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Introduction

Machining lines are widely used in industry [START_REF] Groover | Automation, Production Systems and Computer Integrated Manufacturing[END_REF][START_REF] Askin | A survey of exact algorithms for the simple assembly line balancing[END_REF][START_REF] Hitomi | Manufacturing Systems Engineering[END_REF][START_REF] Dashchenko | Manufacturing Technologies for Machines of the Future 21st Century Technologies[END_REF]. Usually, the design of this type of production systems involves the following three interconnected steps: (1) the selection of necessary operations to be executed at the line; (2) the logical synthesis of the manufacturing process, which consists in grouping the operations into blocks and the blocks into stations (logical layout); and (3) the physical layout and design of equipment (tools, spindle-heads, etc.) depending on the logical layout contained.

This paper concentrates on the logical layout design stage. At this stage, all machining operations as well as essential constraints of physical layout are known. It is necessary to define a partition of all the operations into subsets in order to minimize the number of workstations and spindle heads (pieces of equipment). Such spindle heads and workstations represent a significant investment cost and are used for a long exploitation period. Thus finding a good (and if possible the best) logical layout design decision minimizing their number is a crucial problem.

To minimize the number of workstations and spindle heads as well as the occupied area for the considered line, the operations are grouped into blocks. All operations of the same block are executed simultaneously by one spindle head. All blocks (spindle heads) of the same station are executed (activated) sequentially; all stations are linearly ordered. There are no buffers between stations. The assignment of blocks to a station defines at the same time the order of their activation on the station.

The processing time of each spindle head depends on the parameters (working stroke length and feed rate) of operations assigned to the corresponding block. The station processing time is equal to the sum of block times (for all blocks assigned to this station). The bottleneck station defines the machining line cycle time.

In this paper, the objective function is as follows: The problem considered in this paper extends the well-known Simple Assembly Line Balancing Problem (SALBP). Techniques used to solve SALBP can be found in literature, e.g. (Baybars 1986[START_REF] Ghosh | A comprehensive literature review and analysis of the design, balancing and scheduling of assembly lines[END_REF][START_REF] Erel | A survey of the assembly line balancing procedures[END_REF][START_REF] Scholl | Balancing assembly lines effectively: a computational comparison[END_REF][START_REF] Sprecher | A competitive branch-and-bound algorithm for the simple assembly line balancing problem[END_REF][START_REF] Gadinov | A cutting plane approach for single-product assembly system design problem[END_REF][START_REF] Rekiek | State of the art of assembly lines design optimisation[END_REF].

For the investigated problem, which cannot be directly solved by SALBP methods due to some specificities (groups of operations are executed simultaneously, operations times are not known in advance, criterion include the number of blocks and stations, etc.), two exact optimization methods based on Mixed Integer Programming (MIP) and graph approaches, respectively, were suggested in [START_REF] Dolgui | On Problem of Optimal Design of Transfer Lines with Parallel and Sequential Operations[END_REF], Dolgui et al. 2000, Dolgui et al. 2006a[START_REF] Dolgui | MIP approach to balancing transfer lines with blocks of parallel operations[END_REF]. These methods can be used only for small size problems. For large-scale problems, two heuristic algorithms RAP and FSIC were developed in [START_REF] Dolgui | A Heuristic Approach for Transfer Lines Balancing[END_REF], these algorithms are based on generalizations of the COMSOAL method [START_REF] Arcus | COMSOAL: A computer method of sequencing operations for assembly lines[END_REF].

In this paper, a new heuristic procedure is suggested for large-scale problems. It is based on decomposition of the whole set of operations into several subsets. On the basis of these subsets MIP models are formulated and then solved by a MIP solver. Two ways of MIP models formulation are investigated. One of them treats the obtained subsets independently. The second one aggregates the solution of the previous sub-problems. The experimental results are reported.

The paper is organized as follows. Section 2 introduces some notations and the problem. In Section 3, the decomposition procedure is suggested. In Section 4, experimental results are reported. Conclusion remarks are given in Section 5. 

Objective and constraints

An illustration of the type of lines studied in this paper is given in Figure 1. The parts are moved from station to station. On each station there is at least one multiple spindle head with different tools. The time spends on a multi-spindle head depends on the common parameters of their operations (tools). The following parameters of the operations are given before optimization: the working stroke length and the feed rate. The spindle heads of the same station are activated sequentially.

