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David de la Fuente (*); Jesús Lozano 

E.P.S.I.G. Department for Business Administration and Accountancy, the University of 
Oviedo 

(*) david@uniovi.es 
 
OVERVIEW 
 
This article applies distributed intelligence to the bullwhip or Forrester effect, which it 
manages to reduce in a range of time series to which a genetic algorithm was applied. 
There are four parts to the article. The first provides an overview of the Forrester, or 
Bullwhip, effect. The second not only describes the genetic algorithms in terms of 
being devices that provide the model with intelligence but also introduces the agent 
network and the general model that supports them. The third describes the software 
used in the model that this article describes. The final section provides numeric 
examples, and draws a number of conclusions.  
 
Keywords: Bullwhip, Agents, Genetic Algorithms, Forecast 

1. THE BACKGROUND OF THE BULLWHIP EFFECT.  
 
The study of the Forrester effect has been a productive field of research in logistics. 
The first formal description of the effect is attributed to Forrester himself in 1961. This 
was then fleshed out by Sterman (1989, 1992, 1995), who included the famous 
example of the beer distribution game that is played out in many a business school. 
According to Sterman, the Forrester effect stems from a non-optimal solution applied 
by members of the supply chain who see their strategies as a sum of individual 
strategies rather than a unit. Kaminsky and Simchi-Levi (1998) developed different IT 
versions of the beer distribution game, highlighting three intertwined effects on the 
supply chain: the Forester effect, the centralisation effect and the supply time effect. A 
range of financial studies on the long-term bullwhip effect highlight the reasons why 
the effect occurs when rational decisions are taken to try to mitigate the uncertainty of 
demand (Blanchard (1983), Blinder (1986), West (1986), Kahn (1987)). 
 
In 1997, Lee et al. studied the problem by applying analytical models. They concluded 
that there were four basic reasons why the Forrester effect occurs: forecasting errors, 
fear of lack of products, inadequate lot sizing and price fluctuations. More recently, 
Cachon and Lariviere (1999) studied the effect of scarcity; Kille y Milne (1999) and 
Cachon (1999) studied the effect of lot sizing; Drezner et al. (1996), Baganha and 
Cohen (1998), Graves (1999), Chen et al. (2000), Aviv (2001, 2003) and 
Dejonckheere et al (2003) studied demand-related error. However, Disney and Towill  
(2001, 2002, 2003a, 2003b, 2004a, 2004b, 2004c) are the most prolific authors on 
the subject. The former wrote his doctoral thesis (2001) on the methodology of Virtual 
Managed Inventory (VMI) and then widened the scope of his studies to consider the 
bullwhip effect from the point of view of control theory. Other researchers, such as 
Disney y Grubbstrom (2004), Chiderhouse et al. (2004), Dejonckheere et al. (2004), Disney et al. 
(2004)) have also published on the same issue. 
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Figure 1: four supply chain scenarios. 
 
Figure 1 describes the typical structure of distribution logistics. Rather than information 
flowing upstream across all the levels, it only flows between two consecutive ones 
(Sterman 1989). A number of cases in which there is information feedback from sales 
outlets to all levels of the supply chain have been studied in simulation cases (c.f. 
Mason-Jones 1998) others with control theory and yet others with z transformation 
(Dejonckheere et. al., 2003). 
 

2. MODELS TO CURB THE FORRESTER EFFECT. GENETIC 
ALGORITHMS. 
 
Figure 2 describes the typical cycle of a Genetic Algorithm, which evolves as follows: 
assuming an initial population of N possible solutions for the problem, where N is the 
size of the population:  
 

nkXXXXXXX k
ML

k
M

k
L

kk
L

kk ,...,1),...,,.....,,...,,,...,( 1221111 ==
where k is the level of the supply chain. In our particular case, N is four. The index, 
which ranges from 1 to M, represents the different characteristics to be measured at a 
given level, such as stock, orders, and so forth. The index in which L varies represents 
the time periods. Generally speaking, the set of genes (elements), for each 
chromosome (individual) is selected as follows: 
 
- The first gene is randomly selected.
- the remaining genes are also then randomly selected, but in such a way as to comply 
with the restrictions imposed by demand. They are checked to make sure that they 
meet stop conditions. 
 
