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Abstract 

The assemble-to-order strategy delays the final assembly operations of a product until a 
customer order is received. The modules used in the final assembly operation result in large 
product diversity. This production strategy reduces the customer waiting time for the 
product. As the lead-time is short, any product rework may violate the delivery time. Since 
quality tests can be performed on the stocked modules without impacting the assembly 
schedule, the quality of the final assembly operations should be the focus. The data mining 
approach presented in this paper uses the production data to determine the sequence of 
assemblies that minimizes the risk of producing faulty products. The extracted knowledge 
plays important role in sequencing modules and forming product families that minimize the 
cost of production faults. The concepts introduced in the paper are illustrated with 
numerical examples.  

Keywords: Assemble-to-order, quality, data mining, mass customization, production 
strategy. 
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1.  Introduction 

Faulty products lead to unnecessary expenses due to rework, repairing, recycling, and 

wasted time. “Zero fault” is an objective that industries are eager to reach. A variety of 

methods aims to achieve such goal, e.g., six sigma (Breyfogle 1999, Harry et al. 2000) and 

total productive maintenance (TPM) (Nakajima 1988). The study of past performance of 

production systems is necessary. The difficulty is in finding pertinent information as the 

data is stored in numerous forms and at different locations.  

In this paper, data mining is used to extract knowledge from large data sets to improve the 

production quality. The emphasis is on the role of knowledge extraction in manufacturing 

quality in an assemble-to-order (ATO) environment. A methodology is proposed and 

validated on a pilot study. This stage of validation is a necessary work, a preliminary to 

tests on real instances.  

Assemble-to-order is a production strategy that is particularly well suited when the 

customer tolerance for product delivery (waiting) time is low. The lower limit on the 

customer waiting time is the final assembly time of the product. 

Any unexpected event or additional operations could violate the product delivery time 

constraint. Rework of a faulty product reduces the cost of faults when its cost is smaller 

than the cost of the lost material and labor. Nevertheless, when the product delivery time is 

a contractual requirement, overdue payment is added to the cost of rework. This type of 

faults should be particularly avoided. 

The content of this paper is structured as follows. First, the background of the topic 

discussed in the paper is provided. Then, the use of information in assembly sequencing is 

addressed. The proposed methodology is described in Section 4. The paper concludes with 

computational results. 
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2.  Background 

2.1. Diversity: An industrial example 

To meet the customer needs, product diversity tends to grow and therefore it should be 

managed. The cost of offering a large product portfolio should not exceed the gains 

obtained by satisfying the range of customer needs (Child et al. 1991). It is then essential to 

find the range of diversity that minimizes the total cost (see Figure 1). 

 
Figure 1: Diversity costs (Tarondeau 1998). 
 

 

Different approaches have been used to address the product diversity challenge, e.g. design 

of product families, modular design, and delayed product differentiation. The assemble-to-

order strategy links modular design and delayed product differentiation. Modules are built 

from basic parts and stocked, lastly the final assembly is performed after an actual order has 

been received. The product diversity is accomplished by a combinatorial association of 

basic parts. 

 

Cost 

Products diversity Optimal diversity

 Cost due to 
 product diversity 

Cost of 
customer  
non-satisfaction 

Total cost 
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In this paper, an industrial example of electrical wire harnesses is discussed. It constitutes a 

major component of a vehicle as wires and connectors transmit electricity and information 

between different devices (see Figure 2). 
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Figure 2: Wire harnesses in a car. 
 

 

Control and activation of airbags, electrical windows, headlights, and so on are performed 

by wire harnesses. To illustrate the diversity of this product, consider a standard wire 

harness in a middle range performing 15 different functions. Depending on the silhouette 

and the engine type, these functions appear in different versions (up to 9). Potential 

diversity is then about 7 million of different wire harnesses for a unique car model (Agard 

and Tollenaere 2002). 
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In addition, there are inclusive and exclusive relations between the functions, e.g., the 

function “passenger air-bag” requires the function “driver air-bag”. Those relations reduce 

the actual diversity. 

 

2.2. Costs 

Evaluating the cost of product diversity is difficult. Even if direct costs, such as investment 

in new equipment or material costs, can be measured, indirect costs are difficult to estimate. 

Martin and Ishii (1997) proposed metrics to compare design alternatives based on the costs 

they induce, however this evaluation is difficult to perform in an industrial setting. 

Product quality and complexity are interdependent. As the number of tasks performed by a 

worker increases, the number of errors may increase. The negative impact of product 

complexity seems unavoidable, unless the diversity is managed. 

McDuffie et al. (1996) presented results of an international study in automotive industry. 

This study stressed the relationship between product diversity, productivity, and quality. 

The data included in the study indicated that when plants are adequately equipped to 

manage diversity, productivity is not significantly impacted by the scope of the product 

mix.  

Like diversity costs, which are difficult to evaluate, savings due to process redesign are not 

easy to quantify particularly by the impact on the product quality. Besides, quantitative 

evaluation is recommended for criteria such as reduction of the time-to-market and 

flexibility improvement.  

There are two main sources of fault costs: 

- The loss of material when the faulty product is identified as such and discarded; 

- The loss of image due to the non-conformance of customer requirements, when the 

faulty product reaches the market. 

 

Let π be the added value by the rework operation. The term added value includes different 

sources of costs of a faulty product: the material, the equipment, and the labor associated 
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with production and quality tests. The product rework is preferred over discarding of the 

faulty product, if and only if π is positive.  

In a traditional production strategy the evaluation of rework cost is quite direct as it 

includes the cost of rework and the additional material needed. The balance is then: 

 π = product value – rework cost 

 

In the case of assemble-to-order strategy such evaluation is more complex. When the 

delivery time is contractually required, the overdue payment needs to be considered, and 

the balance is then: 

 π = product value – rework cost – overdue payment 

 

A trade-off between the cost of faults and rework is then needed. Furthermore, if savings 

due to quality improvements can be partially measured, in terms of reduction of the mean 

assembly-time and reduced material usage, the savings (or possibly gains) due to improved 

customer image of the product can not be directly evaluated.  

 

2.3. Diversity management: Modularity and assembly-to-order strategies 

Postponement strategy aims at reducing the risk associated with product diversity by 

delaying its differentiation, i.e. the stage after which the products assume their unique 

identities (Zinn 1990, Aviv and Federgruen 1999).  