[Insert Fig. 1 about here] The objective of this paper is to investigate a new method for optimal design of logical layout for such lines (several hundreds of operations), i.e. to assign the operations of a given set to subsets corresponding to stations (machines) and to blocks (spindle heads) in such a way that:

• The objective function (1) is as small as possible;

• The specified line cycle time is not exceeded (i.e., the obtained line cycle time is not greater than the specified one);

• All the constraints for machining operations are satisfied.

The following precedence and compatibility constraints are taken into account:

• A partial order relation on the set of all operations to be machined. This defines a set of possible operation sequences (precedence constraints). In this problem when an operation i precedes an operation j, the operation i can be executed before the operation j, or in the same block with j, but the operation j cannot be executed before the operation i.

• Inclusion constraints for blocks and stations, which oblige to perform some groups of operations in the same block or at the same station (e.g., because of a required machining tolerance); • Exclusion constraints for blocks and stations, which forbid execution of some groups of operations within one block or at the same station (e.g., due to design rules or because of manufacturing incompatibility of operations).

Notations

The following notations will be used throughout this paper:

N

given set of operations to be machined; q index of the block, e.g., q=(k-1)n 0 +l for the block l of the station k; q 0 maximal possible value of q, q 0 =m 0 n 0 ;

T

S(k)

set of block indices for the station k; n k number of blocks at the station k;

C(k) cost of the station k with all its blocks, i.e. C(k) = W 1 + k n W 2 ; B q
set of operations of the block q; Q(j) interval of indices q (blocks) where operation j can be potentially assigned (Q(j)=[q -(j),

q + (j)]); K(j) interval of indices k (stations)
where operation j can be potentially assigned

(K(j)=[k -(j), k + (j)]);
e set of operations, element of collection EB, ES , ES or EB ;

X jq a binary decision variable (1 if operation j is assigned to block q and 0 otherwise);

F q an auxiliary variable for determining the time of block q (F q ≥ 0);

Y q an auxiliary variable that indicates if the block q exists or not (Y q ∈{0,1}).

The time t b (N) of a block N ⊆N is determined by the working stroke length L(N) of the corresponding spindle head, and by its feed per minute S(N) and is equal to

t b (N)=L(N)/S(N)+τ b
where L(N)=max{l j |j∈N} and S(N)=min{s j |j∈N}. The time of block N can be also calculated as the maximal value among t ij for all pairs of operations from N (Dolgui et al. 2000):

t b (N)= N j i ∈ , max {t ij } where t ij =max{l i , l j } / min{s i , s j }+τ b . F o r P e e r R e v i e w O n l y The time t s (N k ) of station k is equal to t s (N k )= ∑ = k n l kl b N t 1 ) ( +τ s .

MIP model

Taking into account that station k exists if at least one operation is assigned to block q = (k-1) n 0 +1, the considered problem can be formulated as the following Mixed Integer Program (MIP) and solved using a MIP solver (ILOG Cplex, Xpress MP, …): where i,j∈N.

Min q q q m k n k Y W Y W ∑ + ∑ = = + - 0 0 0 1 2 1 1 * ) 1 ( 1 (2) Subject to: 1 ) ( = ∑ ∈ jq j Q q X (3) ( ) , ) ( ) ( , ' ' ∑ ∑ ∈ ∈ ′ ≤ ≥ j Pred i i Q q q q jq iq j Pred X X q∈Q(j) (4) , q i jq X X = e∈EB, i,j∈e, q∈Q(j) (5) ∑ ∑ ∈ ∩ ∈ = I ) ( ) ( ) ( ) ( , j Q k S q i Q k S q iq jq X X e∈ES, i,j∈e, k∈K(j) (6) , 1 - ≤ ∑ ∈ e X e j jq e∈ EB , q∈ I e j j Q ∈ ) ( (7) , 1 ) ( ) ( - ≤ ∑ ∑ ∈ ∈ e X e j j Q k S q jq I e∈ ES , k∈ I e j j K ∈ ) ( (8) F q ≥ t j X jq , q∈Q(j) (9) F q ≥ t ij (X iq +X jq -1), i<j, q∈Q(i)∩Q(j) (10) ≤ ∑ + ∈ ) (k S q q s F τ T 0 , k=1, 2,…, m 0 (11) Y q ≥X jq , q∈Q(j) (12) 0 1 ≥ - - q q Y Y , q∈S(k)\{(k-1)n 0 +1}, k= 1, 2,…, m 0 (13) 0 1 * 1 * ) 1 ( 0 0 ≥ - + + - n k n k Y Y , k=2, 3,…, m 0 (14) 
According to equation (3), each operation of N is assigned to one block only. Inequalities (4) provide that all the predecessors of operation j are assigned either before operation j or in the same block with operation j. Equations ( 5) and ( 6) enforce assignment of any pair of operations i and j of set e∈EB (e∈ES) to the same block (station), respectively. In accordance with equation ( 7), at most 1 e operations of set e∈ EB may be assigned to the same block. Expressions (8) represent the exclusion constraints for assignment of operations to stations. Equations ( 9) and (10) provide that F q is not less than the time of execution of all the operations assigned to the block q. Inequalities (11) provide the desired productivity level, i.e., for each workstation of the line, the station time