Population H is then selected, with only N*G elements, where G is the crossover index. 
The N*G elements of the population that have the highest value for f (fitness function) 
will be selected. Crossover and mutation operations occur during the reproduction 
stage. Crossover is linear, and thus two parents (p1 y p2) of size N’ are randomly 
selected and generate two offspring. The child with the best “fitness” is selected. 
 

CONSUMER

SHOP RETAILER

RETAILER

WHOLESALER

FACTORY

Level 0, real demand data is obtained 

Level I, the shop retailer, who only has the data that the consumer passes on to him 

Level II, The retailer has the data, which is passed on to the shop retailer

Level III, The wholesaler has the data, which is passed on to retailer

Level IV, the factory has the data, which is passed on to the wholesaler
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Mutation (the frequency of which depends on parameter M) consists of interchanging 
two randomly selected components of a child that has also been randomly selected. 
The reproduction phase occurs as many times as is necessary to obtain (1-G)*N 
children. 
 
We thus have Genetic Algorithms at each level, with binary individuals (0,1) modified 
using the fitness by roulette-wheel sampling method, crossover index of 0,9, and a 
mutation index of 0,01 and 500 individuals. 
 

Figure 2. A Genetic Algorithm loop 
 
The pseudo-code of the fitness functions for each level is described next (see 
appendix): 
SHOP RETAILER
sub fitdetall { 
 w = .5+rand(0:1); 
 media=0; 
 for z (p-1..período actual p){ # loop from z=p-1 up to z=p 
 x=demanda[z]-invfdetall[z]+rstockdetall[z]; 
 y = abs(w*x);     # absolute value 
 media += y;       # acumulated 
 }

detall=media/2;  # which is ordered to the retailer (this data is exported) 
 return 1/detall;  # the minor, the better, the inverse is taken 
 
RETAILER
sub fitmino { 
 w = .5+rand(0:1); 
 media=0; 
 for z (p-1..p){ 
 x=pidedetall[z]-invfmino[z]+rstockmino[z]; 
 y = abs(w*(x+detall)/2); 
 media += y; 
 }

mino=media/2; 
 return 1/mino; 

Create Initial Population

Parada 
Select (N*G) elements

Reproduction to generate a new 
iteration 

Soluci stopsolution
yes

no

replacement
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}
WHOLESALER
sub fitmayo { 
 w = .5+rand(0:1); 
 media=0; 
 for z (p-1..p){ 
 x=pidemino[z]-invfmayo[z]+rstockmayo[z]; 
 y = abs(w*(x+detall)/2); 
 media += y; 
 }

mayor=media/2; 
 return 1/mayor; 
}
FACTORY
sub fitfabr { 
 w = .5+rand(0:1); 
 media=0; 
 for z (p-1..p){ 
 x=pidemayo[z]-invffabr[z]+rstockfabr[z]; 
 y = abs(w*(x+detall)/2); 
 media += y; 
 }

proc=media/2; 
 return 1/proc; 
}
Table 1 shows how initial data is incorporated for the Genetic Algorithm that we are 
proposing. Results will be fleshed out in the final section, which describes   numeric 
applications. The data comes from Sterman’s beer distribution example (1989).  
PERIOD 1 Per. 

2
Per. 
3

Per. 
4

PERIOD 5 
Demand of 1 = 95 80 80 85           Demand of 10 = 90 

Initial Inventory. Shop retailer 1 = 100 95 80 65 Initial Inventory. Shop retailer. 10 
= 40 

Shop retailer supplies   1 = 95 80 80 65 shop retailer supplies   10 = 40 
Stockout      1 =    20 Stockout      10 = 50 
Final inventory Shop retailer    1 = 5 15 0 0 Final inv. Shop retailer    10 = 0 
Shop retailer orders   1 = 90 65 80 85 Shop retailer orders      10 = 90 

Initial inventory, retailer  1 = 100 90 65 40 Initial Inv. retailer  10 = 60 
retailer supplies     1 = 90 65 65 40 retailer supplies     10 = 60 
Stockout      1 =   15 45 Stockout      10 = 30 
Final inventory retailer    1 = 10 25 0 0 Final inventory retailer      10 = 0 
Retailer orders      1 = 80 40 80 85 Retailer orders     10 = 90 

