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Abstract

We address the dynamic lot sizing problem for systems with product returns. The de-

mand and return amounts are deterministic over the finite planning horizon. Demands can

be satisfied by manufactured new items, but also by remanufactured returned items. The

objective is to determine those lot sizes for manufacturing and remanufacturing that mini-

mize the total cost composed of holding cost for returns and (re)manufactured products and

set-up costs. Two different set-up cost schemes are considered; there is either a joint set-up

cost for manufacturing and remanufacturing (single production line) or separate set-up costs

∗corresponding author
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(dedicated production lines). For the joint set-up cost case, we present an exact, polyno-

mial time dynamic programming algorithm. For both cases, we suggest modifications of the

well-known Silver Meal (SM), Least Unit Cost (LUC) and Part Period Balancing (PPB)

heuristics. An extensive numerical study reveals a number of insights. The key ones are

that under both set-up cost schemes: (1) the SM and LUC heuristics perform much better

than PPB, (2) increased variation in the demand amounts can lead to reduced cost, showing

that predictability is more important than variation, and (3) periods with more returns than

demand should, if possible, be avoided by ’matching’ demand and return.

Keywords: inventory management, lot sizing, reverse logistics, remanufacturing

1 Introduction

Dynamic lot sizing, i.e., planning manufacturing/production orders over a number of future

periods in which demand is dynamic and deterministic, is one of the most extensively researched

topics in production and inventory control. See Silver et al. [21] for a general overview, and

Brahimi et al. [3] for a recent and extensive review of single item models. However, the literature

on dynamic lot sizing with returns, where remanufacturing of those returns is an alternative for

manufacturing, is very scarce.

Remanufacturing can be defined as the recovery of returned products, often involving disas-

sembly, cleaning, testing, part replacement/repair, and reassembly operations, after which they

are as-good-as-new. The latter term distinguishes remanufacturing from other recovery types

such as material and energy recycling. See Thierry et al. [26] for a comparison of recovery types.

Environmental legislation, societal pressure, and economic opportunities have motivated

many firms to get involved with product remanufacturing, especially over the past 10 years.

Products that are nowadays remanufactured include single use camera’s, machine tools, medical

instruments, copiers, automobile engines, computers, aviation equipment, telephone equipment,

and tires (see Ferrer [7], [8], Kandebo [14], Lund [18], Sivinski and Meegan [22], Sprow [23],

Thierry et al. [26], and Toktay et al. [27]).

The scientific literature on remanufacturing and product recovery in general has also been
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growing at an increasing rate over the past two decades. Overviews are provided by Fleischmann

et al. [9], Guide et al. [12], and Gupta and Gungor [13]. For a discussion of more recent results

we refer readers to Dekker et al. [5].

A lot of attention has centered on operations management decisions for systems where man-

ufactured and remanufactured products are not distinguished, i.e., are identical. These systems

especially pose new challenges for production and inventory control, since manufacturing and

remanufacturing are two alternative sources leading to the same serviceable products, and hence

they need to be controlled simultaneously. Note that though remanufactured products are by

definition as-good-as-new, i.e. of the same quality as manufactured products, they are not al-

ways considered to be identical. Some counter examples are retreated tires (Ferrer [7]) and

reconditioned copiers (Ayres et al. [1]) that are sold at a lower price than newly manufactured

products, although manufacturers give the same quality warranties. Examples where no distinc-

tion between remanufactured and manufactured products is made, include single use camera’s

(Toktay et al. [27]), pallets and containers (Golany et al. [11], Kelle and Silver [15]), and service

parts for cars (Driesch et al. [6] and Van der Laan [16]) and computers (Fleischmann et al. [10]).

In this paper, we focus on systems where manufactured and remanufactured products are

identical, and refer to them as serviceable products or serviceables for short. We will study the

dynamic lot sizing problem for such systems. Quite a few papers have recently been written on

production and inventory control for these systems (see also the before mentioned overviews),

but just a few of them deal with dynamic lot sizing. Most authors instead study systems with

stationary demand and return, and analyze policies that use fixed order/production quantities.

Those that include stochasticity of demand and return, usually further characterize the policy

by order(-up-to) levels, and apply the following two-step approach for finding a near-optimal

policy. First, determine a near optimal order quantity by balancing fixed ordering and holding

costs. Second, determine order(-up-to) levels or equivalently safety stock levels by balancing

holding and shortage costs. This decomposition approach is traditionally also used for systems

without remanufacturing (Chan et al. [4]). Dynamic lot sizing is an alternative to the first step

for situations with non-stationary demand.
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Using dynamic lot sizing is quite common in production environments without remanufac-

turing, as it is imbedded in the MRP methodology. They can be solved exactly using the

famous Wagner-Whitin algorithm or approximately using heuristics such as Silver-Meal, Least

Unit Cost or Part Period Balancing, nowadays available in most ERP/APO packages. See e.g.

Silver et al. [21] for descriptions of the algorithm and heuristics. In this paper, we generalize

the Wagner-Whitin algorithm (under a set-up cost assumption) and test modifications of the

before mentioned heuristics for systems with manufacturing and remanufacturing. The few pa-

pers that have been written on dynamic lot sizing with remanufacturing so far, did not consider

heuristics. Furthermore, they either provided a much more complex algorithm or made more

restrictive system assumptions. An overview of the previous contributions and a more detailed

account of the differences with our system are given in Section 2.

After providing the literature overview, the remainder of this paper is organized as follows.

In Section 3, the model is presented. Two cases are considered with either a joint set-up cost

or separate set-up costs for manufacturing and remanufacturing. The case with a joint set-up

cost is treated in Section 4. The exact algorithm is presented, and the heuristics are described.

In an extensive numerical experiment, sensitivity analyses are performed on the effect of system

parameters on the heuristic performances and on the minimum cost for the optimal solution.

Section 5 deals with separate set-up costs. Heuristics are described and tested. Again, sensitivity

analyses are performed in a numerical experiment. We end with conclusions and offer directions

for future research in Section 6.

2 Literature review on dynamic lot sizing with remanufacturing

Richter and Sombrutzki [19] and Richter and Weber [20] study special cases of the problem. In

their first model, it is assumed that the number of returns is sufficient for satisfying all demands

without delay, and therefore manufacturing is not considered. The second model does consider

the manufacturing option. However, results are only derived for the special case that the number

of returns in the first period is at least as large as the total demand over the planning horizon.
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So in fact, the manufacturing option is not needed in the second model either, but may be used

for economic reasons if holding returns is very costly.

Golany et al. [11] study the problem without restrictive assumptions on the number of returns

and they also assume that there is a disposal option. They show that the lot sizing problem

with remanufacturing can be formulated as a network flow problem. Using this formulation,

they prove that the problem is NP-hard for general concave costs. For the special case with

linear costs and hence zero set-up costs, they provide a polynomial-time algorithm.

Beltran and Krass [2] study the lot sizing problem with returns that can be directly reused,

i.e., for which no remanufacturing is needed. They show that it suffices to consider solutions that

satisfy the “zero-inventory property”, and use this property to develop a dynamic programming

(DP) algorithm with cubic time-complexity that determines the optimal manufacturing and

disposal decisions for the case of concave cost functions. If procurement cost and disposal cost

are non-decreasing over time, then the problem can be solved in quadratic time.