∑ + ∈ ) (k S q q s F τ
does not exceed the line cycle time T 0 . In accordance with equation ( 12), the block q does not exist in the line if no operations are assigned to it. Equations ( 13) prevent creation of block q for station k if block q-1 does not exist for this station. Equations ( 14) provide that station k can be created only if station k-1 exists in the line. This model is an improvement of the models suggested in (Dolgui et al. 2000[START_REF] Dolgui | MIP approach to balancing transfer lines with blocks of parallel operations[END_REF]). To calculate q -(j), q + (j), k -(j), and k + (j), a pre-processing procedure has developed in (Dolgui et al. 2000[START_REF] Dolgui | MIP approach to balancing transfer lines with blocks of parallel operations[END_REF].

An industrial example

The problem can be illustrated by the following industrial example.

The part to be machined is shown in Figure 2. It is necessary to machine a plane surface (F) and 8 holes (H1 -H8). The set N consists of 30 operations. The operation parameters are given in Table 1. The precedence graph is given in Figure 3. The desired line cycle time is T 0 = 2.8 min, τ b = 0.2, τ s = 0.4 min, the maximum number of stations on the line is m 0 = 5 and the maximum number of spindle-heads at a station is n 0 = 4.

[Insert Fig. 2 An optimal solution for the assignment of the set N to blocks and stations (12 blocks and 4 workstations) is shown in Table 2. In Table 3 an optimal solution is given for T 0 =2.4, which consists of 6 workstations and 12 blocks. This solution remains optimal until T 0 ≥2.02.

[Insert Table 2 about here] [Insert Table 3 about here]

Decomposition procedure

When (2)-( 14) is a large-scale problem (i.e. more than 70 operations), it is impossible to use MIP solvers directly. A possible solution is to use a decomposition technique that divides the initial set N of operations into several (w) disjoint subsets (Dolgui et al. 2000[START_REF] Dolgui | MIP approach to balancing transfer lines with blocks of parallel operations[END_REF]) and then apply MIP solver in sequential order following the decomposition N 1 , N 2 , …, N w . The global result for the initial problem is obtained at the end of the algorithm after w MIP problems have been solved.

The subset N u is chosen in such a way that all the constraints are not violated. To respect all the precedence constraints, all the predecessors of the operations of the subset N u treated by MIP have to be in this subset or already assigned (during a treatment of an anterior subset): operations of e are in N u ; otherwise, the constraint is not taken into account for N u .

Pred(j)⊆ U u
For the decomposition, the partitioning of the set N is done by a cut of the precedence graph.

First a desired size of each subset (while analyzing the behavior of the MIP model for this kind of problem) is fixed. This choice depends on the initial problem size and on the available time.

The smaller are the subsets, the easier it is to get a reasonable computation time, but more chances exist to reach a solution far from the global optimum.

Two ways are possible to form sub-problems in accordance with the partition N 1 , N 2 , …, N w :

1) Form MIP model for each set N u separately;

2) Aggregate in MIP model for each set N u the solutions obtained by MIP solver for the previous problems.