Initial inventory wholesaler 1 = 100 80 40 60 Initial inventory wholesaler 10 = 
80 

Wholesaler supplies      1 = 80 40 40 60 Wholesaler supplies    10 = 80 
Stockout      1 =   40 25 Stockout      10 = 10 
Final inventory wholesaler    1 = 20 40 0 0 Final inventory wholesaler   10 = 0
Wholesaler orders     1 = 60 0 80 85 Wholesaler orders      10 = 90 
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Initial inventory manufacturer   1 = 100 60 60 80 Initial inventory manufacturer   10 
= 85 

Factory  supplies      1 = 60 0 60 80 Factory  supplies      10 = 85 
Stockout      1 =   20 5 Stockout      10 = 5 
Final inventory factory     1 = 40 60 0 0 Final inventory factory     10 = 0 
Factory manufactures      1 = 20 0 80 85 Factory manufactures     10 = 90 

Table 1 
 
Table 2 provides the solution using the so-called 1-1 algorithm (Sterman 1989) and 
the Genetic Algorithm described here. In both cases, results are obtained from 5 data. 
It is clear that for this particular case the solutions provided by both algorithms 
coincide in having high error levels of variance manufacturing.  
 
FINAL INVENTORIES, 1-1 CASE FINAL INVENTORIES, GA CASE 

Average demand 86 Average demand 86 
Maximum 95 minimum 80 Maximum 95 minimum 80 
Demand variance 34 Demand variance 34 

Average shop retailer 4 Average shop retailer 6 
Maximum 15 minimum 0 Maximum 25 minimum 0 
Variance shop retailer 34 Variance shop retailer 94 

Average, retailer 7 Average, retailer 8.8 
Maximum 25 minimum 0 Maximum 44 minimum 0 
Variance retailer 96 Variance retailer 309.76 

Average wholesaler 12 Average wholesaler 25 
Maximum 40 minimum 0 Maximum 85 minimum 0 
Variance wholesaler 256 Variance wholesaler 1140 

Average factory 20 Average factory 39.8 
Maximum 60 minimum 0 Maximum 75 minimum 0 
Variance factory 640 Variance factory 879.76 

Average manufacturing 55 Average manufacturing 113.4 
Maximum 90 minimum 0 Maximum 199 minimum 20 
Variance manufacturing 1400 Variance manufacturing 5195.44 

TOTAL STOCKOUT 95 TOTAL STOCKOUT 31 
Table 2 

 
Table 2 is the starting point for the agent to decide how to plan deliveries, what to hold 
in stock, and so forth. The different members of the supply chain also have this 
information, and, as each knows the real costs, they will choose the best option for 
them (costs have not been used to resolve the Genetic Algorithm, as can be seen in 
the fitness functions)  
 
Figure 3 provides an overview of the multi-agents for our supply chain. The concept of 
‘agent’ as used in this text includes applying a genetic algorithm to decide how much 
to order in order to have stock. However, it also includes using other information 
provided by such tools (which will be described later) as neural networks, Box-Jenkins 
and other forecasting methods as well as simulation not only to validate orders sent 
and received but also to obtain rules. Furthermore, by applying the Corba tool (which 
will also be commented upon at a later point in the text), the Genetic Algorithm can be 
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solved using different platforms; as agents can communicate with KQML, agreement 
can be reached on how much to dispatch, order, and so on.   

 
Figure 3. A four-level network 

 
It should be pointed out that the mediocre results of Table 2 are very much improved 
upon in other runs or simply when we move up to 20 data. This is even more the case 
if we use more than 60, as advanced forecasting methods such as Neural Networks 
and Box-Jenkins come into play. Using simple forecasting methods with 100 number 
demand series has demonstrated to us that the so-called simple techniques (constant, 
moving average, exponential smoothing, trends or random walk, etc.) worked worse 
than advanced methods, i.e., Neural Networks and Box-Jenkins, as is only to be 
expected.   