The modularity concept has been used for management of product diversity. APICS 
1defined modular production as the capacity to design and manufacture a set of modules 

that can be combined in a maximal numbers of ways (APICS 1998). 

The choice of modular design implies rethinking the design process (Kusiak 1999). The 

modules created can be independent or not (i.e., that they can be assembled without 

requiring another module or not). Figure 3(a) shows modules that are interdependent, i.e., 

modules 1 and 3 can not be assembled unless module 2 has been installed, while the 

modules in Figure 3(b) can be assembled in any order. 

                                                 
1 Advancing Productivity, Innovation, and Competitive Success. The association of operation management. 
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One of the advantages of having independent modules is that re-sequencing of assembly 

sequence can be done without redesign the modules. 

 

 

(a) 

 

 

(b) 

 

 

 
 

 
Figure 3: Examples of modular products. 
 

 

3.  Quality analysis 

3.1. Fault identification 

A product is considered as faulty when it does not meet its specifications. Inspection serves 

the purpose of identifying faults. When performed at the end of the assembly process, it 

comes at a significant cost of rework. In-process inspection detects faults as it occurs and 

thus the rework cost decreases. 

Nevertheless, inspection is expensive and it may not be possible to test the product after 

each assembly operation. It is then essential to carefully determine the location and timing 

of inspection tests. 

Inspection may involve different types of tests, e.g., exhaustive, random. Its role is to 

identify faulty products and control the quality of products. Statistical process control 

1 

2 

3 
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(SPC) detects variations in the product specifications and applies corrective actions to the 

process, mostly adjustment of equipment, before producing inadequate products 

(Quesenberry 1997). 

The selection of the test protocol is generally driven by the characteristics of the product 

and the process. Consider production of needle syringe that it is monitored to avoid quality 

problems during its use. A faulty product can lead to medical problem such as bad 

penetration of the injected substance or breaking the needle.  Therefore, the fixing system 

of the needle and barrel is controlled exhaustively (the inspection is performed visually 

either by a human or a video control device). However, the length of the plunger is 

not crucial and therefore the inspection is performed randomly. 

 

3.2. Data mining applications   

Anand and Büchner (1998) defined data mining as the discovery of non-trivial, implicit, 

previously unknown, and potentially useful and understandable patterns from large data 

sets. Data-mining algorithms have been applied in areas such as marketing (Berry and 

Linoff 1997), medicine (identification of genes impacting drug development, Shah and 

Kusiak 2004), and industrial design (Agard and Kusiak 2004). 

 

The patterns extracted from production data could assist production managers in improving 

quality of products. Therefore, it is important to locate data enabling identification patterns 

of interest. Such data should be understandable for the data miner and the domain expert. It 

is also absolutely necessary that the extraction and transformation of the operational data 

can be done automatically and rapidly for the analysis to take place.  

Production data can contain errors, e.g., due to data entry. In the problem discussed in the 

paper, the term parasite noise is not limited to this kind of errors; it also includes the other 

sources of faults, for example: faulty material, non-adapted equipment. 

One of the aims of this research is to validate that data mining techniques can perform in 

presence of a non-negligible “errors rate” 
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The main goal of this research is to improve the quality of assembly process with data 

mining. The challenge is in the extraction of associations between faults and assembly 

sequence in presence of parasite noise. Faults may come from sources such as assembly 

sequence, power outage, raw material, and other random phenomena. 

 

When faulty patterns are identified, it becomes then possible to re-sequence the assembly 

operation or to rethink the tests policy (Kusiak and Huang 1997) in order to reduce the 

number of operations that have to be redone. It is therefore important to remember that 

rework operations are more expensive. 

 

The following three-step approach is used to improve the product quality: 

1. Identification of assembly sequences having an impact on quality; 

2. Generation of a new sequence; 

3. Generation of a new test policy. 

 

4.  Computational results 

4.1. Input Data 

The data mining approach used in this research was prototyped on a randomly generated 

data set. Consider here an example of a workshop; 6 different assembly operations can be 

performed. This production is monitored and production data is stored. This case will be 

used to stress the pertinence of our hypothesis that mining production data could provide 

production managers good information to improve the quality of their products. 

A test instance was constituted of 2500002 product’s operation routes. The data was 

randomly generated with respect to the following constraints:  

- An operation can be performed as a normal task (i.e., non-rework task) at most once 

per product 

 

                                                 
2  TANAGRA’s limit for the association rules extraction, see Section 4.3. 
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- To reproduce the behavior of a real production system, random faults are generated. 

Because of a randomly phenomenon, 5% of the products need rework. When the 

first test proved the product to be faults, rework has to be done.  

The random data represent products with faults due to sources other than the 

assembly sequence. This characteristic of the input data is needed to validate the 

hypothesis that data mining can perform in a noisy production context. 

- If the rework operations can not restore the quality characteristics, the product is 

considered as faulty and is destroyed. 

Furthermore, systematic faulty sequences are introduced. The challenge of the data mining 

process will be to extract such patterns. 

Examples of two always faulty operation sequences are: 

- If operation 5 is not the last task, this operation has to be redone; 

- If operation 2 precedes operation 4, operation 4 has to be redone. 

 
The historical production records contain assembly sequences and quality tests. Depending 

on the results of the tests some assembly operations could have to be redone. 

An example of a product route would be: 

5-4-2-1-6-Tf-4-Tok 

 

This route (represented in Figure 4.) indicates that this product after assembly operations 5, 

4, 2, 1 and 6 was detected as faulty (Tf). It was then necessary to redo assembly task 4 (4). 

The final test proved the product to conform to quality standards (Tok). 

 
 

Assembly 5 Assembly 4 Assembly 2 Assembly 1 Assembly 6 Test

Test

Assembly 5 Assembly 4 Assembly 2 Assembly 1 Assembly 6 Test

Test  
 
Figure 4: Example of a product route. 
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The historical data is represented in a tabular form where each row contains a product 

route. For example the first route (top row) is in Table 1. 

 
Table 1: Product routes. 

 
Product 

route 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#1 5 4 2 1 6  Tf 4 Tok 

#2 1 4 5    Tok   

#3 6 2 5 3   Tf 5 Tok 

#4 2 1 4    Tok   

#5 2 4     Tf 4 Tok 

 
 

The six columns (Task 1 – Task 6) in Table 1 represent different assembly operations of the 

product. The sequence of the operations is indicated by the sequence of columns. Column 7 

represents the status of the first quality test, column 8 the possible rework operation and the 

last column the final quality status of the product.  