The implementation of the first approach is relatively simple: all the constraints are adjusted with regard to the subset N u , i.e., a set e is removed from the collections EB, ES, ES and EB if it includes an operation i∉N u ; operations from N\N u are deleted from each set Pred(j), j∈N u . The solution of the initial problem is obtained then by grouping together all the stations and blocks constructed during all the stages.

For the second approach, the same procedure is applied to the subset U u q * (j)/n 0 ] where q * (j) is the optimal assignment of the operation j in the solution and s is the smallest integer value greater than or equal to s. In this case, only assignment of operations from N u is allowable.

Obviously, if the problem ( 2)-( 14) has a feasible solution then there is a partition N 1 , N 2 , …, N w such that both approaches can produce an optimal solution. In most cases the first approach allows finding a feasible solution quickly than the second, since in the first case the dimension of solved sub-problems is smaller. On the other hand, the second approach may produce a solution of higher quality.

The idea of the proposed decomposition algorithm is based on the decomposition of [START_REF] Kilbridge | A heuristic method of assembly line balancing[END_REF], but taking into account the specificity of the problem treated and on the objectives of the decomposition. The decomposition procedure uses parameters MinOp and MaxOp that are the minimum number and the maximum number of operations authorized in a subset (the number of operations must be between MinOp and MaxOp).

First, each operation range is computed based on in the precedence graph. The range of the operations which have no direct predecessor is equal to 1. The range operation i is equal to: Rang(i)= max ( Rang(j), j∈Pred(i) ) + 1, where Pred(i) is the set of direct predecessors of the operation i. Then, the operations of each range are analyzed one by one beginning from the smaller range and they are added to N 1 .

For each added operation the inclusion constraints must be respected. If some of them are not respected, the corresponding operations and the non assigned predecessors are added even if their range is different. When all the operations of a range are treated, the following range is studied. As long as the number of operations in N 1 is less than MinOp the procedure is continued. When the decomposition procedure is stopped, the subset N 1 is reduced taking into account the parameter The performance of the MIP model depends on the parameter m 0 and intervals Q(j). They can be modified in the following way. A lower bound on the objective function of the problem (2)-( 14) 2)-( 14) is known and UB is the corresponding value of the objective function, then m 0 can be refined as m 0 =(UB -W 2 n)/W 1 , where s is the greatest integer value less than or equal to s. As a consequence, intervals Q(j) and K(j) may be tighten.

is equal to W 1 m +W 2 n,
The decomposition procedure can be applied several times and the best solution is kept.

In this algorithm, the FSIC heuristic [START_REF] Dolgui | A Heuristic Approach for Transfer Lines Balancing[END_REF] based on a generalization of the COMSOAL method is used to search a feasible initial solution.

The following notations are used: TR tot the current number of trials;

TR nimp the number of trials that do not improve the current best solution;

C min the cost of the best obtained solution;

C cur the cost of the current solution;

T heur the total available time for solving a sub-problem by a heuristics;

T MIP the total available time for solving a sub-problem by MIP solver;

Algorithm:

Step1. Set C min = ∝, TR tot = 0, TR nimp = 0. Step 2. Set w=1.

Step 3. Generate subset N w and form problem (2)-( 14) for the subset N w in accordance with the parameters MinOp and MaxOp.

Step 4. Run the FSIC heuristics with the available time T heur . If a feasible solution is found then modify m 0 , Q(j) and K(j).

Step 5. Run MIP model. If MIP does not give any solution after T MIP then MIP is stopped. The current MIP solution is compared with the heuristic solution and the best is kept.

Step 6. If there are still some non assigned operations then set w=w+1 and go to Step 3.

Step 7. If C cur < C min then set C min = C cur , TR nimp = 0. Otherwise set TR nimp = TR nimp + 1.

Step 8. Set TR tot = TR tot + 1.

Step 9. Stop if one of the following conditions holds:

a given solution time is exceeded;

TR tot is greater than the maximum number of iterations authorized;

TR nimp is greater than a given value;

C min is lower than a given cost value.

Otherwise go to Step 3.

Tests and comparisons

In order to study the performance of the decomposition procedures described above, 8 data sets were created, each of which contains 10 machining line balancing problems (i.e. 80 problems were tested). The data sets differ by two parameters: the number of operations |N| and the order strength OS of the precedence graph.

Note: the order strength OS is defined as the density of the transitive closure of the precedence graph [START_REF] Scholl | Balancing assembly lines effectively: a computational comparison[END_REF].