 
The second facet to be considered is for each participant in the supply chain to have 
the same inventory and for orders to be made in line with the following expression:   ( ))1,,,,1 −+ −+= tktktktk SSYY

consumer

Retailler

Server
ERP1 Shop retailer

Server
ERP2 

Server
ERP3 

wholsailer

Agent Base knowledge 

Agent11, 
Corba1

Agent 22, 
Corba2

Knowledge base

Agent 1, AG1

Agent 2, AG2

Agent 3, AG3

Agent-Coordinador

Server
ERP4 

Factory

Agent 4, AG4
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where tkS , is the stock required to be level with past demand for  a supply chain level 
k. This expression is linked to the production planning equations of each independent 
level. tkX , represents what will be dispatched to the client. 

In the case in question in this paper, there is a single sub-index, k, since there is a 
single product; if there were i products, we would express the general formula as: 

Recently, many researchers have used the following equation to measure the bullwhip 
effect, in which ORATE represents orders of all those offering products (retailers, 
factory etc). As a general rule, we will use the factory, or manufacturer, as this is most 
distant from the consumer and its coefficient is greater. CONS represents sales to the 
end consumer. 

CONS

ORATE

CONS

CONS

ORATE

ORATE

ORATERV 2

2

2

2

σ
σ

µσ
µσ

==

Fluctuations in the real inventory are easily measured using the following variation 
ratio, RV,  

CONS

INVR

CONS

CONS

INVR

INVR

INVRRV 2

2

2

2

σ
σ

µσ
µσ

==

Although any other software could be used, we used Perl language with the following 
characteristics: it works with procedural as well as object-oriented programming, and 
the Perl interpreter can run on other systems. The actual version was the 5.8.6. 
Genetic Algorithm Sub-routines using Linux. Corba architecture comes from the Object 
Management Group Inc. (htttp://www.omg.org), founded in 1989 to develop 
reutilisation, portability and interoperativity of software objects in heterogeneous and 
networked environments. The consortium created an architecture called Object 
Management Architecture (OMA), which Corba forms part of. The architecture was 
constructed so that it could run on any platform.  
3. NUMERIC RESULTS.  
 
We divided the application according to the amount of order data that was available, 
i.e., into when we have scant data of between 10 and 20, and when we have around 
100. 
 
3.1. Demand of between 10 and 20 data. 
 
We will first describe the applications using Perl and Corba after designing the Genetic 
Algorithm described in previous sections of the text. This is followed by a numeric and 
graphic presentation of the tests that were run. The hardware used was a CPU AMD 
Duron 800 Mhz 512 Mb RAM PC, and the software was as follows: operative system: 
Linux Debian; Perl v5.8.4 (with AI (Artificial Intelligence) packets:Genetic, 
Bundle::Math::Random); gnuplot v4.0, and the Perl Genetic Algorithm prototype.  
 

tk
Y

tk
S

tk
X

tk
S

,,,1,
=−+−

tki
Y

,,
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The improvement in variance when Genetic Algorithms are applied is noteworthy (c.f. 
Table 3), although this method tends to be rather slow, requiring more than 30 
minutes on an 800Mhz AMD Duron for a 20 period resolution.   Rather than being 
constant, time elapsed can vary wildly for another resolution under the same 
conditions. Resolution time for the 1-1 Model is negligible, as would be expected.   
 
The columns of Table 3 provide the following values from left to right: the first column 
is of the different time series; column two is the number of cases used in each of these 
time series. Column three elucidated which of the two models – the 1-1 Model or the 
Genetic Algorithm–applies; column 4 shows variances of factory demand and of the 
end consumer. The fifth column is time taken to find a solution using a standard 
computer. The final column is the measurement of the Bullwhip effect, RVORATE.