In this paper we study the lot sizing problem with remanufacturing of returns, without re-

strictions on the number of returns and with set-up costs included. Two different set-up cost

schemes are considered. In the first model variant, there is a joint set-up cost for manufacturing

and remanufacturing, which is suitable if manufacturing and remanufacturing operations are

performed on the same production line using the same production resources. In the second

model variant, there are separate set-up costs for manufacturing and remanufacturing, in line

with situations where there are separate production lines. Note that all four above discussed

papers assumed separate cost functions for manufacturing and remanufacturing, but none pro-

posed algorithms for the general case with no return restrictions and with set-up costs included.

Moreover, none tested heuristics.

3 Model

Table 1 lists the notations that will be used.

** PLACE TABLE 1 HERE **
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We address dynamic lot sizing problems for systems with product returns. Demand and

remanufacturable return amounts are known for all periods of the planning horizon. We remark

that in practice, forecasts will only be available. Therefore, as is described in Section 1, safety

stocks or safety lead times should be ‘added’ before implementing a solution from the dynamic

lot sizing problem. The determination of those safety stocks/times is beyond the scope of this

paper. Note also that remanufacturable return amounts are known. The actual (forecasted)

return amounts may be larger, but in many situations not all returns will be of sufficient quality

to be remanufactured and yield loss needs to be incorporated. For ease of notation, we will refer

to remanufacturable returned products simply as returned products or returns in what follows.

It is important to remark that the setting that we have in mind is not one where the lot sizing

problem is over at the end of the finite planning horizon and any remaining stock of returns needs

to be disposed of. It is the difficulty of generating demand forecasts, especially for the distant

future, which drives the use of a finite planning horizon. This is the common reason for using

a finite planning horizon when solving dynamic lot sizing problems in production environments

without remanufacturing.

Demands can be satisfied by manufactured/procured new products and by remanufactured

returned products. In Figure 1, a simple sketch of the system is depicted.

** PLACE FIGURE 1 HERE **

Note that there is no disposal option for remanufacturable returned products. Recent re-

search on infinite horizon models by Fleischmann et al. [10], Van der Laan and Salomon [17],

and Teunter and Vlachos [25] has shown that such an option will not lead to a considerable cost

reduction, unless the remanufacturable return rate as a percentage of the demand rate is unreal-

istically high (above 90%) and the demand rate is very small (less than 10 per year). Although

our model assumes a finite horizon, this is done because of forecasting issues and not because

the lot sizing problem ends, as mentioned before. In this setting, returns remaining unused at

the end of the planning horizon do not have to be disposed of. We remark that this setting

is not appropriate, and our model without a disposal option not suitable, if unused returns do

need to be disposed of at the end of the finite planning horizon, as may be the case in seasonal

6

Page 6 of 36

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
retailing.

The objective is to determine the production plan, i.e., the number of products manufac-

tured and remanufactured at each period, such that the total cost over the planning horizon is

minimized. The following cost items are included:

• fixed set-up cost of manufacturing and remanufacturing,

• inventory holding cost for returns and serviceables.

We assume that in any period the sequence of events is as follows. First, returns come in and

then manufacturing and remanufacturing take place. Next, demand occurs and finally holding

costs are incurred for the serviceables and returns in stock at the end of the period.

The set-up costs are modelled in two different ways: either there is a joint set-up cost for

manufacturing and remanufacturing, or there are separate costs. The first approach is suitable

if manufacturing and remanufacturing operations are performed on the same production line

using the same production resources, whereas the second is suitable for situations with dedicated

production lines. We remark that in practice, there could also be mixed settings, e.g. a single

production line with (partially) dedicated resources. Those situations could be modelled by

having both a joint (major) set-up cost for starting production as well as separate (minor) set-

up costs for manufacturing and remanufacturing. That more general modelling of set-up costs

will not be considered here, but the heuristics that we will test can easily be adjusted for such

a situation.

It is assumed that the holding cost rate for serviceables is at least that for holding returns.

Since remanufacturing adds value to a product, this is a practical assumption. For a detailed

discussion on how to set holding cost rates in a system with remanufacturing of product returns,

we refer interested readers to Teunter et al. [24].

Note that variable cost of manufacturing and remanufacturing are not included in the model.

Recall that although our model uses a finite horizon, we assume that this is done because of

the inability to forecast demand in the distant future, and not because (re)manufacturing ends

and any remaining stock of unused returns needs to be disposed of. Indeed, since we exclude

the disposal option, all returns arriving to the system are eventually remanufactured. In the

7
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long term, lot sizing decisions therefore do not affect the total variable manufacturing and

remanufacturing costs incurred (if these costs are time stationary). So, lot sizing decisions only

effect set-up and holding costs and should find the right balance between them. The following

simple example illustrates that the inclusion of variable costs can distort this balance.

Consider an 8 week problem with 10 demands and 9 returns in each week. The vari-

able manufacturing and remanufacturing costs are 500 and 250, respectively. The

holding costs per period per item for returns and serviceables are 0.5 and 1, respec-

tively. Note that this ratio of holding cost to variable cost is realistic, as it reflects

an annual holding cost rate of around 10% (0.10/52 × 500 ≈ 1). There is a joint

set-up cost of 20 per order.

If variable costs are included, then the optimal solution is to manufacture 1 and

remanufacture 9 items in each period. The corresponding total set-up and holding

costs are 160 and 0, respectively. The optimality of this solution with remanufactur-

ing in each period is easily checked. Any solution without remanufacturing in each

period is not able to remanufacture all returns and hence increases the variable cost

by at least 250, whereas the maximum savings in set-up cost are 160.

If variable costs are not included, then the optimal solution is to manufacture 11 and

remanufacture 9 items in week 1, and to manufacture 2 and remanufacture 18 items

in weeks 3, 5 and 7. The corresponding total set-up and holding costs are 80 and

58, respectively. This solution, compared to the optimal solution with variable costs

included, reduces the summed set-up and holding costs from 160 to 148 by balancing

the two cost components.

We assume that the manufacturing and remanufacturing lead times are zero. For the model

with separate set-up costs, the non-zero lead times can be handled in the following way. If the

actual remanufacturing lead time is more than one period, say Lr periods, then the problem
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can easily be adapted to a corresponding one with a zero remanufacturing lead time by shifting

returns Lr periods forward. Each remanufacturing order in a solution for the zero lead time

problem then has to be shifted Lr periods backwards for the actual problem. If the actual

manufacturing lead time is more than one period, say Lm periods, then the problem requires

no modification and the solution can, similarly to remanufacturing, be adapted by shifting each

manufacturing orders in a solution for the zero lead time problem Lm periods backwards for the

actual problem.

For the model with a joint set-up cost, the above transformation to a corresponding zero

lead time problem can only be done if the lead times for manufacturing and manufacturing are

equal. If lead times differ, then shifting manufacturing and remanufacturing orders by different

numbers of periods could alter the total set-up costs incurred. The assumption of equal lead

times seems reasonable if manufacturing and remanufacturing operations are performed on the

same production line, but may not be justified in all situations.

Without loss of generality, we can also assume that the initial stocks of serviceables and

returns are both zero and that there is a positive demand in the first period. To see this,

consider the general problem with possibly non-zero stocks Ir
0 of returns and Is

0 of serviceables

at the end of period 0. It is obvious that the first set-up should be placed in the first period

f for which cumulative demand
∑f

i=1 Di is larger than Is
0 . The relevant lot sizing problem is

therefore from that period f with positive demand onwards, and starts with Is
0−
∑f−1

i=1 Di < Df

serviceables and Ir
0 +

∑f−1
i=1 Ri returns in stock at the end of period f − 1. This problem can

easily be transformed to an equivalent problem with zero initial (at the end of period f − 1)

stocks by subtracting Is
0 −

∑f−1
i=1 Di from the demand in period f and adding Ir

0 +
∑f−1

i=1 Ri to

the return in period f . Therefore, any general lot sizing problem with non-zero initial stocks

can be transformed to an equivalent problem with zero initial stocks and positive demand in the

first period.