Each unique problem was generated at random. The operation times are derived from the uniform distribution (a=10, b=20). The precedence graph is generated at random by adding arcs between randomly chosen vertexes until getting desired order strength. All data sets were solved by Experiments were carried out on Pentium IV, 3GHZ. The obtained results are reported in Table 4. For the presentation, the following notations are used: NO -number of obtained optimums; max ∆ , av ∆ , min ∆ -maximal, average and minimal deviation of the criterion obtained by a method from the best value, respectively; T com -computational time in seconds.

[Insert Table 4 about here]

For the problems with 200 operations, IS method found only some solutions (< 3). So, only the results obtained by AS method are reported in Table 4 for this data set. For all data sets, the decomposition method with independent solving was surpassed by the method with aggregate solving. In the same time, it is impossible to conclude that one of the sets of parameters for aggregate decomposition (AS1 or AS2) is better from the quality of the obtained results. The experiments show that the method performance depends on the characteristics of the problem.

Conclusion

A line balancing problem in machining environment has been discussed. It concerns the machining lines with multi-spindle heads. Each multi-spindle head executes simultaneously a block of operations. In comparison with the standard assembly line balancing problems, the problem addressed has many additional properties and constraints. In this paper, an industrial example of this problem is given.

For small problem of this type, there are in literature exact optimization models based on Mixed Integer Programming (MIP) and graph theory, but these models are time consuming. 

  number of stations (multiple spindle machine-tools), n is the total number of blocks (spindle heads), W 1 and W 2 are the weights (relative costs) of one station and of one spindle head in a design decision, respectively.

[

  Insert Fig.3about here] The compatibility constraints are the following. Operations 1 and 2 are not compatible in one position with any other operation from N since they should be executed by a milling machine. All operations for machining H1 are not compatible with operations for H7 due to constraints on minimal center distances. The same type of constraints exists between operations for H2 and H7,H3 and H8, and H4 and H8. Operations 22, 23, 29 and 30 cannot be grouped in one block with any operation since the minimal center distance for these operations is 125 mm. Operations 13 and 16 as well as 18 and 25 have to be executed in one block due to tolerance requirements. Operations 13, 16, 23 and 30 should be executed in the station since they are finishing operations. All the constraints are represented by: EB={{13, 16}, {18, 25}}, ES={{13, 16, 18, 25, 23, 30}}, ES ={{2, 3}, {2, 5}, {2, 7}, {2, 9}, {2, 11}, {2, 14}, {2 17}, {2 24}}, and EB ={{2, 1}, {3, 2}, {4, 3}, {5, 2}, {6, 5}, {7, 2}, {8, 7}, {9, 2}, {10, 9}, {11, 2}, {12, 11}, {13, 12}, {14, 2}, {15, 14}, {16, 15}, {17, 2}, {18, 20}, {19, 17}, {20, 22}, {21, 4}, {21, 6}, {21, 8}, {21, 10}, {21, 13}, {21, 16}, {21, 23}, {21, 30}, {22, 19}, {23, 18}, {24, 2}, {25, 27}, {26, 24}, {27, 29}, {28, 4}, {28, 6}, {28, 8}, {28, 10}, {28, 13}, {28, 16}, {28, 23}, {28, 30}, {29, 26}, {30, 25}, {11, 4}, {11, 8}, {12, 4}, {12, 8}, {13, 4}, {13, 8}, {14, 6}, {14, 10}, {15, 6}, {15, 10}, {16, 6}, {16, 10}, {17, 4}, {17, 6}, {18, 4}, {18, 6}, {19, 4}, {19, 6}, {19, 17}, {19, 18}, {20, 3}, {20, 4}, {20, 5}, {20, 6}, {20, 17}, {20, 18}, {21, 3}, {21, 4}, {21, 5}, {21, 6}, {21, 11}, {21, 12}, {21, 13}, {21, 14}, {21, 15}, {21, 16}, {21, 17}, {21, 18}, {22, 3}, {22, 4}, {22, 5}, {22, 6}, {22, 7}, {22, 8}, {22, 9}, {22, 10}, {22, 11}, {22, 12}, {22, 13}, {22, 14}, {22, 15}, {22, 16}, {22, 17}, {22, 18}, {22, 19}, {22, 20}, {22, 21}, {23, 3}, {23, 4}, {23, 5}, {23, 6}, {23, 11}, {23, 12}, {23, 13}, {23, 14}, {23, 15}, {23, 16}, {23, 17}, {23, 18}, {23, 19}, {23, 20}, {23, 21}, {24, 8}, {24, 10}, {24, 22}, {25, 8}, {25, 10}, {25, 22}, {26, 8}, {26, 10}, {26, 22}, {26, 24}, {26, 25}, {27, 7}, , {27, 9}, {27, 10}, {27, 22}, {27, 24}, {27, 25}, {28, 7}, {28, 8}, {28, 9}, {28, 10}, {28, 11}, {28, 12}, {28, 13}, {28, 14}, {28, 15}, {28, 16}, {28, 22}, {28, 24}, {28, 25}, {29, 3}, {29, 4}, {29, 5}, {29, 6}, {29, 7}, {29, 8}, {29, 9}, {29, 10}, {29, 11}, {29, 12}, {29, 13}, {29, 14}, {29, 15}, {29, 16}, {29, 17}, {29, 18}, {29, 19}, {29, 20}, {29, 21}, {29, 22}, {29, 23}, {29, 24}, {29, 25}, {29, 26}, {29, 27}, {29, 28}, {30, 7}, {30, 8}, {30, 9}, {30, 10}, {30, 11}, {30, 12}, {30, 13}, {30, 14}, {30, 15}, {30, 16}, {30, 22}, {30, 24}, {30, 25}, {30, 26}, {30, 27}, {30, 28}}.