Series Number 
of cases Model 

CONS

ORATE

2

2

σ
σ Time 

CONS

ORATE

ORATERV
2

2

σ
σ=

Model 1-1 17.652,16 1 ms N(85,10) 
Test 1 

10 
 GA1 609,89 25 minutes 28,9 

1-1 Model 13.536,16 1 ms N(85,10) 
Test 2 

15 
 GA1 2.536,81 20 minutes 5,3 

1-1 Model 16.175,61 1 ms N(85,10) 
Test 3 

25 
 GA1 6.410,81 22 minutes 2,5 

1-1 Model 21.716,64 1 ms N(85,10) 
Test 4 

10 
 GA1 1.930,06 18 minutes 11,2 

1-1 Model 7.909,84 1 ms N(85,5) 
Test 5 

20 
 GA1 1.127,44 8 minutes 7,01 

1-1 Model 2.223,49 1 ms N(85,1) 
Test 6 

20 
 GA1 996,09 5 minutes 2,23 

1-1 Model 1.805,98 1 ms N(85,0.5) 
Test 7 

10 
 GA1 987,59 2 minutes 1,82 

1-1 Model 32.648,21 1 ms N(85,15) 
Test 8 

20 
 GA1 2.613,84 40 minutes 12,49 

Table 3 
 
As can be seen, the results described in Table 3 clearly highlight the efficacy of the 
Genetic Algorithm compared to the 1-1 model in every single case. Furthermore, when 
σ is low (e.g. 0.5) the variance of the two models is similarly low, although always 
higher that the non-intelligent model. The measure of the bullwhip effect stands at 
28,9 for Test 1 and at 1,82 for Test 7. The graphs that follow show change in demand 
with the two methods, test 1 and 7 in italic. Variance is far greater in Test 1. However, 
the smoothing achieved by the Genetic Algorithm is spectacular in graphs 1 and 2, 
since at some points it drops to productions of near to 0 units when real demand is 
around 100, the GA does not exceed 110 units. 
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Graph 1. All-level demand using the 1-1 Method, with N(85,10) 
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Graph 2. All-level demand using the GA, with N(85,10) 
 

Table 4 gives the results of both the 1-1 Model and the GA methods (The GA is 
superior, as in most calculations) 
 

Model 1-1 Genetic Algorithm 
Factory average 20.9 Factory average 21 
Maximum 100 minimum 0 Maximum 90 minimum 0 
Factory Variance 1028.89 Factory Variance 906 

Factory initial inventory 10 = 96 
Factory supplies        10 = 95 

Stock out   10 = 
Factory final inventory  10 = 1 

Factory manufactures 10 = 94 

Table 4 
 

Graph 3. All-level demand using the 1-1 Method, with N(85,0.5) 
 

Graph 4. All-level demand using the GA, with N(85,0.5) 
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3.2. Real demand size (over 100 data) with previsions forecasts using 
advanced methods 
 
Forecasts were made for 19 time series obtained from databases that are generally 
used in forecasting models, such as Abraham (1983), Box-Jenkins (1976) and Reilly 
(1980). Table 5 indicates whether they are stationary and whether they are seasonal, 
i.e., four patterns adapted from Zhao et al. (2002) and labelled as follows: ESES, 
NESES, ESNES y NESNES. Table 6 shows the name, origin of the series, content, 
number of data and number of forecasts.  
 

Yes stationary Yes seasonal ESES (4) 
No stationary Yes seasonal NESES (6) 
Yes stationary  No seasonal ESNES(1) 
No stationary No seasonal NESNES (8) 

Table 5 
 

SERIES SOURCE RELATING TO Nº data Nº forecasts 
AL03 Abraham (1983) Electricity consumption 106 12 
AL04 Abraham (1983) Car sales 108 13 
AL09 Abraham (1983) Mortgage – Loan 

differences 159 9 
AL011 Abraham (1983) Gas consumption 106 11 
AL12 Abraham (1983) Demand for petrol 192 12 
BJ02 Box y Jenkins 

(1976) Price of IBM shares 369 9 

BJ06 Box y Jenkins 
(1976) Wolfer sunspots  100 11 

BJ08 Box y Jenkins 
(1976) 

Airline company 
passengers 144 10 

BJ15 Box y Jenkins 
(1976) Warehouse sales 150 12 

UN01 Reilly (1980) Simulated 150 10 
UN02 Reilly (1980) Simulated 162 10 
UN03 Reilly (1980) Simulated 150 10 
UN04 Reilly (1980) Simulated 161 10 
UN05 Reilly (1980) Simulated 155 10 
UN06 Reilly (1980) Simulated 178 10 
UN07 Reilly (1980) Simulated 149 10 
UN08 Reilly (1980) Simulated 148 10 
UN17 Reilly (1980) Simulated 178 10 
UN21 Reilly (1980) Simulated 146 10 

Table 6. 
 
FORECASTS USING BOX-JENKINS AND ARTIFICIAL NEURAL NETWORKS. 
 