 

For each product, the number of operations is randomly affected from [[1,6]] thus the first 

line of Table 1 represents the product #1 requiring 5 operations while the second line 

represents the product #2 that only requires 3 operations. The first test operation follows the 

final operation. The sequences are randomly generated.  

There are two kinds of faults, the ones generated by faulty sequences and the others that are 

the result of random events (e.g. power outage).  

The results of the first test of the generated products follow these constraints:  

If operation 5 is not the last task, this operation has to be redone; 

If operation 2 immediately precedes operation 4, operation 4 has to be redone; 

There are about 5% of faulty products resulting from random events. 

The rework is efficient in 80% of the cases. 

 

Faulty 
sequences 

Noise 
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4.2. Data mining implementation 

TANAGRA (data mining software for research and education3) was chosen as a knowledge 

extraction tool. The association rule algorithm was used to extract rules (Agrawal and 

Srikant 1994).  

One of the challenges of data mining is to manage different types of data (Chen et al. 

1996). Here, the difficulty was to find a technique to identify the sequences causing faults. 

Therefore, the structure of the input data had to be modified. As the frequency of faulty 

products is low, the support of the rules is low as well. Therefore, it is interesting to study 

two data sets: one with all routes and one describing only faulty product routes. The first set 

allows identifying sequences leading to quality products and the second to understand the 

sources of faults. The data of Table 1 has been separated in two tables (Table 2 and Table 

3). 

 
Table 2: Routes of quality products. 

 
Product 

route 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#2 1 4 5    Tok   

#4 2 1 4    Tok   

 

 
Table 3: Routes of faulty products. 

 
Product 

route Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#1 5 4 2 1 6  Tf 4 Tok 

#3 6 2 5 3   Tf 5 Tok 

#5 2 4     Tf 4 Tok 

 

 

                                                 
3  http://eric.univ-lyon2.fr/~ricco/tanagra/index.html 
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Patterns extracted from Table 2 could be used to improve the motivation of the assembly 

line operators. For example, if an operation never needs rework, the operators performing it 

could be rewarded.  

 

Since the focus of this paper is the identification of faulty patterns, only information 

presented in the format of Table 3 will be considered for further analysis. 

 

Sequences such as: 1-4-2 and 4-2-5 should be recognized has sharing the sub-sequence 4-2 

of two operations. Such patterns could not be easy to extract when dealing directly with the 

data presented as in Table 1, Table 2 or Table 3.  

 

In order to perform such identification, another representation of the routes is required.  

The example sequence 5-4-2-1-6-Tf-4-Tok represented in the first row of Table 3, is 

represented as the set {B5, 5_4, 4_2, 2_1, 1_6, 6F, R4} in Table 4. The precedence 

information is contained in the data itself. The routes can then be encoded in a binary form 

Table 4 represents the same information as Table 3, however, in a different form. Column 

B1 states that operation 1 is the first task (beginning of the assembly process), respectively 

column B5 states that operation 5 is the first task. Column 1F states that operation 1 is the 

final task. The last column “Rework” represents the rework operations. Rework = 4 states 

that operation 4 has to be redone. 

Note that the fact that the first test indicates that the product is faulty, is included in the 

route in Table 4 as the information of column “Rework”. Only faulty products are selected 

and quality products would just have the Rework column that would be empty. 
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Table 4: New representation of faulty product routes. 

 

B
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    1      1  1          1     1    1 4

     1          1     1      1   1   5

 1             1          1        4

 

 

A post-processing of the rules extracted (from the data in the format of Table 4) is required 

to eliminate redundancies. Furthermore, as the process quality is of interest, only the rules 

with the “test” as an outcome are considered. 

It is common in data mining that human expertise is needed to assess and validate the 

extracted knowledge. The latter is possible due to the knowledge acquired by experience 

(Craven et al. 2000). Thus an expert may be able to detect rules that do not ally to a 

particular context.  For example, consider the following two rules: 

Rule a: Any product requiring operation 6 is reworked more often than any other product.  

Rule b: Operation 6 never needs rework. 

An expert could interpret these rules as follows: The worker performing operation 6 is 

highly skilled; however, s/he distracts his co-workers by singing while working. 

 

4.3. Results: Extracted rules 

Association rules 

The extracted association rules have the format shown in Table 5. The quality of the rules is 

measured with support and confidence (the last two columns of Table 5), both defined in 

(Agresti 1990). Let’s recall how these two metrics work, support corresponds to the 

probability that an individual in the tested population possesses both the “antecedent” and 

the “consequent” of the association rule, the confidence is the probability that a given 

individual possesses the consequent knowing that it possesses the “antecedent”. Consider a 

simple example: upon 100 people 50 are women and 8 have red hair; only two women have 
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red hair. The association rule (woman ⇒ red hair) has support of 0.02 (2/100) and 

confidence of 0.01 (2/50). 

 
Table 5: Extracted association rules. 

 
No. Antecedent Consequent Support Confidence 
1 "2_4 = 1" "rework = 4" 0.165 0.961 
2 "5_4 = 1" "rework = 5" 0.217 1 
3 "5_1 = 1" "rework = 5" 0.162 0.98 
4 "5_3 = 1" "rework = 5" 0.158 0.979 
5 "B5 = 1" "rework = 5" 0.368 0.948 
6 "5_2 = 1" "rework = 5" 0.185 0.895 
7 "B2 = 1" "rework = 5" 0.195 0.886 
8 "2_4 = 0" "rework = 5" 0.725 0.877 
9 "1F = 1" "rework = 5" 0.182 0.832 
10 "3F = 1" "rework = 5" 0.163 0.817 
11 "2F = 1" and "B2 = 1" "rework = 2" 0.012 1 
 

A human expert could make the association rules more understandable, e.g.: 

Rules 2, 3, 4, 5, and 6 have similar meaning: If operation 5 is not the last task, it needs to 

be redone. 

Rule 1: If operation 2 precedes operation 4, the product has to be reworked.  

Rule 11: If operation 2 is the only operation, it needs to be redone. 

 

The rules with confidence lower than 1 may represent patterns that are not always true. It is 

important that improving the quality of a system be not limited to the search for systematic 

failures, but also considers sources of faults. Faults may have multiple sources and finding 

the exact root causes requires synthesis of information residing at various data bases. 

