formulation.

Description of the Algorithm

The algorithm is based on a nested procedure. The outer loop examines the cost matrices which arise from the different combinations of process plans.

The inner procedure solves cell formation problems with these cost matrices.

As stated in section 1, we want to avoid stochastic components in the outer loop, therefore the examination of the combinations of process plans is After this pre-processing, a bounding technique is used to decide which of the cell formation sub-problems need to be solved in the inner procedure.

In this, a solution is obtained with an Ant Colony Optimization (ACO)

algorithm. The description of this algorithm is out of scope in this work, first because it can be replaced by any other similar procedure and second because it contains several details that need to be elaborated in length. To give a rough idea, as noted in section 2, the ACO procedure is applied on a reformulation of the problem as an equipartition one, by adding dummy machines without parts traffic. In this case, the problem is as a Quadratic Transportation Problem (QTP) which means that methods from the successful ACO applications for the more general Quadratic Assignment Problem (QAP) (see for example [START_REF] Solimanpur | Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing[END_REF], for an application in the cells layout design) can be adjusted and applied. Furthermore, contrary to the QAP case, there is a tight bound for QTP with equipartitions, namely the Rendl-Wolkowicz one, see for example [START_REF] Spiliopoulos | An optimal tree search method for the manufacturing systems cell formation problem[END_REF], which can enhance the solution procedure.

Indicatively, the ACO procedure for the cell formation problem produced, in lower computation times, the same (proven optimal) results as the Tabu Search algorithm proposed in [START_REF] Spiliopoulos | Designing manufacturing cells: a staged approach and a tabu search algorithm[END_REF], and even improved the results in some very large instances for which optimality had not been proven.

The bounding technique is based on the observation that CFP problems with small differences in their cost matrices cannot differ much in their optimal 
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solutions. More specifically, let z(C 1 ) denote the optimal solution of a problem with cost matrix C 1 , and C 2 =C 1 +∆C the cost matrix of any "neighbouring" CFP sub-problem, that is a sub-problem where there is only one change in a process plan, in one part. For z(C 2 ), the optimal solution to this problem:

The difference matrix ∆C contains as only non-zero elements:

-a value of -1 in a position (i,j) when there is a link between machines i and j in the first process plan (with C 1 ) but not in the second (with C 2 ), -a value of +1 in a position (i,j) when there is a link between machines i and j in the second process plan but not in the first.

The optimal solution to the CFP problem with this difference matrix ∆C is, in general, the number of elements equal to -1, because in (2.3) -(2.6) one can set xij=0 for these elements and xij=1 for the elements equal to +1.

This holds for the simple cases when the difference is in only one or two links, that is when two routings differ in a start or end process machine or in an intermediate process machine. In the general case, one must take into account the maximum cell size (which prevents too many +1 elements to be If we store lower bounds z LB for the unique cost matrices and C 1 is the current cost matrix being examined:

z(C 1 ) ≥ z(C 2 ) -k ≥ z LB (C 2 ) -k
Therefore, when a cost matrix C 1 is met, we test its neighbours with cost matrices C 2 . If a lower bound is stored for C 2 , z LB (C 2 ) -k is a candidate lower bound for C 1 . The maximum of these values is a lower bound for the current cost matrix. If this lower bound is greater than or equal to the value of the best solution found so far, the current cost matrix can be fathomed.

If a cost matrix is not fathomed, the ACO procedure is used to obtain a solution z ACO . To allow for greater propagation of bounds to cost matrices not yet met, we assume that the ACO procedure produces optimal solutions. This is not so restrictive, as it will be discussed later. Furthermore, this assumption is not an unreasonable one, given the sizes of the problems we are interested in and the performance of this procedure in practice. We note here that the ACO procedure consistently produces optimal solutions for sizes up to 30 machines.

Under this assumption, when the ACO procedure has produced a solution z ACO (C 1 ) for the current cost matrix C 1 , for all its neighbouring matrices C 2 :

z(C 2 ) ≥ z(C 1 ) -k = z ACO (C 1 ) -k
Therefore, the lower bounds for the neighbouring cost matrices can be set or updated.

An important point is that, when the ACO procedure is used to obtain a solution z ACO , we do not use this value to update the global best solution, but an even better one. Given the assignment of machines into cells in each ACO solution, we select, for each part, the routing with the minimum number of intercellular moves. This selection does not of course correspond to the particular CFP sub-problem but results to an overall feasible value which is obviously always better than z ACO . This practice leads to better fathoming and also allows to the final solution to appear early in the search, an important feature when computations take a long time.