Table 7 indicates the type of series in terms of whether it is stationary, seasonal, and 
so forth. Results using the Box-Jenkins methodology were obtained with Statgraphics 
5.1. and SCA programmes and are documented in table 8. Graphs 5 and 6 describe the 
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BJ06 and BJ08 data series as an example. The latter of the series 10% of the data was 
used to validate the models, i.e., if the series contained 100 data, 90 of them were 
used for fitting, both for Box-Jenkins and Networks, and the remaining 10 served for 
forecasting and for comparison with real data. The NeuroPlanet programme was used 
for Networks. 
 
A single hidden layer was seen to be sufficient to solve the problem in the case of 
Neural Networks, and the architecture described in table 8 is of the “d-n-s” type, 
where d is the number of input layers, n is the neurons in the hidden layer and s is the 
neurons of the output layer, whose value is 1 since we are interested in step by step 
forecasting. The remaining parameters, that is “d” and “n are obtained by testing 
different values until one is found that cannot be improved upon. Table 10 describes 
the values we obtained.  Forecasting results for both methods were normalised to 
values between 90 y 110 so that they could be compared with the 1-1 model. 
 

BJ06

0

0,5

1

1,5

2

1 9 17 25 33 41 49 57 65 73 81 89 97

Graph 5 
 

BJ08

0

2

4

6

8

1 12 23 34 45 56 67 78 89 100 111 122 133 144

Graph 6 
 
SERIES Stationary seasonal TYPE 
AL03 YES YES ESES 
AL04 NO YES NESES 
AL09 NO NO NESNES 
AL011 YES YES ESES 
AL12 NO YES NESES 
BJ02 NO NO NESNES 
BJ06 NO NO NESNES 
BJ08 NO YES NESES 
BJ15 NO NO NESNES 
UN01 NO YES NESES 
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UN02 YES YES ESES 
UN03 NO NO NESNES 
UN04 YES YES ESES 
UN05 NO YES NESES 
UN06 NO YES NESES 
UN07 NO NO NESNES 
UN08 YES NO ESNES 
UN17 NO NO NESNES 
UN21 NO NO NESNES 

Table 7. Model types 
 

SERIES
BJ 

UNIVARIANT 
MODEL 

BJ UNIVARIANT 
MODEL 

ARCHITECTURE AND 
CONFIGURATION, NN 

AL03 (1,0,0)(1,1,1)12
(1-φ1B)(1-φ12B12)(1-B12)

x = (1-θ12B12)at
MLP 6-3-1 

AL04 (1,0,0)(0,1,1)12
(1-φ1B)(1-B12) x =

k+(1-θ12B12)at
MLP 12-5-1 

AL09 (1,0,0) (1-φ1B) x = k+at MLP 5-3-1 

AL011 (1,0,0)(0,1,1)12
(1-φ1B)(1-B12) x =

k+(1-θ12B12)at
ELM 6-3-1 

AL12 (0,0,3)(0,1,0)12
(1-B12) x = k+(1-θ2B2-

θ3B3)(1-θ12B12)at
MLP 12-4-1 

BJ02 (1,0,0) (1-φ1B) x = at MLP 7-4-1 

BJ06 (2,0,1) (1-φ1B-φ2B2) x = k+(1-
θ1B)at

MLP 6-2-1 

BJ08 (1,1,0)(0,1,0)12
(1-φ1B)(1-B)(1-B12) x =

at
MLP 12-7-1 

BJ15 (1,1,1) (1-φ1B)(1-B) x = (1-
θ1B)at

MLP 8-4-1 

UN01 (0,1,1)(1,1,1)12
(1-φ12B12)(1-B)(1-B12) x
= (1-θ1B) (1-θ12B12)at

MLP 12-7-1 

UN02 (1,0,0)(0,0,1)12 (1-φ1B)(1-θ12B12) x = at MLP 8-3-1 
UN03 (1,0,0) (1-φ1B) x = k+at ELM 10-8-1 
UN04 (0,0,1)(0,1,0)12 (1-B12) x = (1-θ1B)at MLP 12-5-1 