“Partial truth” may be a source of potential improvements. 

 

To improve product quality, it is of paramount importance to master the production 

processes, it is thus essential to consider in the “analysis and decision” step information that 

describes systematic faults and the correction of theses faults should have priority over all 
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the other quality actions. Therefore the association rules that have a support lower than the 

noise ratio (here 5%) are not considered in the “analysis and decision” step. Nevertheless 

that kind of information may be important in a further stage: when all internal and 

systematic causes of faults are under control, the random causes should then be considered 

 
 

Summary results  

Consider an example where a data mining algorithm finds two major links between rework 

operations and the assembly operations. The pertinence of the rules was evaluated using the 

Tschuprow's T indicator4 as shown in Table 6. 

 
Table 6: Summary results. 

 
Row Column Tschuprow's T Cross-tabulation 

Rework 2_4 0.717 “Rework = 4 and 2_4 = 1”, 99 occurrences 

Rework 6F 0.657 “Rework = 6 and 6F = 1”, 2 occurrences 

 

Strong associations were found between rework of operation 4 and the operations sequence 

operation 2-operation 4 (supported with 99 occurrences). This validates rule 1 listed in 

Section 4.1. 

The source of the rework of operation 6 was also clarified as operation 6 is performed at the 

end of the assembly line. Nevertheless, this information should be handled carefully 

because of the rare frequency of this event (only two products needed the rework of 

operation 6). 

One of the limits of data mining techniques is that the relationships identified between two 

(or more) events prove the existence of an association between the members of the rule. 

Nevertheless, the existence of causality relationships can not be established and the 

identification of the cause and consequence between the (antecedent, consequent) couple 

can not be automated. This identification can only be done by the domain experts. 

                                                 
4 Tschuprow's T varies between 0 and 1, T = 0 states the independence (in the mathematical sense) of the two 
variables, T = 1 states that the link between the variables explicates the entire observation. 
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4.4. Analysis and decisions 

 
The rules determine new sequences of assembly operations. For example, association rule 

1 indicates re-sequencing of operations 2 and 4:  

The product requiring operations 2 and 4 should always pass through operation 4 first. 

 

Rules 2, 3, 4, 5, and 6 point out to assembly re-sequencing; operation 5 has to be 

performed as the last one to minimize the risk of inducing faulty products.  

The incorporation of Rule 11 will not lead to re-sequencing of operations, however, this 

operation should be dealt with as it often leads to faults, e.g., different tools could be used.  

 

Introducing an additional test operation after the second task could be considered. Products 

needing rework would be detected sooner and the rework would be less costly. 

Of course, any reorganization of the process has its consequences, and to predict them it is 

not easy. Therefore the whole process of data-analysis and system reorganization should be 

on a regular basis to determine the best configuration (Figure 5).  

 

 
 
Figure 5: Improvement scheme. 
 

Furthermore, production data could be temporal, e.g., due to seasons. Therefore, it is 

critical to consider a possible link between the production quality and time period. 

To incorporate this characteristic, data, other than operations and quality status should be 

considered, e.g., studying the impact of the work shift could lead to a redesign of break 

schedule (e.g., 2 breaks of 15 minutes instead of 1 break of 30 minutes). 

 

Production 
Rule 

extraction 
Process 

reorganization 
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5. Limits and extensions of the model 

The proposed model organizes the data to represent the assembly sequences that 

immediately precede or succeed another. The original data describing the assembly 

operations (presented in Table 1) are filtered (in Table 2 and Table 3) and transformed (the 

new representation is shown in Table 4) in order to highlight the relationships between 

sequences and faults. This transformation only stresses the immediate precedent of an 

operation. 

 

In different applications, other operations that precede (not necessarily the immediate 

precedent) are also likely to have significant impact on the quality. A different data 

transformation is required. Two cases are described: 

 

Extension 1 – A critical operation, adding a massive component for example, may make all 

the subsequent assemblies more difficult to operate: the workers may have to work around 

the component, the access to the product may be more difficult and the quality of all the 

assemblies that follow may be endangered. 

It is then necessary to represent that operation for each subsequent operation. 

Consider the critical operation is operation 3. Implications of that operation on the 

subsequent operations and faults may be identified with the following transformation. 

For example, the sequence 2-3-5-7-6-9 induces a supplementary data set {3_5, 3_7, 3_6, 

3_9}. That additional data is included in Table 4 with the previously described one. It may 

emphasize quality problems that come from 3_9 for example, even if operation 3 is not an 

immediate predecessor for operation 9. 

 

Extension 2 – Many operations may be critical operations. It is then necessary to apply 

Extension 1 to all critical operations that need to be evaluated. 
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It may be not necessary and even not efficient to consider each operation as if it was a 

critical operation. 

In order to identify what are the critical operations it is easy to transform Table 3 to 

represent for each product route what are the operations concerned (see Table 7). 

 
Table 7: Table for detection of critical operations. 

 
Product 

route 
Operation 1 Operation 2 Operation 3 Operation 4 Operation 5 Operation 6 Test 

#1 1 1 1 1 1 1 Tf 

#3  1 1  1 1 Tf 

#5  1  1   Tf 

Total 1 3 2 2 2 2  

 

It is then better to start with the operations corresponding to the highest total. 

 

 
6. Conclusion 

This paper discussed the application of data mining for quality improvement of assembly 

operations. The focus was on the impact of assembly sequences on the quality of products. 

The initial hypothesis was that the data mining algorithms were effective in identifying the 

potential quality issues in presence of noise (that comes in part from unexpected events). 

Therefore, the data considered in this research included random events that occur in 

production systems. 

The computational results confirmed that the source of assembly sequence faults can be 

detected with association rules, even in the presence of noise. The rules extracted with data 

mining algorithms can be used to improve production quality by avoiding “risky” 

sequences. 

Further investigation will focus on using the method described in this article on a real case 

data, for example the electrical wire harness. This stage will permit to study the robustness 

of this approach.  