r r 1 =

 1 N for any j∈N u . of N u is also in a subset e∈ES or in e∈EB, then all the operations of e have to be in N u , i.e.: e∩N u =∅ or e⊆N u for any e∈ES and any e∈EB. An exclusion constraint represented by a subset e EB ∈ (or e ES ∈ ) is maintained only if all the

r r 1 =

 1 N and the solution at the last stage is the solution of the problem (2)-(14). To aggregate the solution of the previous problems, additional sets with operations constituting obtained blocks are included into the collection EB. In such a situation a reassignment of old blocks to other stations is possible. Another

  first subset N 1 , and so on for N 2 , …, N w . To add randomness to the decomposition procedure, values MinOpCur and MaxOpCur can be used instead MinOp and MaxOp for generation a subset N u , which are randomly chosen within[MinOp, MaxOp].

  where m and n are lower bounds on m and ∑ bound m can be calculated as max{ k -(j) | j∈N } and the bound n can be determined as max{ k -′ (j) | j∈N } when values k -′ (j) are obtained in the same manner as k -(j) but using n 0 =1 and without inclusion constraints ES. If a feasible solution of the problem (

  , independent solving with MinOp = 10 and MaxOp= 20 ; 2) IS2, independent solving with MinOp = 15 and MaxOp = 25; 3) AS1, aggregate solving with MinOp = 10 and MaxOp = 20; 4) AS2, aggregate solving with MinOp = 15 and MaxOp = 25.

Figure

  Figure 1. A machining line with multi-spindle heads
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Therefore, the generation of "good" design decision for large-scale machining lines (one or several hundred of operations) needs the development of efficient heuristic algorithms.

Table 1 .