UN05 (1,0,1)(0,0,1)12
(1-φ1B)(1-θ12B12) x =

k+(1-θ1B) at
MLP 12-4-1 

UN06 (0,1,0)(0,1,0)4
(1-B)(1-B4) x = (1-

θ1B)at
ELM 16-6-1 

UN07 (1,0,0)(1,0,0)6 (1-φ1B)(1-φ6B6) x = at MLP 12-6-1 

UN08 (2,0,0)(1,0,0)6
(1-φ1B-φ2B2)(1-φ6B6) x

= k+at
ELM 8-4-1 

UN17 (1,3,0) (1-φ1B)(1-B)3 x = at MLP 5-2-1 

UN21 (3,0,2) (1-φ1B-φ2B2-φ3B3) x =
k+(1-θ1B + θ1B2) at

MLP 6-3-1 

Table 8. Box-Jenkins y Artificial Neural Nets models 
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RESULTS FROM THE AL_SERIES  
 
Table 9 shows factory variances for the different methods and the different series. We 
are this using real data to validate. Such data could not be used with GA in the real 
world as they would not be available. However, they are presented her to show that 
even with real data factory variance can be greater than with forecasting methods if 
Genetic Algorithms are used, as is demonstrated by four of the five series for AL (i.e., 
all except AL04, which is highlighted in italic, which is also used for similar results such 
as BJ02, BJ08, UN01, UN06 y UN08). RNA means artificial neural networks 
methodology; 1-1 Model, Sterman’s method (demand maintaining); RAT-MAD-AL 
simple methods of forecasting as random walk with trend, moving average of 5 
periods, or exponential smoothing; of this methods will be used that which better 
MAPE obtained. 
 

AL03 AL04 AL09 AL11 AL12
REAL DATA 4038.58 1704.56 5567.78 4846.07 1379.08

RNA 1950.35 1838.18 4262.00 8185.90 923.22
B-J 1799.35 2943.98 2187.33 3888.56 3308.97

1-1 MODEL 8419.11 11081.59 13586.75 1299.02 8108.79
RAT-MAD-AL 2543.55 4357.87 6578.93 6457.97 8323.67

Table 9 
 

3

4

5
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7

8

95 96 97 98 99 100 101 102 103 104 105 106

AL03
Neural Net
B-J

Graph 7 

0

0,5

1

1,5

2

2,5

3

96 97 98 99 100 101 102 103 104 105 106

AL11
Neural Net
B-J

Graph 8 

Graphs of the forecasts for the different series and real data using both RNA and BJ are 
described next. The AL03 and AL11 series provide an example. The latter series is the 
only one of the nineteen where the 1-1 model strategy has proved to provide better 
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outcomes, as can be seen in table 9. This is because it is a series in which demand 
falls, which means more stocks. All the levels eliminate this stock and variance with 
this model is lower than if advanced forecasting methods were applied. Applying 
simple RAT-MAD-AL forecasting techniques always produced worse results than the 1-
1 model, and so they are not considered in later examples, where results are equally 
inferior.   
 
BJ_ SERIES RESULTS 
 

BJ02 BJ06 BJ08 BJ15
REAL DATA 1666.40 5751.47 2619.64 3531.72
RNA 1956.77 5332.69 5348.18 1033.31
B-J 2560.40 3652.33 5483.45 1571.39
1-1MODEL 20779.69 6587.36 10722.67 4851.90
RAT-MAD-AL 3482.76 7334.76 11256.89 5345.96

Table 10 
 

As table 10 shows, the lowest factory variances were provided by neural networks, 
with the exception of the BJ06 series, - the Wolfer sunspots. The dynamics are 
captured far better using networks in the other three series, which were of an 
economic nature. Graphs 9 and 10 document forecasting results using Box-Jenkins, 
networks, and the real series.  

3,2

3,25

3,3
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361 362 363 364 365 366 367 368 369

BJ02
Neural Net
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Graph 9 

2,55

2,57

2,59

2,61

2,63

2,65

139 140 141 142 143 144 145 146 147 148 149 150

BJ15
Neural Net
B-J

Graph 10 
 
Particular mention should be made of the BJ15 series, as it corresponds to a 
warehouse’s real sales. It can be seen that the best forecasts come form Neural 
networks, the variance of the manufacturing would be taken by applying the Genetic 
Algorithm with 1033 units. 
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RESULTS OF THE UN_ SERIES  
 