Page 19 of 44

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
The selection of an assemble-to-order strategy is not limited to the technical solutions. Any 

change in production strategy has to be completed with organizational rethinking (Benson 

et al. 1991). Further research should consider data about other sources of faults, including 

human factors and material data. 
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Abstract 

The assemble-to-order strategy delays the final assembly operations of a product until a 
customer order is received. The modules used in the final assembly operation result in large 
product diversity. This production strategy reduces the customer waiting time for the 
product. As the lead-time is short, any product rework may violate the delivery time. Since 
quality tests can be performed on the stocked modules without impacting the assembly 
schedule, the quality of the final assembly operations should be the focus. The data mining 
approach presented in this paper uses the production data to determine the sequence of 
assemblies that minimizes the risk of producing faulty products. The extracted knowledge 
plays important role in sequencing modules and forming product families that minimize the 
cost of production faults. The concepts introduced in the paper are illustrated with 
numerical examples.  

Keywords: Assemble-to-order, quality, data mining, mass customization, production 
strategy. 
 
AMS Subject Classification: 90B50; 68P10; 90B25 

1. Introduction 

Faulty products lead to unnecessary expenses due to rework, repairing, recycling, and 

wasted time. “Zero fault” is an objective that industries are eager to reach. A variety of 

methods aims to achieve such goal, e.g., six sigma (Breyfogle 1999, Harry et al. 2000) and 
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total productive maintenance (TPM) (Nakajima 1988). The study of past performance of 

production systems is necessary. The difficulty is in finding pertinent information as the 

data is stored in numerous forms and at different locations.  

In this paper, data mining is used to extract knowledge from large data sets to improve the 

production quality. The emphasis is on the role of knowledge extraction in manufacturing 

quality in an assemble-to-order (ATO) environment. A methodology is proposed and 

validated on a pilot study. This stage of validation is a necessary work, a preliminary to 

tests on real instances.  

Assemble-to-order is a production strategy that is particularly well suited when the 

customer tolerance for product delivery (waiting) time is low. The lower limit on the 

customer waiting time is the final assembly time of the product. 

Any unexpected event or additional operations could violate the product delivery time 

constraint. Rework of a faulty product reduces the cost of faults when its cost is smaller 

than the cost of the lost material and labor. Nevertheless, when the product delivery time is 

a contractual requirement, overdue payment is added to the cost of rework. This type of 

faults should be particularly avoided. 

The content of this paper is structured as follows. First, the background of the topic 

discussed in the paper is provided. Then, the use of information in assembly sequencing is 

addressed. The proposed methodology is described in Section 4. The paper concludes with 

computational results. 

 

2. Background 

2.1. Diversity: An industrial example 

To meet the customer needs, product diversity tends to grow and therefore it should be 

managed. The cost of offering a large product portfolio should not exceed the gains 

obtained by satisfying the range of customer needs (Child et al. 1991). It is then essential to 

find the range of diversity that minimizes the total cost (see Figure 1). 
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Figure 1: Diversity costs (Tarondeau 1998). 
 

Different approaches have been used to address the product diversity challenge, e.g. design 

of product families, modular design, and delayed product differentiation. The assemble-to-

order strategy links modular design and delayed product differentiation. Modules are built 

from basic parts and stocked, lastly the final assembly is performed after an actual order has 

been received. The product diversity is accomplished by a combinatorial association of 

basic parts. 

 

In this paper, an industrial example of electrical wire harnesses is discussed. It constitutes a 

major component of a vehicle as wires and connectors transmit electricity and information 

between different devices (see Figure 2). 

 

Cost 

Products diversity Optimal diversity

Cost due to 
 product diversity 

Cost of 
customer  
non-satisfaction 

Total cost 
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Figure 2: Wire harnesses in a car. 
 

Control and activation of airbags, electrical windows, headlights, and so on are performed 

by wire harnesses. To illustrate the diversity of this product, consider a standard wire 

harness in a middle range performing 15 different functions. Depending on the silhouette 

and the engine type, these functions appear in different versions (up to 9). Potential 

diversity is then about 7 million of different wire harnesses for a unique car model (Agard 

and Tollenaere 2002). 

In addition, there are inclusive and exclusive relations between the functions, e.g., the 

function “passenger air-bag” requires the function “driver air-bag”. Those relations reduce 

the actual diversity. 
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2.2. Costs 

Evaluating the cost of product diversity is difficult. Even if direct costs, such as investment 

in new equipment or material costs, can be measured, indirect costs are difficult to estimate. 

Martin and Ishii (1997) proposed metrics to compare design alternatives based on the costs 

they induce, however this evaluation is difficult to perform in an industrial setting. 

Product quality and complexity are interdependent. As the number of tasks performed by a 

worker increases, the number of errors may increase. The negative impact of product 

complexity seems unavoidable, unless the diversity is managed. 

McDuffie et al. (1996) presented results of an international study in automotive industry. 

This study stressed the relationship between product diversity, productivity, and quality. 

The data included in the study indicated that when plants are adequately equipped to 

manage diversity, productivity is not significantly impacted by the scope of the product 

mix.  

Like diversity costs, which are difficult to evaluate, savings due to process redesign are not 

easy to quantify particularly by the impact on the product quality. Besides, quantitative 

evaluation is recommended for criteria such as reduction of the time-to-market and 

flexibility improvement.  

There are two main sources of fault costs: 

- The loss of material when the faulty product is identified as such and discarded; 

- The loss of image due to the non-conformance of customer requirements, when the 

faulty product reaches the market. 

 

Let π be the added value by the rework operation. The term added value includes different 

sources of costs of a faulty product: the material, the equipment, and the labor associated 

with production and quality tests. The product rework is preferred over discarding of the 

faulty product, if and only if π is positive.  

In a traditional production strategy the evaluation of rework cost is quite direct as it 

includes the cost of rework and the additional material needed. The balance is then: 

 π = product value – rework cost 
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In the case of assemble-to-order strategy such evaluation is more complex. When the 

delivery time is contractually required, the overdue payment needs to be considered, and 

the balance is then: 

 π = product value – rework cost – overdue payment 

 

A trade-off between the cost of faults and rework is then needed. Furthermore, if savings 

due to quality improvements can be partially measured, in terms of reduction of the mean 

assembly-time and reduced material usage, the savings (or possibly gains) due to improved 

customer image of the product can not be directly evaluated.  

 

2.3. Diversity management: Modularity and assembly-to-order strategies 

Postponement strategy aims at reducing the risk associated with product diversity by 

delaying its differentiation, i.e. the stage after which the products assume their unique 

identities (Zinn 1990, Aviv and Federgruen 1999).  