This is also why it is not crucial for the inner procedure to perform optimally. Even if some combination that would lead to a better value is 13 incorrectly fathomed, it is the particular cost matrix that is lost, and not the corresponding allocation of machines into cells. Obviously, there are many different cost matrices that can lead to the same equivalent allocation (to see this, one can start from an optimal solution and swap indices in machines that belong to the same cell). Furthermore, different allocations of machines into cells can have the same "best cost", i.e. cost resulting from selecting the best routes, therefore the probability of actually losing a better value is further reduced.

As mentioned in section 2, other considerations, such as having volume weighting in the routings and separation and/or co-location constraints for the machines, although not implemented in this work can be easily incorporated in the proposed algorithm:

-In the case of volume weightings in the routings, each link in a cost matrix is actually multiplied by a corresponding volume factor.

-Separation and co-location constraints can be taken into account in the inner procedure, by preventing moves that separate some machines, or by enforcing simultaneous movement of some machines as a group, respectively.

The overall algorithm is shown in the following figure 2.

[Figure 2] The proposed algorithm was tested with several problems from the literature. The machine used for the tests had a processor speed 1.8 GHz and 512 MB RAM. The programming language was Fortran 90 and the compiler was NAGWare f95 for Windows (which produces C code for the Cygwin gcc compiler).

The results of the tests are summarized in Table 1 below, sorted by increasing number of parts (P), which is more relevant than the number of machines. In this table, n and M are the number of machines and the maximum cell size, respectively. The table also shows, for each problem, the total number of CFP sub-problems, the number of those sub-problems that were actually solved, the best value for the intercellular moves obtained (z) and the computation time.

[Table 1]

Problems P1-P4 are problems with small numbers of CFP sub-problems and the bounding procedure does not have adequate time to show benefits, hence the high percentage of the CFP sub-problems actually solved (except from problem P2). Problem P1 is from [START_REF] Sofianopoulou | Manufacturing cells design with alternative process plans and/or replicate machines[END_REF], and is in fact a version of a classic small problem in [START_REF] Kusiak | Intelligent Manufacturing Systems[END_REF], modified to have sequence information. The solution produced is the same as in this work.

Problem P2 is from [START_REF] Logendran | Tabu searchbased heuristics for cellular manufacturing systems in the presence of alternative process plans[END_REF]. This problem has a small [Figure 3]

We are not aware of that solution found in the literature (for example, Adenso-Díaz et al. 2001 report a solution with 4 inter-cellular moves). Of course, as the test with problem P5 shows, it is not necessary for the average inter-cellular traffic to be that low for the algorithm to produce a solution fast. Problem P7 is also from [START_REF] Sofianopoulou | Manufacturing cells design with alternative process plans and/or replicate machines[END_REF]. In this problem, the proposed algorithm took excessive time but improved the solution from 34 to 32 intercellular moves. Furthermore, the final solution was obtained at the combination numbered 3,399 (out of 4,423,680) i.e. in a few seconds. It should be pointed out here that, because of the method used for the update of the global best solution, the final solution appears early in the search. This means that the procedure can be interrupted at an early stage, when the computation time has passed a certain threshold. [START_REF] Burbidge | The Introduction of Group Technology[END_REF] with the sequence of machine operations introduced by [START_REF] Kern | The cost of eliminating exceptional elements in group technology cell formation[END_REF]. We modified this problem to include two duplicate machines and set the maximum cell size to 6. To select the machines to duplicate, we first produced a solution to this single CFP problem, shown in figure 4 below.

F

[Figure 4] a few machines, therefore we could afford to duplicate the 3 machines that create the most intercellular traffic (machines 5, 7 and 10). The solution obtained reduced the intercellular moves to 14, in 189 CPU seconds. The small number of CFP sub-problems clearly shows that the limiting factor is not the number of parts per se, but the degree of overlap in the sequences.

Also, because the number of CFP sub-problems actually solved is small, the number of machines does not play a significant role.

Conclusions

We presented a bounding scheme which allows to examine all combinations of alternative routings and solve only a few cell formation problems, thereby limiting the solution space which is searched heuristically. This is of obvious importance for the reliability of the solutions obtained. Much of the elimination of cell formation sub-problems is based on the assumption that the inner procedure used to obtain individual solutions is exact. Although we could not derive results in terms of probabilities, we provide arguments to support that this assumption is not crucial. This inner procedure in not described in detail in this work, one reason being that it can be considered as a black-box one, and can be replaced by any other similar algorithm (in fact, by any algorithm that incorporates additional parameters excluded in the current implementation).

The computational tests indicate that this approach is viable for problems where the average intercellular traffic for the CFP sub-problems solved is where even in the optimal solution there is too much intercellular traffic.