 1 Operations and their parameters

	Machined elements	Operation name	Operation number	Working stroke length, mm	Feed rate, mm/min	Execution time, min
	Plane P	Mill roughly Mill completely	1 2	155 155	167.5 146.5	0.93 1.06
	Hole H1	Drill ∅12.5 Spotface ∅20	3 4	35.8 20	52.6 127.6	0.68 0.16
	Hole H2	Drill ∅12.5 Spotface ∅20	5 6	35.8 20	52.6 127.6	0.68 0.16
	Hole H3	Drill ∅12.5 Spotface ∅20	7 8	35.8 20	52.6 127.6	0.68 0.16
	Hole H4	Drill ∅12.5 Spotface ∅20	9 10	35.8 20	52.6 127.6	0.68 0.16
		Drill ∅9.8	11	29.9	57.4	0.52
	Hole H5	Drill out facet ∅12	12	8	68.4	0.12
		Ream a hole ∅10	13	24.1	139.3	0.17
		Drill ∅9.8	14	29.9	57.4	0.52
	Hole H6	Drill out facet ∅12	15	8	68.4	0.12
		Ream a hole ∅10	16	24.1	139.3	0.17
		Drill ∅10	17	57.7	57.4	1
		Enlarge a hole ∅18	18	53.3	68.4	0.78
		Drill out ∅17	19	44.1	68.4	0.64
	Hole H7	Drill out facet ∅22	20	6	68.4	0.09
		Tap a hole	21	24	143.6	0.17
		Bore out roughly ∅29.5	22	24	259.5	0.09
		Bore out completely ∅30	23	12.5	106.3	0.12
		Drill ∅10	24	57.7	57.4	1
		Enlarge a hole ∅18	25	53.3	68.4	0.78
		Drill out ∅17	26	44.1	68.4	0.64
	Hole H8	Drill out facet ∅22	27	6	68.4	0.09
		Tap a hole	28	24	143.6	0.17
		Bore out roughly ∅29.5	29	24	259.5	0.09
		Bore out completely ∅30	30	12.5	106.3	0.12

Table 2 .

 2 An optimal solution for T 0 =2.8

	Station number k	1		2			3				4		
	Block number l	1	2	1	2	1	2	3	4	1	2	3	4
	Operations i∈N kl	1	2	17,24 19,26	22	29	11,14,	4,6,	20,27,	18,25,13,	23,30 21,28
							3,5,7, 9	8,10	12,15	16		
	L(N kl )	155	155	57.7	44.1	24	24	35.8	20	8	53.3	12.5	24
	S(N kl )	167.5 146.5	57.4	68.4	259.5	259.5	52.6	127.6	68.4	68.4	106.3 143.6
	Block time t b (N kl )	1.13	1.26	1.21	0.84	0.29	0.29	0.88	0.36	0.32	0.98	0.32	0.38
	Station time t s (N k )	2.79		2.45			2.22			2.40		

Table 3 .

 3 An optimal solution for T 0 =2.4

	Station number k	1	2	3		4			5			6	
	Block number l	1	1	1	1	2	3	1	2	3	1	2	3
	Operations i∈N kl	1	2	17,24 19,26,11,	22	29	20,27,	18,25,13,16 23,30 3,5,7, 9 4,6,8,10 21,28
					14			12,15					
	L(N kl )	155	155	57.7	44.1	24	24	8	53.3	12.5	35.8	20	24
	S(N kl )	167.5	146.5	57.4	57.4	259.5 259.5	68.4	68.4	106.3	52.6	127.6	143.6
	Block time t b (N kl )	1.13	1.26	1.21	0.97	0.29	0.29	0.32	0.98	0.32	0.88	0.36	0.38
	Station time t s (N k )	1.53 1.66	1.61		1.96			2.02			2.02	

Table 4 .

 4 Results of tests

	Page 21 of 21												
	Method	|N|, OS, T com	NO	min % ∆	av % ∆	∆	max %	|N|, OS, T com	NO	min % ∆	av % ∆	∆	max %
	IS1 IS2 AS1 AS2	50, 25, 60	0 0 6 7	2.6 7.5 0 0	23.1 20.7 2.5 1.5	35.3 35.3 12.8 9.5	50, 45, 60	1 1 6 5	0 0 0 0	22.2 16.1 1.2 3.7	72.7 36.4 4.8 17.1
	IS1 IS2 AS1 AS2	75, 25, 120	0 0 7 5	3 8 0 0	31.2 24.7 2.6 2.6	49.1 42.1 11.4 10.5	75, 45, 120	0 0 6 10	7.6 1.3 0 0	22.3 19.3 2 0	49 47.1 8.2 0
	IS1 IS2 AS1 AS2	100, 25, 300	0 0 8 10	2.6 5.1 0 0	22.3 18.7 0.5 0	35.3 35.3 2.5 0	100, 45, 300	1 1 6 6	0 0 0 0	22.2 16.9 1.3 1	72.7 36.4 4.9 2.6
	IS1 IS2 AS1 AS2	150, 45, 600	0 0 4 7	11.9 6.25 0 0	19.9 15.7 2.5 1.6	35 28.5 9.4 9	200, 45, 600	--5 6	--0 0	--1.7 2.1	--4.5 10.3
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