The modularity concept has been used for management of product diversity. APICS 
1defined modular production as the capacity to design and manufacture a set of modules 

that can be combined in a maximal numbers of ways (APICS 1998). 

The choice of modular design implies rethinking the design process (Kusiak 1999). The 

modules created can be independent or not (i.e., that they can be assembled without 

requiring another module or not). Figure 3(a) shows modules that are interdependent, i.e., 

modules 1 and 3 can not be assembled unless module 2 has been installed, while the 

modules in Figure 3(b) can be assembled in any order. 

One of the advantages of having independent modules is that re-sequencing of assembly 

sequence can be done without redesign the modules. 

 

1 Advancing Productivity, Innovation, and Competitive Success. The association of operation management. 
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(a) 

 

(b) 

 

Figure 3: Examples of modular products. 
 

3. Quality analysis 

3.1. Fault identification 

A product is considered as faulty when it does not meet its specifications. Inspection serves 

the purpose of identifying faults. When performed at the end of the assembly process, it 

comes at a significant cost of rework. In-process inspection detects faults as it occurs and 

thus the rework cost decreases. 

Nevertheless, inspection is expensive and it may not be possible to test the product after 

each assembly operation. It is then essential to carefully determine the location and timing 

of inspection tests. 

Inspection may involve different types of tests, e.g., exhaustive, random. Its role is to 

identify faulty products and control the quality of products. Statistical process control 

(SPC) detects variations in the product specifications and applies corrective actions to the 

process, mostly adjustment of equipment, before producing inadequate products 

(Quesenberry 1997). 

1

2

3
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The selection of the test protocol is generally driven by the characteristics of the product 

and the process. Consider production of needle syringe that it is monitored to avoid quality 

problems during its use. A faulty product can lead to medical problem such as bad 

penetration of the injected substance or breaking the needle.  Therefore, the fixing system 

of the needle and barrel is controlled exhaustively (the inspection is performed visually 

either by a human or a video control device). However, the length of the plunger is 

not crucial and therefore the inspection is performed randomly. 

 

3.2. Data mining applications   

Anand and Büchner (1998) defined data mining as the discovery of non-trivial, implicit, 

previously unknown, and potentially useful and understandable patterns from large data 

sets. Data-mining algorithms have been applied in areas such as marketing (Berry and 

Linoff 1997), medicine (identification of genes impacting drug development, Shah and 

Kusiak 2004), and industrial design (Agard and Kusiak 2004). 

 

The patterns extracted from production data could assist production managers in improving 

quality of products. Therefore, it is important to locate data enabling identification patterns 

of interest. Such data should be understandable for the data miner and the domain expert. It 

is also absolutely necessary that the extraction and transformation of the operational data 

can be done automatically and rapidly for the analysis to take place.  

Production data can contain errors, e.g., due to data entry. In the problem discussed in the 

paper, the term parasite noise is not limited to this kind of errors; it also includes the other 

sources of faults, for example: faulty material, non-adapted equipment. 

One of the aims of this research is to validate that data mining techniques can perform in 

presence of a non-negligible “errors rate” 

 

The main goal of this research is to improve the quality of assembly process with data 

mining. The challenge is in the extraction of associations between faults and assembly 
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sequence in presence of parasite noise. Faults may come from sources such as assembly 

sequence, power outage, raw material, and other random phenomena. 

 

When faulty patterns are identified, it becomes then possible to re-sequence the assembly 

operation or to rethink the tests policy (Kusiak and Huang 1997) in order to reduce the 

number of operations that have to be redone. It is therefore important to remember that 

rework operations are more expensive. 

 

The following three-step approach is used to improve the product quality: 

1. Identification of assembly sequences having an impact on quality; 

2. Generation of a new sequence; 

3. Generation of a new test policy. 

 

4. Computational results 

4.1. Input Data 

The data mining approach used in this research was prototyped on a randomly generated 

data set. Consider here an example of a workshop; 6 different assembly operations can be 

performed. This production is monitored and production data is stored. This case will be 

used to stress the pertinence of our hypothesis that mining production data could provide 

production managers good information to improve the quality of their products. 

A test instance was constituted of 2500002 product’s operation routes. The data was 

randomly generated with respect to the following constraints:  

- An operation can be performed as a normal task (i.e., non-rework task) at most once 

per product 

 

- To reproduce the behavior of a real production system, random faults are generated. 

Because of a randomly phenomenon, 5% of the products need rework. When the 

first test proved the product to be faults, rework has to be done.  

 
2 TANAGRA’s limit for the association rules extraction, see Section 4.3. 
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The random data represent products with faults due to sources other than the 

assembly sequence. This characteristic of the input data is needed to validate the 

hypothesis that data mining can perform in a noisy production context. 

- If the rework operations can not restore the quality characteristics, the product is 

considered as faulty and is destroyed. 

Furthermore, systematic faulty sequences are introduced. The challenge of the data mining 

process will be to extract such patterns. 

Examples of two always faulty operation sequences are: 

- If operation 5 is not the last task, this operation has to be redone; 

- If operation 2 precedes operation 4, operation 4 has to be redone. 

 
The historical production records contain assembly sequences and quality tests. Depending 

on the results of the tests some assembly operations could have to be redone. 

An example of a product route would be: 

5-4-2-1-6-Tf-4-Tok 

 

This route (represented in Figure 4.) indicates that this product after assembly operations 5, 

4, 2, 1 and 6 was detected as faulty (Tf). It was then necessary to redo assembly task 4 (4). 

The final test proved the product to conform to quality standards (Tok). 

 

Assembly 5 Assembly 4 Assembly 2 Assembly 1 Assembly 6 Test

Test

Assembly 5 Assembly 4 Assembly 2 Assembly 1 Assembly 6 Test

Test

Figure 4: Example of a product route. 
 

The historical data is represented in a tabular form where each row contains a product 

route. For example the first route (top row) is in Table 1. 
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Table 1: Product routes. 

 
Product 

route 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#1 5 4 2 1 6 Tf 4 Tok 

#2 1 4 5    Tok   

#3 6 2 5 3   Tf 5 Tok 

#4 2 1 4    Tok   

#5 2 4     Tf 4 Tok 

The six columns (Task 1 – Task 6) in Table 1 represent different assembly operations of the 

product. The sequence of the operations is indicated by the sequence of columns. Column 7 

represents the status of the first quality test, column 8 the possible rework operation and the 

last column the final quality status of the product.  