9
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4 Joint set-up cost for manufacturing and remanufacturing

The lot sizing problem under the joint manufacturing and remanufacturing set-up cost can be

modelled as a mixed integer linear programming problem (MILP) as follows:

min
T∑

t=1
{Kδt + hrIr

t + hsIs
t }

subject to

Ir
t−1 + Rt − xr

t = Ir
t for t = 1, . . . , T (1)

Is
t−1 + xr

t + xm
t −Dt = Is

t for t = 1, . . . , T (2)

xr
t + xm

t ≤ Mtδt for t = 1, . . . , T (3)

δt ∈ {0, 1}, xr
t , xm

t , Ir
t , Is

t ≥ 0 and Mt =
T∑

i=t

Di for t = 1, . . . , T. (4)

Constraints (1) and (2) assure the inventory balance in return and serviceable stocks, respec-

tively. Constraint (3) keep track of the set-ups; whenever a manufacturing or a remanufacturing

lot is produced, a set-up is made and the production (the sum of the amount manufactured and

remanufactured) in period t will never exceed the total demand in periods t, . . . , T .

Next, we will derive some optimality conditions that will provide the basis for an exact

dynamic programming algorithm and a number of heuristics. The conditions are presented in

the form of two lemmas. The first lemma states that for any optimal solution, the stock at the

beginning of any period with a set-up is zero. This lemma is a generalization of the well-known

zero-inventory property for the original lot sizing problem without returns.

Lemma 1 Any optimal solution satisfies the zero-serviceable-inventory-property: for any period

with a set-up it holds that the stock of serviceables at the beginning of the period is zero, i.e.,

Is
t−1δt = 0 for t = 1, 2, . . . , T .

Proof See the appendix.
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We remark that Lemma 1 can also be used to solve the MILP more efficiently by adding the

constraints Is
t−1 ≤ (1− δt)

∑T
i=t Di for t = 1, 2, . . . , T .

The second lemma shows that priority is given to remanufacturing option, i.e. that any

optimal solution only manufactures in a certain period if the initial stock of returns at the

beginning of that period is insufficient for remanufacturing the entire lot.

Lemma 2 Any optimal solution satisfies the following property: in every period where products

are manufactured, the stock of returns at the end of that period is zero, i.e., Ir
t xm

t = 0 for

t = 1, 2, . . . , T .

Proof See the appendix.

4.1 Exact dynamic programming algorithm

The dynamic programming algorithm that is proposed in this section is a generalized version of

the one proposed by Wagner and Whitin [30] for solving the dynamic lot sizing problem without

returns. See Table 1 for notations. Note that, for ease of presentation, some of the notations

are also used for period 0.

The algorithm starts by considering period 0 only. Clearly, the stock of returns at the end of

that period is 0. So, S0 = {0}, f0(0) = 0, and f0 = 0. The algorithm then recursively solves the

lot sizing problem until period k = 1, 2, . . . , T by deriving Sl,k (for all l = 1, . . . , k), Sk, fl,k(n)

(for all l = 1, . . . , k and n ∈ Sl,k), fk(n) (for all n ∈ Sk), and fk. The recursive equations are

derived below.

Consider the problem until period k. If the last set-up is in period l, l ≤ k, then all the

returns in periods l+1 until k, i.e.
∑k

i=l+1 Ri, will be in stock at the end of period k. Moreover,

if there are returns left in stock at the end of period l, then those products will also be in stock

at the end of period k. From Lemma 2 it follows that there can only be returns left in stock at

the end of period l if the stock at the end of period l − 1 plus the returns in period l is larger

than the size of the order in period l. Using Lemma 1 it follows that the size of the order in

11

Page 11 of 36

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
period l is

∑k
i=l Di. We therefore get

Sl,k =
⋃

j∈Sl−1


(

j + Rl −
k∑

i=l

Di

)+

+
k∑

i=l+1

Ri

 . (5)

Clearly, we further have

Sk =
k⋃

l=1

Sl,k. (6)

Next, we derive the recursive expression for fl,k(n). As explained above, if the last set-up is

in period l, then the stock of returns at the end of period k is equal to
∑k

i=l+1 Ri plus any stock

that may be left at the end of period l. Two cases are distinguished.

• There is no stock left at the end of period l. Since remanufacturing is preferred to man-

ufacturing (Lemma 2), this case occurs if the stock at the end of period l − 1 plus the

returns Rl in period l is at most the order size
∑k

i=l Di in period l. The associated holding

cost for returns in periods l, . . . , k is hr
∑k

i=l+1(k + 1 − i)Ri, since the returns in period

i, i = l + 1, . . . , k, incur a holding cost at the end of periods i, . . . , k. The associated

holding cost for serviceables in periods l, . . . , k is hs
k∑

i=l+1

(i− l)Di, since the products that

satisfy the demands in period i, i = l + 1, . . . , k, incur a holding cost at the end of periods

l, l + 1, . . . , k − 1.

• Some stock is left at the end of period l. Then the stock at the end of period k is

more than
∑k

i=l+1 Ri. To attain stock level n at the end of period k, there should be

n −
∑k

i=l+1 Ri left at the end of period l and hence (since Lemma 2 implies that there

is no manufacturing) n −
∑k

i=l+1 Ri − Rl +
∑k

i=l Di = n +
∑k

i=l(Di − Ri) left at the

end of period l− 1. The associated holding cost for returns in periods l, . . . , k is therefore

hr
((

n−
∑k

i=l+1 Ri

)
(k − l + 1) +

∑k
i=l+1(k + 1− i)Ri

)
= hr

(
n(k − l + 1)−

∑k
i=l+1(i− l)Ri

)
.

The associated holding cost for serviceables in periods l, . . . , k is the same as for the first

case.
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So, we get

fl,k(n) =



 min
j∈Sl−1|j+Rl≤

k∑
i=l

Di

fl−1(j)

+ K + hs
k∑

i=l+1

(i− l)Di

+hr
k∑

i=l+1

(k + 1− i)Ri(i− l)Di for n =
k∑

i=l+1

Ri

fl−1(n +
k∑

i=l

(Di −Ri)) + K + hs
k∑

i=l+1

(i− l)Di

+hr

(
n(k − l + 1)−

k∑
i=l+1

(i− l)Ri

)
for n ∈ Sl,k \

{
k∑

i=l+1

Ri

}
(7)

Clearly, we further have

fk(n) = min
l∈{1,...,k}|n∈Sl,k

fl,k(n) for n ∈ Sk (8)

and

fk = min
n∈Sk

fk(n) for k = 1, . . . , T. (9)

Using the above results, we formulate the algorithm in the frame below. Step 1 initializes the

values for period 0 and then sets the current period k to 1. In the recursive Step 2, the optimal

lot sizes until period k are determined. When k = T is reached, the algorithm goes to the final

Step 3, where the optimal lot sizes are determined ‘backwards’. This backward determination

of the optimal lot sizes is similar to that for the original lot sizing problem without product

returns. We do not describe it mathematically, since that is straightforward and would require

additional notations.
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Dynamic Programming algorithm for joint set-up cost

Step 1: S0 := {0}, f0(0) = 0, f0 = f0(0) = 0. k := 1.

Step 2: For all l = 1, . . . , k, determine Sl,k using (5). Determine Sk using (6).