The existence of hundreds of millions of combinations of routings is only a constraint with the current implementation of the algorithm, due to memory limitations in information stored for book-keeping purposes. We believe that there are many potential improvements, namely in the pre-processing of a problem, to locate reduction tests and eliminate combinations that are inferior to others. This is an area of further investigation, together with the most proper way to add other parameters for the CFP problem. 

  plans. But CFP alone is already difficult to solve, if the problem is not over-simplified (for example with clustering methods).

  random routings and then solves the resulting CFP problems with a simulated annealing procedure. Adenso-Díaz et al. (2001) attempt to minimize the heuristic component by moving only in the solution space of the CFP problem in a tabu search fashion, and assigning the best routes to each machine cell configuration. The algorithm in Wu et al. (2004) is similar: tabu search is used to move in the solution space of alternative routings and for each combination, a CFP solution is obtained with a similarity coefficients technique. The second and third approaches are not of course without problems, because in the space being searched one does not have a priori information about the potential changes in the objective effectively reduces the power of the heuristic technique employed.

  same cell) and the triangular constraints (which may force some -1 elements to take a value of +1). The extension to cases where some links appear twice or more in any matrix (because of repeated moves between the same machines) is straightforward. The important point is that this optimal solution, say k, can be pre-computed as above and stored for each pair of alternative routings in the same part. Then, z(C 2 ) ≥ z(C 1 )-k, or by symmetry, z(C 1 ) ≥ z(C 2 )-k.

  and machines (5 and 4, respectively) but the operations in the alternative process plans are not machine-specific and can be performed in either of two machines. The optimal solution has no intercellular moves and was found already from the first CFP problem solved. The 3 seconds CPU time required was for the pre-processing. Problem P3 is the second largest problem in[START_REF] Won | Multiple criteria clustering algorithm for solving the group technology problem with multiple process routings[END_REF] -the first largest one is an artificial one with far too many combinations because almost all parts from 28 ones had alternative routings, and quite dissimilar ones. The original problem had no sequence information and this was added randomly. The same solution as in the work cited was found in 1 second, after solving only 111 CFP subproblems. Problem P4 is again from[START_REF] Sofianopoulou | Manufacturing cells design with alternative process plans and/or replicate machines[END_REF] and the solution produced is the same as in this work.Problems P5-P7 are problems of medium size for parts and larger numbers of CFP sub-problems. Problem P5 is from[START_REF] Sofianopoulou | Manufacturing cells design with alternative process plans and/or replicate machines[END_REF], and is a typical representative of the situations most suitable for the application of the proposed algorithm. In the work cited, this problem was constructed from problem P4, by first selecting only the fist process plan for each part and then adding two duplicate machines. Although the resulting number of combinations (2,097,152) is relatively high, the actual CFP problems solved were only 0.13%. Problem P6 is another problem representative of the applicability of the proposed algorithm, a frequently quoted one from[START_REF] Nagi | Multiple routings and capacity considerations in group technology applications[END_REF] and clearly shows that the critical factor for the performance is not the number of combinations but the quality of the bounds, i.e. the intercellular moves in the CFP solutions. The original problem had also production volumes information which was ignored here. This problem has a large number of combinations(10,077,696), due to the presence of several functionally equivalent machines. However, the solutions of the CFP sub-problems have low values with result to tight bounds. As a result, the CFP problems solved were only 1,042. The solution, as shown in figure3, has only one inter-cellular move. In this figure, the index after each part number shows the routing selected.

  Examples of applications include the cases when machine duplication and genuine multiple process plans are used to eliminate remaining exceptional elements in an already adequate design, a situation which arises frequently in practice. Counter-examples are complicated cases
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 4 Figure 4. Selection of machines to duplicate in Burbidge's 43-parts, 16-machines problem.
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 1 The performance of the proposed algorithm with problems from the literature.
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	Problem	P	n	M	Total CFP	CFP problems	%	z	CPU
					problems	solved			seconds
	P1	5	4	2	48	8	16.67	0	< 1
	P2	5	4	2	36,864	1	< 0.01	0	3
	P3	10	11	3	2,304	111	4.82	4	1
	P4	20	12	5	48	29	60.42	29	1
	P5	20	14	5	2,097,152	2,656	0.13	25	37
	P6	20	20	5	10,077,696	1,042	< 0.01	1	82
	P7	30	18	7	4,423,680	19,514	0.44	32	687
	P8	43	18	6	67,108,864	1,584	< 0.01	19	186
	P9	50	33	6	131,072	632	0.48	14	189
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