 

For each product, the number of operations is randomly affected from [[1,6]] thus the first 

line of Table 1 represents the product #1 requiring 5 operations while the second line 

represents the product #2 that only requires 3 operations. The first test operation follows the 

final operation. The sequences are randomly generated.  

There are two kinds of faults, the ones generated by faulty sequences and the others that are 

the result of random events (e.g. power outage).  

The results of the first test of the generated products follow these constraints:  

If operation 5 is not the last task, this operation has to be redone; 

If operation 2 immediately precedes operation 4, operation 4 has to be redone; 

There are about 5% of faulty products resulting from random events. 

The rework is efficient in 80% of the cases. 

 

Faulty 
sequences 

Noise
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4.2. Data mining implementation 

TANAGRA (data mining software for research and education3) was chosen as a knowledge 

extraction tool. The association rule algorithm was used to extract rules (Agrawal and 

Srikant 1994).  

One of the challenges of data mining is to manage different types of data (Chen et al. 

1996). Here, the difficulty was to find a technique to identify the sequences causing faults. 

Therefore, the structure of the input data had to be modified. As the frequency of faulty 

products is low, the support of the rules is low as well. Therefore, it is interesting to study 

two data sets: one with all routes and one describing only faulty product routes. The first set 

allows identifying sequences leading to quality products and the second to understand the 

sources of faults. The data of Table 1 has been separated in two tables (Table 2 and Table 

3). 

 
Table 2: Routes of quality products. 

 
Product 

route 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#2 1 4 5    Tok   

#4 2 1 4    Tok   

Table 3: Routes of faulty products. 
 

Product 
route Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Test Rework Final test 

#1 5 4 2 1 6  Tf 4 Tok 

#3 6 2 5 3   Tf 5 Tok 

#5 2 4     Tf 4 Tok 

3 http://eric.univ-lyon2.fr/~ricco/tanagra/index.html 
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Patterns extracted from Table 2 could be used to improve the motivation of the assembly 

line operators. For example, if an operation never needs rework, the operators performing it 

could be rewarded.  

 

Since the focus of this paper is the identification of faulty patterns, only information 

presented in the format of Table 3 will be considered for further analysis. 

 

Sequences such as: 1-4-2 and 4-2-5 should be recognized has sharing the sub-sequence 4-2 

of two operations. Such patterns could not be easy to extract when dealing directly with the 

data presented as in Table 1, Table 2 or Table 3.  

 

In order to perform such identification, another representation of the routes is required.  

The example sequence 5-4-2-1-6-Tf-4-Tok represented in the first row of Table 3, is 

represented as the set {B5, 5_4, 4_2, 2_1, 1_6, 6F, R4} in Table 4. The precedence 

information is contained in the data itself. The routes can then be encoded in a binary form 

Table 4 represents the same information as Table 3, however, in a different form. Column 

B1 states that operation 1 is the first task (beginning of the assembly process), respectively 

column B5 states that operation 5 is the first task. Column 1F states that operation 1 is the 

final task. The last column “Rework” represents the rework operations. Rework = 4 states 

that operation 4 has to be redone. 

Note that the fact that the first test indicates that the product is faulty, is included in the 

route in Table 4 as the information of column “Rework”. Only faulty products are selected 

and quality products would just have the Rework column that would be empty. 
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Table 4: New representation of faulty product routes. 
 

B
1

B
2

B
3

B
4

B
5

B
6

1_
2

1_
3

1_
4

1_
5

1_
6

1F 2_
1

2_
3

2_
4

2_
5

2_
6

2F 3_
1

… 3F 4_
1

4_
2

… 4F … 5_
3

5_
4

… 6_
2

… 6F
R

ew
or

k

1 1 1 1 1 1 4

1 1 1 1 1 5

1 1 1 4

A post-processing of the rules extracted (from the data in the format of Table 4) is required 

to eliminate redundancies. Furthermore, as the process quality is of interest, only the rules 

with the “test” as an outcome are considered. 

It is common in data mining that human expertise is needed to assess and validate the 

extracted knowledge. The latter is possible due to the knowledge acquired by experience 

(Craven et al. 2000). Thus an expert may be able to detect rules that do not ally to a 

particular context.  For example, consider the following two rules: 

Rule a: Any product requiring operation 6 is reworked more often than any other product.  

Rule b: Operation 6 never needs rework. 

An expert could interpret these rules as follows: The worker performing operation 6 is 

highly skilled; however, s/he distracts his co-workers by singing while working. 

 

4.3. Results: Extracted rules 

Association rules 

The extracted association rules have the format shown in Table 5. The quality of the rules is 

measured with support and confidence (the last two columns of Table 5), both defined in 

(Agresti 1990). Let’s recall how these two metrics work, support corresponds to the 

probability that an individual in the tested population possesses both the “antecedent” and 

the “consequent” of the association rule, the confidence is the probability that a given 

individual possesses the consequent knowing that it possesses the “antecedent”. Consider a 

simple example: upon 100 people 50 are women and 8 have red hair; only two women have 
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red hair. The association rule (woman ⇒ red hair) has support of 0.02 (2/100) and 

confidence of 0.01 (2/50). 

Table 5: Extracted association rules. 
 
No. Antecedent Consequent Support Confidence 
1 "2_4 = 1" "rework = 4" 0.165 0.961 
2 "5_4 = 1" "rework = 5" 0.217 1 
3 "5_1 = 1" "rework = 5" 0.162 0.98 
4 "5_3 = 1" "rework = 5" 0.158 0.979 
5 "B5 = 1" "rework = 5" 0.368 0.948 
6 "5_2 = 1" "rework = 5" 0.185 0.895 
7 "B2 = 1" "rework = 5" 0.195 0.886 
8 "2_4 = 0" "rework = 5" 0.725 0.877 
9 "1F = 1" "rework = 5" 0.182 0.832 
10 "3F = 1" "rework = 5" 0.163 0.817 
11 "2F = 1" and "B2 = 1" "rework = 2" 0.012 1 

A human expert could make the association rules more understandable, e.g.: 

Rules 2, 3, 4, 5, and 6 have similar meaning: If operation 5 is not the last task, it needs to 

be redone. 

Rule 1: If operation 2 precedes operation 4, the product has to be reworked.  

Rule 11: If operation 2 is the only operation, it needs to be redone. 