For all l = 1, . . . , k and all n ∈ Sl,k, determine fl,k(n) using (7).

For all n ∈ Sk, determine fk(n) using (8). Determine fk using (9).

Step 3: If k = T then go to Step 4.

else k := k + 1, and go to Step 2.

Step 4: The minimal cost until period t, t = 1, . . . , T is fT .

The corresponding lot sizes can be determined backwards.

The algorithm runs in polynomial time, as is stated in the theorem below.

Theorem 1 The DP algorithm runs in O(T 4) time.

Proof The proof is based on the fact that Sk, the number of different return stock levels at the

end of period k, is quadratically bounded by k. For details we refer to the appendix.

For the numerical examples that we will consider in Section 4.3 with T = 12 periods, the

algorithm takes only a fraction of a second. Based on a recent paper by Van den Heuvel and

Wagelmans [29], we suspect that the run time of the algorithm will be just a few seconds even

for large, from a practical point of view, problem instances with up to 40 periods. In that paper,

it is shown that it takes less than 3 seconds in the worst case to solve 2000-period instances

of a capacitated lot sizing problem by an O(T 2) DP algorithm. So a rough estimation is that

instances of approximately
√

2000 ≈ 45 periods can be solved within a few seconds by our O(T 4)

algorithm.

Although our algorithm can determine an optimal solution efficiently, heuristics may be still

be preferred in practice because they are faster, easier to code and implement, and easier for the
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user to understand. With respect to speed, one should keep in mind that lot sizing problems are

typically solved for tens of thousands of items. However, it is only fair to add that based on our

numerical experiments, the lot sizing problem for a 12 period horizon could be solved for ten

thousand items in about 15 minutes (although that requires state-of-the-art Cplex software).

As for ease of coding and implementation, the exact Dynamic Programming formulation is

much more tedious to code than the heuristics that we will propose. Coding the exact MIP

formulation would be less tedious, but would require knowledge of integer programming and

availability of the appropriate software. The heuristics that we will propose are also much easier

to understand, for the mathematically inexperienced user, than the exact formulations. As for

the current practice in solving lot sizing problems (without returns), we have never encountered

a case where exact MIP or Wagner-Whitin algorithms are applied. Indeed, even ERP packages

such as SAP do not include these exact algorithms, but offer simple heuristics only.

4.2 Heuristics

The most well-known heuristics for original lot sizing problems without returns are Silver Meal

(SM), Least Unit Cost (LUC), and Part Period Balancing (PPB). See e.g. Silver et al. [21] for

detailed descriptions. All three heuristics are myopic in the sense that they focus solely on the

next order and ignore costs associated with future orders. Moreover, they only consider solutions

that satisfy the zero-inventory property. The SM heuristic chooses the order that minimizes the

cost per period. The LUC heuristic chooses the order that minimizes the cost per ordered unit.

The PPB heuristic chooses the lot size that minimizes the difference between the set-up cost

and the total holding cost. We propose modified versions of these three heuristics.

Since the zero-inventory property still holds for situations with returns (see Lemma 1) the

restriction to solutions that satisfy this property remains justified. Further, based on Lemma 2,

it is logical to restrict to remanufacture-first solutions. The only modification for the original

heuristics that is required concerns the calculation of the total cost associated with an order.

The modified cost expression is derived below.

Let Cl,k(m) denote the total cost in interval [l, k] if the stock of returns (determined by the
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previous lot sizing decisions) at the end of period l − 1 is m, and an order is placed in period l

that is sufficient until period k, that is of size
∑k

i=l Di. Clearly, there are returns left in stock

at the end of period l if and only if the stock m at the end of period l− 1 plus the returns Rl in

period l is larger than the order size
∑k

i=l Di. If products are left in stock at the end of period l,

then they will remain in stock until the end of period k. So, the associated return holding cost

is hr(k − l + 1)
(
m + Rl −

∑k
i=l Di

)+
. Expressions for the return holding costs associated with

returns after period l and for serviceable holding costs can easily be derived using arguments

similar to those that lead to (7). This gives

Cl,k(m) = K + hr

(k − l + 1)

(
m + Rl −

k∑
i=l

Di

)+

+
k∑

i=l+1

(k + 1− i)Ri

+ hs
k∑

i=l+1

(i− l)Di. (10)

All three heuristics use this modified cost expression, and are otherwise unchanged from the

original version.

We remark that running times are not an issue when applying the heuristics. One can show

that the running times of the heuristics are linear in the planning horizon T . For example, the

term
∑k

i=l Di in (10) can be calculated as follows. In the initialization phase of the heuristic,

compute the values D(1, t) =
∑t

i=1 Di which can be done in linear time. Then, whenever needed,

the value of
∑k

i=l Di can simply be calculated by D(1, k) − D(1, l − 1) which can be done in

constant time. Similar ‘tricks’ can be used to calculate the values of the other summations

in (10).

4.3 Numerical experiment

Four different types of demand and return patterns are considered: stationary, linearly increas-

ing, linearly decreasing, and seasonal. The return ratio, i.e. the mean return rate as a percentage

of the mean demand rate, is set to either 30%, 50%, or 70%. The total number of demand and

return patterns considered are 10 and 22, respectively. For each pattern, four series of real-

izations are generated, so that the total number of demand and return series are 40 and 88,

respectively.
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The serviceable holding cost per period is normalized at 1. The remanufacturing holding

cost is relatively small (0.2), moderate (0.5), or large (0.8). For the joint/separate set-up costs,

3 values are considered. We remark that based on some preliminary investigations, these cost

values are chosen such that during the planning horizon, which is fixed at 12 periods, the number

of periods with a set-up for the optimal solution varies between 2 and 6.

For details on the demand and return patterns, and on the cost parameter values, we refer

to Table 2.

** PLACE TABLE 2 HERE **

A full factorial design is applied, so that the total number of examples is 40× 88× 3× 3 =

31, 680. For each example, we determine the optimal solution as well as the three heuristic

solutions. We measure the performance of a heuristic by the percentage increase in the total

cost compared to an optimal solution, which we refer to as the “error”.

A first important result is that the average error over all examples for PPB (24.8%) is much

larger than that for SM (3.0%) and LUC (4.2%). Apparently, balancing ordering and holding

costs does not lead to a near-optimal solution. Indeed, further analysis of all optimal solutions

revealed that, on average, the division of total cost into holding and set-up is not 50-50 but

roughly 40-60. The poor performance of PPB can be further explained by the combined effect

of fluctuations in returns and demands. Silver et al. [21] report that for traditional systems

without returns, the performance of PPB is negatively affected by increased fluctuations.

Next, we perform a sensitivity analysis to determine the effects of the demand pattern, return

pattern, return rate, and cost parameters on the performance of the heuristics. The results are

summarized in Table 3. This table reports the average error, the standard deviation of the

errors, and the maximum error. The minimum error is always 0% and therefore omitted. Our

discussion of the results will therefore concentrate on the SM and LUC heuristics, because of

their overall superior performance compared to PPB.

** PLACE TABLE 3 HERE **

It appears that under most demand and cost settings, SM performs slightly better then LUC

17

Page 17 of 36

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
both in terms of average error and maximum error. Moreover, the average performances of both

SM and LUC are quite robust. Except for the scenario with a large set-up cost (K = 2000),

the average errors for SM and LUC are less then 5% and 7%, respectively. On the downside,

the poor worst case performance is robust as well. Both SM and LUC have a maximum error

of more than 15% under most demand/return scenarios and cost settings. In the remainder of

this section, we will discuss some of the sensitivity with respect to demand and cost settings in

terms of average error.

SM performs significantly better than LUC for seasonal demand, especially if fluctuations

are large. Increased demand fluctuations generally (though not for all patterns) deteriorate

the performances of SM and LUC. An increase in the return rate also affects the performances

negatively. Overall, however, the effect of the demand and return setting is small.

Cost values have more effect on the performances, with similar effects for SM and LUC. An

increase in the unit holding cost of returns affects the performances negatively, showing that

the suboptimality is mainly due to the scheduling of remanufacturing orders. The set-up cost

has the largest effect on performance. As expected, the larger the set-up cost, the poorer the

performance. However, it is important to realize that the poorer performance for larger set-up

costs is (mainly) caused by the larger order sizes and hence smaller numbers of orders. Due to

the myopic shortsighted nature of the heuristics, the last order in a heuristic solution is often

much too small. For K = 2000 there are typically just 2 orders over the planning horizon,

compared to 6 on average for K = 200, and therefore the relative effect on the cost of a too

small last order is larger. In other words, the poorer performance for larger set-up costs is due

to the relatively smaller planning horizon (in terms of number of orders placed) and does not

result from unsuitability of the proposed heuristics for large K.

5 Separate set-up costs for manufacturing and remanufacturing

The MILP formulation is similar to that for the joint set-up cost case except for the separation

of the set-up cost.
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min

T∑
t=1

{Krδr
t + Kmδm

t + hrIr
t + hsIs

t }

subject to

Ir
t−1 + Rt − xr

t = Ir
t for t = 1, . . . , T (11)

Ir
t−1 + xr

t + xm
t −Dt = Is

t for t = 1, . . . , T (12)

xr
t ≤ Mtδ

r
t for t = 1, . . . , T (13)

xm
t ≤ Mtδ

m
t for t = 1, . . . , T (14)

δr
t , δm

t ∈ {0, 1}, xr
t , xm

t , Ir
t , Is

t ≥ 0 and Mt =
T∑

i=t

Di for t = 1, . . . , T (15)

Recall from Section 4 that for the case with a joint set-up cost, optimal solutions satisfy

the zero-inventory and remanufacture-first properties. These properties enabled us to construct

an exact algorithm of polynomial time-complexity. The following simple example shows that

the properties no longer hold when there are separate set-up costs. Let Kr = 10, Km = 10,

hr = 1, hs = 2, T = 2, D1 = 2, D2 = 100, R1 = 1, and R2 = 98. It is easy to check that the

optimal solution is to manufacture 3 products in period 1 and remanufacture 99 in period 2,

with corresponding total cost 23. This solution satisfies neither of the two properties. Therefore,

we are not able to develop a polynomial DP algorithm for the case with separate set-up costs.

In fact, we conjecture that the problem with separate set-up costs is NP-hard. Besides the

fact that the zero-inventory property and the remanufacture-first property no longer hold, there

is another result that strongly points in this direction. Van den Heuvel [28] considers the same

problem as in this section, except that variable (re)manufacturing costs are included and costs

may vary over time. He shows that this problem is NP-hard under the following conditions: costs

are constant over time, manufacturing and remanufacturing set-up costs are equal (Km = Kr),

holding cost for returns is smaller than holding cost for serviceables (hr < hs, which will typically

hold if remanufacturing is motivated economically), and remanufacturing cost is zero. So the

only difference with our model is the inclusion of constant manufacturing cost. It can easily be
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shown for the joint set-up cost problem with inclusion of variable costs under these conditions,

that the two properties still hold, the DP algorithm can still be applied, and therefore the

problem remains polynomially solvable. So, apparently, it is not the inclusion of variable costs

but the separation of set-up costs which is responsible for the NP-hardness. Therefore, as our

problem is slightly different from the problem in Van den Heuvel [28], we conjecture that our

problem is NP-hard.

We will propose and test a number of heuristics. As for the joint set-up cost problem,

these heuristics are generalized versions of the well-known Silver-Meal, Least Unit Cost, and

Part Period Balancing heuristics for systems without remanufacturing. All three heuristics

simultaneously determine the manufacturing and the remanufacturing order sizes. We also

tested heuristics that determine the order sizes sequentially, first for remanufacturing and then

for manufacturing based on the remaining ‘net demand’. However, it turned out that their

performances were very poor compared to those of the simultaneous heuristics. Therefore, the

sequential heuristics will not be presented.

5.1 Heuristics

The generalized versions of the well-known Silver-Meal, Least Unit Cost, and Part Period Bal-

ancing heuristics only consider solutions that satisfy the zero-inventory property for serviceables.

Although, as discussed above, Lemma 1 does not hold in general for the separate set-up cost

problem, we expect that for most realistic cases, a near-optimal solution that satisfies the zero-

inventory property exists. The extensive numerical study in Section 5.2 will confirm that the

cost increase of the best zero-inventory solution compared to the optimal solution is generally

less than 2%.

The heuristics do consider solutions that may not always remanufacture first. This is essen-

tial, since there can be situations with large set-up costs and few returns available, where it is

clearly better to keep the returns in stock for now and manufacture only, rather than to reman-

ufacture as well as manufacture. Therefore, besides remanufacture-first orders, the heuristics

consider manufacture-only orders. Next, we will derive cost expressions for both types of orders.
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The expression for the cost associated with a remanufacture-first order is similar to that

for the case with joint set-up costs. Expression (10) only needs to be modified by including

the set-up costs if a (re)manufacturing order is placed. Let I(condition) denote the indicator

function, which is one if the condition is satisfied and zero otherwise. Using similar arguments

as those leading to (10), we get the following expression for the cost CRl,k(m) in interval [l, k]

if the returns stock at the end of period l − 1 is m and a remanufacture-first order is placed in

l that is sufficient until k.

CRl,k(m) = I(m + Rl > 0)Kr + I(m + Rl <

k∑
i=l

Di)Km + hs
k∑

i=l+1

(i− l)Di

+hr

(k − l + 1)

(
m + Rl −

k∑
i=l

Di

)+

+
k∑

i=l+1

(k + 1− i)Ri

 (16)

If a manufacturing-only order is placed in period l for interval [l, k] and the returns stock

at the end of period l − 1 is m, then the returns stock at the end of period i, i = l, . . . , k, is

m +
∑t

s=l Rs. The corresponding cost is therefore

CMl,k(m) = Km + hs
k∑

i=l+1

(s− l)Di + hr

(
(k − l + 1)m +

k∑
i=l+1

(k + 1− i)Ri

)
(17)

Aside from the consideration of two order types and the corresponding modified cost expres-

sions, the heuristics are identical to the original ones for systems with manufacturing only.

5.2 Numerical experiment

The same demand patterns, return patterns, and cost parameter values are considered as in the

previous experiment, but of course the set-up costs for manufacturing and remanufacturing can

now have different values. See Table 2. The total number of examples is 95,040.

We start by justifying the focus on heuristics that only consider solutions satisfying the

zero-inventory property. The best zero-inventory solution is determined by solving the MILP

model in Cplex with the following additional restrictions: Is
t−1 ≤ (1 − δm

t )D(t, T ) and Is
t−1 ≤

(1 − δr
t )D(t, T ). These force the inventory at the end of period t − 1 to be zero when a
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(re)manufacturing order is place in period t, thereby enforcing a solution to satisfy the ZI-

property.

For 38.1% of the examples, there is in fact an optimal solution that satisfies this property.