 

The rules with confidence lower than 1 may represent patterns that are not always true. It is 

important that improving the quality of a system be not limited to the search for systematic 

failures, but also considers sources of faults. Faults may have multiple sources and finding 

the exact root causes requires synthesis of information residing at various data bases. 

“Partial truth” may be a source of potential improvements. 

 

To improve product quality, it is of paramount importance to master the production 

processes, it is thus essential to consider in the “analysis and decision” step information that 

describes systematic faults and the correction of theses faults should have priority over all 
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the other quality actions. Therefore the association rules that have a support lower than the 

noise ratio (here 5%) are not considered in the “analysis and decision” step. Nevertheless 

that kind of information may be important in a further stage: when all internal and 

systematic causes of faults are under control, the random causes should then be considered 

 

Summary results  

Consider an example where a data mining algorithm finds two major links between rework 

operations and the assembly operations. The pertinence of the rules was evaluated using the 

Tschuprow's T indicator4 as shown in Table 6. 

 
Table 6: Summary results. 

 
Row Column Tschuprow's T Cross-tabulation 

Rework 2_4 0.717 “Rework = 4 and 2_4 = 1”, 99 occurrences 

Rework 6F 0.657 “Rework = 6 and 6F = 1”, 2 occurrences 

Strong associations were found between rework of operation 4 and the operations sequence 

operation 2-operation 4 (supported with 99 occurrences). This validates rule 1 listed in 

Section 4.1. 

The source of the rework of operation 6 was also clarified as operation 6 is performed at the 

end of the assembly line. Nevertheless, this information should be handled carefully 

because of the rare frequency of this event (only two products needed the rework of 

operation 6). 

One of the limits of data mining techniques is that the relationships identified between two 

(or more) events prove the existence of an association between the members of the rule. 

Nevertheless, the existence of causality relationships can not be established and the 

identification of the cause and consequence between the (antecedent, consequent) couple 

can not be automated. This identification can only be done by the domain experts. 

 
4 Tschuprow's T varies between 0 and 1, T = 0 states the independence (in the mathematical sense) of the two 
variables, T = 1 states that the link between the variables explicates the entire observation. 
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4.4. Analysis and decisions 

 
The rules determine new sequences of assembly operations. For example, association rule 

1 indicates re-sequencing of operations 2 and 4:  

The product requiring operations 2 and 4 should always pass through operation 4 first.

Rules 2, 3, 4, 5, and 6 point out to assembly re-sequencing; operation 5 has to be 

performed as the last one to minimize the risk of inducing faulty products.  

The incorporation of Rule 11 will not lead to re-sequencing of operations, however, this 

operation should be dealt with as it often leads to faults, e.g., different tools could be used.  

 

Introducing an additional test operation after the second task could be considered. Products 

needing rework would be detected sooner and the rework would be less costly. 

Of course, any reorganization of the process has its consequences, and to predict them it is 

not easy. Therefore the whole process of data-analysis and system reorganization should be 

on a regular basis to determine the best configuration (Figure 5).  

 

Figure 5: Improvement scheme. 
 

Furthermore, production data could be temporal, e.g., due to seasons. Therefore, it is 

critical to consider a possible link between the production quality and time period. 

To incorporate this characteristic, data, other than operations and quality status should be 

considered, e.g., studying the impact of the work shift could lead to a redesign of break 

schedule (e.g., 2 breaks of 15 minutes instead of 1 break of 30 minutes). 

Production 
Rule 

extraction 
Process 

reorganization 
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5. Limits and extensions of the model 

The proposed model organizes the data to represent the assembly sequences that 

immediately precede or succeed another. The original data describing the assembly 

operations (presented in Table 1) are filtered (in Table 2 and Table 3) and transformed (the 

new representation is shown in Table 4) in order to highlight the relationships between 

sequences and faults. This transformation only stresses the immediate precedent of an 

operation. 

 

In different applications, other operations that precede (not necessarily the immediate 

precedent) are also likely to have significant impact on the quality. A different data 

transformation is required. Two cases are described: 

 

Extension 1 – A critical operation, adding a massive component for example, may make all 

the subsequent assemblies more difficult to operate: the workers may have to work around 

the component, the access to the product may be more difficult and the quality of all the 

assemblies that follow may be endangered. 

It is then necessary to represent that operation for each subsequent operation. 

Consider the critical operation is operation 3. Implications of that operation on the 

subsequent operations and faults may be identified with the following transformation. 

For example, the sequence 2-3-5-7-6-9 induces a supplementary data set {3_5, 3_7, 3_6, 

3_9}. That additional data is included in Table 4 with the previously described one. It may 

emphasize quality problems that come from 3_9 for example, even if operation 3 is not an 

immediate predecessor for operation 9. 

 

Extension 2 – Many operations may be critical operations. It is then necessary to apply 

Extension 1 to all critical operations that need to be evaluated. 
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It may be not necessary and even not efficient to consider each operation as if it was a 

critical operation. 

In order to identify what are the critical operations it is easy to transform Table 3 to 

represent for each product route what are the operations concerned (see Table 7). 

 
Table 7: Table for detection of critical operations. 

 
Product 

route 
Operation 1 Operation 2 Operation 3 Operation 4 Operation 5 Operation 6 Test 

#1 1 1 1 1 1 1 Tf 

#3  1 1  1 1 Tf 

#5  1  1   Tf 

Total 1 3 2 2 2 2  

It is then better to start with the operations corresponding to the highest total. 

 

6. Conclusion 

This paper discussed the application of data mining for quality improvement of assembly 

operations. The focus was on the impact of assembly sequences on the quality of products. 

The initial hypothesis was that the data mining algorithms were effective in identifying the 

potential quality issues in presence of noise (that comes in part from unexpected events). 

Therefore, the data considered in this research included random events that occur in 

production systems. 

The computational results confirmed that the source of assembly sequence faults can be 

detected with association rules, even in the presence of noise. The rules extracted with data 

mining algorithms can be used to improve production quality by avoiding “risky” 

sequences. 

Further investigation will focus on using the method described in this article on a real case 

data, for example the electrical wire harness. This stage will permit to study the robustness 

of this approach.  
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The selection of an assemble-to-order strategy is not limited to the technical solutions. Any 

change in production strategy has to be completed with organizational rethinking (Benson 

et al. 1991). Further research should consider data about other sources of faults, including 

human factors and material data. 
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