For a further 14.4% of the examples, the cost increase of the heuristics compared to the optimal

solution is less than one per cent. The average cost increase over all examples is less than two

per cent.

The remainder of this section deals with heuristical performances. As for the case with a

joint set-up cost, it turns out that the PPB performs much worse than SM and LUC for all

demand/return patterns and cost values. Furthermore, SM again performs slightly better than

LUC under most scenarios. The average error over all examples is 8.3% for SM, 9.0% for LUC,

and 19.8% for PPB.

Table 4 gives the results of a sensitivity analysis with respect to demand/return patterns

and costs.

** PLACE TABLE 4 HERE **

Most results are similar to those for the joint set-up cost case. The effects of a change in

set-up costs are more complex, as there are two types of set-up costs now. Recall that for the

joint set-up cost case, it was observed that an increase in the set-up cost leads to a poorer

performance of all heuristics. This was explained by reduced number of orders and hence the

(relatively) stronger effect of a too small last order. For the separate set-up cost case, we

see the same effect from an increase in the manufacturing set-up cost. However, an increase

in the remanufacturing set-up cost has the opposite effect; the performances of all heuristics

improve. A look at the optimal solutions provided the following explanation. In cases where

remanufacturing set-up is more costly than a manufacturing set-up, the optimal solution often

place no remanufacturing batches at all, and neither do the heuristic solutions. As is known

from the literature, the heuristics perform well in pure manufacturing situations.
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6 Conclusion

We studied the dynamic lot sizing problem for systems where manufactured new products and

remanufactured returned products are used to satisfy the same demands. The set-up cost was

modelled in two different ways. Relevant for situations with a single or with dedicated production

lines, either a joint set-up cost or separate set-up costs are incurred for placing (re)manufacturing

orders.

For both models, the problem was formulated as a mixed integer program (MIP). The prob-

lem with a joint set-up cost turned out to be least complex. Based on the so-called zero-inventory

and remanufacture-first properties, a polynomial DP algorithm was provided. For situations

with separate set-up costs, these properties no longer hold and the problem is conjectured to be

NP-hard.

In practice, heuristic procedures will often be preferred to the exact MIP formulations and

even to the DP algorithm. We therefore presented and tested modified versions of the well-

known Silver-Meal (SM), Least Unit Cost (LUC), and Part Period Balancing (PPB) heuristics,

both under a joint set-up cost and under separate set-up costs.

In extensive numerical experiments, we calculated the optimal solution for a large number of

examples under both models, and performed a sensitivity study on the effect of model parameters

on the optimal solution using global regression on its cost. The main conclusions were the same

for both models. First, a counterintuitive result was that an increase in demand variability often

leads to a decrease in cost. This is explained by the increased opportunity to place orders in

periods with high demand and stock for periods with low demand. It shows that improving the

predictability of demand is more important than reducing its variation, at least with respect

to lot sizing costs. A second result with a similar explanation was that a positive trend in the

demand leads to higher cost. A third result was that a large negative trend in return usually

increases the cost, as the initial surplus of returns leads to additional stocking costs. This shows

that returns should be matched with demands as much as possible.

In the same experiments, the heuristic solutions were determined and their performance was

measured by the cost error, i.e., the increase in cost compared to the optimal solution. For
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both cost models, it turned out that SM performs slightly better than LUC and a lot better

than PPB. A sensitivity study further revealed that this result is quite robust with respect to

demand/return patterns and cost settings. The average performance of SM was good (average

cost error of 3.0%) for the joint set-up cost model and fair (8.4%) for the separate set-up

cost model. For both models, the performance of all heuristics deteriorated with an increasing

holding cost for returns, showing that the suboptimality is mainly due to the scheduling of

remanufacturing orders.

Even though some improvement in performance can be expected if the heuristics are applied

in a rolling horizon setting, which they are likely to be in practise, our performance results for

modifications of well-known heuristics suggest that there is room for improvement, especially

for the separate set-up cost model. One direction for further research is therefore to propose

and test alternative heuristics. Other interesting research avenues are to prove the conjecture

that the problem is NP-hard for separate set-up costs, to test the heuristics in a rolling horizon

setting, derive ‘horizon results’ similar to standard dynamic lot sizing, and to modify and test

heuristics for ‘mixed’ cases with a joint set-up cost as well as separate set-up costs, or with an

even more general set-up cost function.

A Proofs

Proof of Lemma 1 Consider any solution π. Since the initial stock (at the end of period 0) of

serviceables is zero, the property obviously holds for the first period (in which there is a set-up

since demand is positive). Now consider any other period t ≥ 2 with a set-up under solution π,

and let s denote the preceding period with a set-up. So, s and t are successive set-up periods

under solution π. We shall complete the proof by showing that if the stock of serviceables is

positive at the beginning of period t, then an alternative feasible solution π′ with lower cost can

be constructed. We consider two cases.

• π only remanufactures in period s:

Then π′ remanufactures one less product in s and one more in t, i.e., x′rs = xr
s − 1 and

x′rt = xr
t + 1. Clearly, this solution is feasible because xr

s > 0 and it has the same number
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of set-ups. Furthermore, we have I ′ri = Ir

i + 1 and I ′mi = Im
i − 1 for i = s, . . . , t − 1.

Therefore, we have a reduction in holding cost of (t− s)(hs − hr) > 0 and hence π cannot

be optimal.

• π manufactures in period s:

Then π′ manufactures one less product in s and one more in t, i.e., x′ms = xm
s − 1 and

x′mt = xm
t + 1. Again this solution is feasible as xm

s > 0 and has the same set-ups.

Furthermore, we have I ′si = Is
i − 1 for i = s, . . . , t − 1 and hence we have a reduction in

holding cost of hs(t− s) > 0. Therefore, solution π cannot be optimal.

�

Proof of Lemma 2 Consider any solution π that does not satisfy the property. Then there

must be some period t, 1 ≤ t ≤ T , with manufacturing and with a positive stock of returns at

the end, i.e., Ir
t xm

t > 0. Let v be the remanufacturing period proceeding t. We consider two

cases.

• period v does not exist:

Consider an alternative solution π′ which manufactures one less product and remanufac-

tures one more product in period t, i.e., x′mt = xm
t − 1 and x′rt = xr

t + 1. Clearly, solution

π′ is feasible as xm
t > 0 and Ir

t > 0. But then we have I ′ri = Ir
i − 1 and I ′si = Is

i for

i = t, . . . , T and hence we have a reduction in holding cost for returns of hr(T − t+1) > 0.

• period v exists:

An alternative solution π′ is to manufacture one less product and remanufacture one more

product in period t, and to manufacture one more product and remanufacture one less

product during in period v, i.e., x′mt = xm
t −1, x′rt = xr

t +1, x′mv = xm
v +1 and x′rv = xr

v−1.

Again, solution π′ is feasible as xm
t > 0 and xr

v > 0 and we have I ′ri = Ir
i − 1 and I ′si = Is

i

for i = t, . . . , v− 1. Because the set-up costs and holding costs for serviceables remain the

same, we have a reduction in holding cost for returns of hr(v − t) > 0.

Therefore, in both cases π cannot be optimal. �
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Before giving the proof of Theorem 1, we start by stating two lemmas on the cardinality of sets

Sk and Sl,k.

Lemma 3 For 1 ≤ k ≤ T we have that |Sk| = O(k2).

Proof Consider some solution up to period k satisfying Lemmas 1 and 2. By definition, the set

Sk contains all possible ending inventories of returns Ir
k at the end of period k, possibly including

zero. Now assume that we have some positive ending inventory, i.e., Ir
k > 0. Furthermore, let q,

1 ≤ q ≤ k, be the last period before k satisfying Ir
q−1 = 0. So, Ir

t > 0 for all t = q, . . . , k. Such

a period exists because Ir
0 = 0. We consider the following two cases.

• There is no production in periods q, . . . , k. This implies that all returns in those periods

accumulate, so that

Ir
k =

k∑
t=q

Rt.

Note that there is positive demand and therefore production in period 1. Hence, q ∈

{2, . . . , k} and this case gives k − 1 possible values of Ir
k .

• Let p, q ≤ p ≤ k, be the first period after q with non-zero production. Because Ir
t > 0 for

t = q, . . . , k, there is no manufacturing in periods p, . . . , k. Otherwise Lemma 2 would be

violated. This implies that all demands in periods p, . . . , k must be satisfied by the returns

in periods q, . . . , k (if possible), so that

Ir
k =

k∑
t=q

Rt −
k∑

t=p

Dt.

Note that q = 1 implies that p = 1. Furthermore, because q ≤ p ≤ k for q ≥ 2, this case

gives 1
2k(k − 1) + 1 possible values of Ir

k .

So in total, we have 1 + (k− 1) + (1
2k(k− 1) + 1) = 1

2k(k + 1) + 1 = O(k2) possible values of Ir
k ,

which implies that |Sk| = O(k2). This completes the proof of Lemma 3.

Lemma 4 For 1 ≤ k ≤ T we have that |Sl,k| = O((l − 1)2).
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Proof This follows directly from (5) and Lemma 3. �

Proof of Theorem 1 Using lemmas 3 and 4, we will show that the time it takes to calculate

all values of (7), (8), and (9) is at most O(T 4) for each of the equations.

• Equation (7): Consider any fixed periods k and l with 1 ≤ l ≤ k ≤ T . It takes O((l− 1)2)

time to compute fl,k(n) for n =
∑k

i=l+1 Ri because |Sl−1| = O((l − 1)2) (see Lemma

4). Furthermore, for a fixed n ∈ Sl,k \
{∑k

i=l+1 Ri

}
it takes constant time to calculate

fl,k(n). So fl,k(n) can be computed in O((l− 1)2) time for all n ∈ Sl,k \
{∑k

i=l+1 Ri

}
, and

hence fl,k(n) can be calculated in O((l − 1)2) for all n ∈ Sl,k. Because there are O(T 2)

combinations of k and l, the computation of fl,k(n) takes O(T 4) time in total.

• Equation (8): For any fixed period k (1 ≤ k ≤ T ) and fixed n ∈ Sl,k, the computation

of fk(n) takes O(k) time. Because |Sk| = O(k2) (see Lemma 3) and 1 ≤ k ≤ T , the

computation of fk(n) can be performed in O(T 4) time in total.

• Equation (9): Because |Sk| = O(k2) (see Lemma 3), it follows immediately that fk can be

calculated in O(k2) time for any fixed period k (1 ≤ k ≤ T ). So it takes O(T 3) time to

compute all values of fk.

Therefore, the algorithm runs in O(T 4) + O(T 4) + O(T 3) = O(T 4) time. �
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Figure 1: Inventory system with remanufacturing.
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General

T Planning horizon
t Index for periods in the planning horizon, t = 1, . . . , T
Rt Number of returns received at the beginning of period t
Dt Number of products demanded in period t
K (joint) set-up cost
Kr (separate) Set-up cost for remanufacturing
Km (separate) Set-up cost for manufacturing
hr Unit holding cost for returns per period
hs Unit holding cost of end-products (serviceables) per period

Mixed integer linear programming (MILP) formulation
xr

t Number of products remanufactured in period t
xm

t Number of products manufactured in period t
Ir
t Inventory level of returns at the end of period t

Is
t Inventory level of serviceables at the end of period t

δt (joint) 0-1 indicator variable for remanufacturing set-up in period t
δr
t (separate) 0-1 indicator variable for remanufacturing set-up in period t

δm
t (separate) 0-1 indicator variable for manufacturing set-up in period t

M Large integer
Dynamic programming (DP) algorithm

fk Minimum cost in periods 1, . . . , k (if periods k + 1, . . . , T are ignored)
fk(n) Minimum cost in periods 1, . . . , k (if periods k + 1, . . . , T are ignored)

with n returns in stock at the end of period k
fl,k(n) Minimum cost in periods 1, . . . , k if the last order is placed in periods l

with n returns in stock at the end of period k
Sk Set of possible returns stock levels at the end of period k
Sl,k Set of possible returns stock levels at the end of period k

if the last order is placed in periods l

Heuristics
Cl,k(m) (joint) Cost in interval [l, k] if the returns stock at the end of period l − 1 is m

and an order is placed in period l that is sufficient until period k
CRl,k(m) (separate) Cost in interval [l, k] if the returns stock at the end of period l − 1 is m

and a remanufacture-first order is placed in l that is sufficient until k
CMl,k(m) (separate) Cost in interval [l, k] if the returns stock at the end of period l − 1 is m

and a manufacture only order is placed in l that is sufficient until k
I(condition) Indicator function, which is one if the condition is satisfied and zero otherwise

Table 1: Notations.
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Demand pattern Return pattern

µ σ τ a c d µ σ τ a c d

Stationary Stationary
100 10 0 0 na na 30 3 0 0 na na
100 20 0 0 na na 30 6 0 0 na na

50 5 0 0 na na
Positive trend 50 10 0 0 na na

100 10 10 0 na na 70 7 0 0 na na
100 10 20 0 na na 70 14 0 0 na na

Negative trend Positive trend
210 10 -10 0 na na 30 3 3 0 na na
320 10 -20 0 na na 30 3 6 0 na na

70 7 7 0 na na
Seasonal (peak in middle) 70 7 14 0 na na

100 10 0 20 12 1
100 10 0 40 12 1 Negative trend

63 3 -3 0 na na
Seasonal (valley in middle) 96 3 -6 0 na na

100 10 0 20 12 3 147 7 -7 0 na na
100 10 0 40 12 3 224 7 -14 0 na na

Seasonal (peak in middle)
30 3 0 6 12 1

Cost parameters 30 3 0 12 12 1
Parameter Values 70 7 0 14 12 1
K, Kr, Km 200, 500, 2000 70 7 0 28 12 1
hr 0.2, 0.5, 0.8
hs 1 Seasonal (valley in middle)

30 3 0 6 12 3
30 3 0 12 12 3
70 7 0 14 12 3
70 7 0 28 12 3

Table 2: Experimental Setting. The demand and return patterns are generated according to
Dt = µ + τ(t − 1) + a sin

(
2πt
c + dπ

2

)
+ εt for t = 1, . . . , T, where µ is the starting level of the

pattern, τ is the trend level, a is the amplitude of the cycle, c is the cycle length, d determines the
peak of the cycle and εt (t = 1, . . . , T ) are independently normally distributed random variables
with standard deviation σ.
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Percentage Cost Error

Average Standard deviation Maximum
SM LUC PPB SM LUC PPB SM LUC PPB

All instances 3.0 4.2 24.8 4.9 6.5 34.9 25.1 37.0 222.3
Demand pattern
Stationary 3.3 3.5 32.5 5.7 5.7 42.8 23.3 25.4 211.7
-Small variance 2.8 2.4 31.9 5.2 4.9 42.8 20.3 22.8 207.4
-Large variance 3.8 4.6 33.0 6.1 6.1 42.9 23.3 25.4 211.7
Positive trend 2.0 2.4 10.2 3.2 3.7 15.2 22.6 22.6 121.9
-Small trend 1.3 3.4 12.2 2.3 4.7 19.0 22.6 22.6 121.9
-Large trend 2.7 1.4 8.1 3.8 1.7 9.8 11.1 17.7 73.3
Negative trend 3.2 3.0 15.9 3.8 4.0 21.1 18.3 18.3 121.4
-Small trend 3.6 2.5 15.8 4.2 2.3 28.9 18.3 15.3 121.4
-Large trend 2.8 3.5 15.9 3.3 5.1 17.5 16.5 18.3 110.4
Seasonal 3.3 6.1 32.7 5.6 8.3 39.5 25.1 37.0 222.3
-Small amplitude 3.3 4.6 30.5 5.9 7.2 47.8 20.9 26.7 214.4
-Large amplitude 3.3 7.6 34.8 5.3 9.0 42.3 25.1 37.0 222.3
Returns
Stationary 2.7 3.8 16.4 4.6 6.3 26.8 22.4 30.5 131.3
-Small variance 2.7 3.8 16.3 4.6 6.3 26.5 21.9 30.3 131.3
-Large variance 2.7 3.8 16.6 4.7 6.3 26.3 22.4 30.5 130.9
Positive trend 3.9 5.1 34.8 5.3 6.9 35.5 22.6 33.2 129.5
-Small trend 3.5 4.5 29.4 5.1 6.6 33.7 19.5 29.6 128.7
-Large trend 4.3 5.8 40.2 5.5 7.0 36.4 22.6 33.2 129.5
Negative trend 3.3 4.8 41.0 5.3 6.7 45.3 23.6 37.0 222.3
-Small trend 3.5 4.8 34.4 5.5 6.8 37.6 23.6 35.5 219.8
-Large trend 3.1 4.8 47.7 5.2 6.6 50.8 21.0 37.0 222.3
Seasonal 2.7 3.8 17.9 4.6 6.3 29.8 25.1 30.3 132.5
-Small amplitude 2.6 3.7 17.8 4.6 6.3 29.9 23.6 30.3 131.5
-Large amplitude 2.7 3.8 18.0 4.7 6.3 29.7 25.1 30.3 132.5
Return ratio∗

0.3 2.1 3.0 5.0 3.9 5.7 6.1 18.8 30.5 26.1
0.5 2.8 4.0 13.7 4.9 6.5 18.6 21.9 29.8 101.5
0.7 3.3 4.4 30.6 4.9 6.7 37.8 22.4 29.1 131.3
Set-up cost K
200 1.1 1.5 8.5 2.8 3.1 9.4 23.6 34.0 67.9
500 1.9 2.4 16.7 2.9 3.4 20.4 23.3 27.5 88.5
2000 6.1 8.8 49.1 6.2 7.5 43.6 25.1 37.0 222.3
Returns hold. cost hr

0.2 2.0 2.9 26.2 4.1 5.5 42.3 19.6 32.4 222.3
0.5 3.2 4.6 24.8 5.2 7.0 35.1 23.6 37.0 189.4
0.8 3.8 5.1 23.3 5.2 6.9 32.7 25.1 35.5 170.2
∗ Only examples with stationary returns are considered.

Table 3: Sensitivity analysis on the performance of the SM, LUC, and PPB heuristics for the
case with a joint set-up cost.
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Percentage Cost Error

Average Standard deviation Maximum
SM LUC PPB SM LUC PPB SM LUC PPB

All instances 8.3 9.0 19.8 8.7 8.7 19.6 82.5 98.4 221.4
Demand
Stationary 8.1 8.7 21.4 9.0 8.9 22.4 76.3 66.0 221.4
-Small variance 7.6 7.8 21.2 8.5 8.9 22.3 61.4 62.4 218.0
-Large variance 8.6 9.5 21.7 9.9 9.0 22.3 76.3 66.0 221.4
Positive trend 7.4 7.7 15.8 7.3 7.2 200.7 82.5 68.4 151.1
-Small trend 7.4 7.8 16.8 7.5 7.2 14.3 82.5 68.4 145.7
-Large trend 7.4 7.7 14.8 7.0 7.1 14.0 39.3 39.1 151.1
Negative trend 9.5 9.3 17.2 8.1 8.0 12.5 60.3 64.4 107.5
-Small trend 9.4 9.0 17.7 7.8 7.5 13.0 60.3 64.4 107.5
-Large trend 9.6 9.6 16.7 8.5 8.5 11.9 54.7 61.6 90.0
Seasonal 8.3 9.6 22.3 9.4 9.4 22.6 79.9 98.4 219.5
-Small amplitude 7.8 8.5 21.6 8.9 9.0 22.3 79.9 85.0 219.5
-Large amplitude 8.8 10.8 23.0 9.7 9.7 22.9 69.1 98.4 216.2
Returns
Stationary 7.5 8.2 16.2 7.4 7.3 11.7 53.5 50.6 88.1
-Small variance 7.5 8.2 16.2 7.3 7.3 11.4 48.9 48.3 88.1
-Large variance 7.4 8.2 16.3 7.5 7.2 11.7 53.5 50.6 87.5
Positive trend 10.9 11.6 23.1 11.5 11.7 18.8 76.3 98.4 184.6
-Small trend 10.4 11.1 21.2 11.3 11.3 17.6 76.3 90.4 91.1
-Large trend 11.4 12.1 25.0 11.7 12.1 19.7 70.9 98.4 184.6
Negative trend 8.9 9.9 30.7 9.9 9.6 32.9 82.5 68.6 221.4
-Small trend 8.0 9.2 30.4 8.8 9.2 37.0 66.1 63.1 221.4
-Large trend 9.8 10.5 31.0 10.9 10.2 28.2 82.5 68.6 172.0
Seasonal 7.3 7.9 15.4 6.8 6.7 11.9 57.1 53.1 87.9
-Small amplitude 7.3 7.8 15.4 6.7 6.7 11.6 56.5 47.3 85.7
-Large amplitude 7.3 7.9 15.5 6.9 6.8 12.0 57.1 53.1 87.9
Return ratio∗

0.3 5.6 6.5 11.0 5.5 5.9 7.6 26.8 29.9 37.9
0.5 8.0 8.9 18.0 8.3 8.3 11.2 44.0 42.9 63.5
0.7 8.9 9.3 19.7 7.6 7.2 13.6 53.5 50.6 88.1
Man. set-up cost Km

200 6.2 7.6 17.0 7.6 7.8 16.0 82.5 68.6 151.1
500 6.9 7.2 18.0 6.9 6.7 15.2 53.6 56.3 116.9
2000 11.8 12.2 24.6 10.2 10.2 24.9 76.3 98.4 221.4
Reman. set-up cost Kr

200 11.3 11.3 27.1 9.8 9.7 22.3 76.3 98.4 221.4
500 9.0 9.6 21.5 7.8 8.1 20.0 82.5 68.6 151.1
2000 4.7 6.1 10.8 6.9 7.3 10.9 48.4 67.9 72.1
Returns hold. cost hr

0.2 5.5 6.0 12.1 7.2 7.1 17.5 69.1 57.8 216.2
0.5 8.3 9.1 22.1 8.7 8.5 18.7 82.5 75.1 221.4
0.8 11.2 11.9 25.4 9.1 9.2 19.8 79.9 98.4 220.4
∗ Only examples with stationary returns are considered.

Table 4: Sensitivity analysis on the performance of the SM, LUC, and PPB heuristics for the
case with separate set-up costs.
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