UN01 UN02 UN03 UN04 UN05
REAL DATA 2097.49 8669.76 5194.00 14257.04 4361.04
RNA 2836.20 2916.61 7356.67 7356.67 18293.76
B-J 2276.89 3316.00 2724.80 2597.16 4022.69
1-1 MODEL 18477.33 10759.96 16675.78 8655.11 11780.40
RAT-MAD-AL 22588.64 12684.84 18956.60 15670.35 12457.98

UN06 UN07 UN08 UN17 UN21
REAL DATA 876.40 1623.49 2205.64 1632.09 6395.01
RNA 6832.96 709.00 7375.43 1125.64 7359.69
B-J 2636.44 1659.50 5364.36 879.76 5029.36
1-1 MODEL 6850.44 7553.07 17410.71 7165.07 8972.49
RAT-MAD-AL 8568.32 9583.68 18467.34 9468.02 9456.34

Table 11 
 
The results of the series simulated of Reilly (1980) presented in the table 11, it leaves 
the methodology of Box-Jenkins better that that of nets, this is because these series 
were simulated thinking basically of this method. The UN17 and UN03 have been 
included as examples. The results as they relate to the Bullwhip effect are always 
better with the Genetic Algorithm than with the 1-1model, because it reduces the 
stockout in most of the studied cases, except in the series AL11 because it is a 
decreasing one.  
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CONCLUSIONS 
 
This study describes an application of a multi-agent methodology to reduce the 
Forrester Effect on a supply chain. One part of the agents is a genetic algorithm, which 
runs on a number of different platforms, and which will take the decision to 
manufacture, dispatch or take delivery of certain quantities of products according to 
which forecasting methods were more adequate. The case described has four levels of 
supply, and the Forrester Effect has been shown to decrease when advanced 
forecasting tools are applied.   
 
BIBLIOGRAPHY 
 
Abraham, B. Ledolter J. Statistical Methods for Forecasting. 1983 (Wiley, New York). 
Aviv Y., A. Time-series framework for supply chain inventory management. Operations 
Research, 2003, 51 (2), 210–227.  
Aviv Y., A. Gaining benefits from joint forecasting and replenishment processes. 
Manufacturing and Service Operations Management, 2002, 4 (1), 55–74.  
Aviv Y., A. The effect of collaborative forecasting on supply chain performance. 
Management Science, ,2001, 47 (10), 1326–1343. 
Baganha M., M. Cohen M. The stabilizing effect of inventory in supply chains. 
Operations Research, 1998, 46, 572–583.  
Blanchard, O. J. The production and inventory behavior of the American automobile 
industry. Journal of Political Economy, 1983, 91 365–400.  
Blinder, A. S. Can the production smoothing model of inventory behavior be saved? 
Quarterly Journal of Economics, 1986, 101 (3) 431–454.  
Box, G. E. P.; Jenkins, G. M. Time Series Analysis: Forecasting and Control. 1970, San 
Francisco: Holden Day. 
Cachon, G. P. Managing supply chain demand variability with scheduled ordering 
policies. Management Science, 1999, 45 (6) 843–856.  
Chen, F., Drezner, Z., Ryan J., Simchi-Levi D. Quantifying the bullwhip effect in a 
simple supply chain: the impact of forecasting, lead-times, and information. 
Management Science, 2002, 46 (3) 436–443. 
Childerhouse P., Disney S. M., Towill D. R. Tailored toolkit to enable seamless supply 
chains. International Journal of Production Research, 2004, 42 (17) 3627-3646. 
Dejonckheere, J., Disney, S. M., Lambrecht M. R., D.R. Towill D. R. Measuring and 
avoiding the bullwhip effect: a control theoretic approach. European Journal of 
Operational Research, 2003, 147 (3) 567–590.  
Dejonckheere, J., Disney S. M., Lambrecht M. R., Towill D. R. The impact of 
information enrichment on Bullwhip effect in supply chain: A control engineering 
perspective. European Journal of Operational Research, 2004, 153, 727-750. 
Disney S. M., The production and inventory control problem in vendor manager 
inventory supply chain. Ph. D. Thesis, 2001, Cardiff Business School, Cardiff 
University, UK. 
Disney S. M., Towill D. R. Transfer function analysis of forecasting induced bullwhip in 
supply chain. International Journal of Production Economics, 2002, 78, 133-144. 
Disney S. M., Towill D. R. The effect of Vendor Managed Inventory (VMI) dynamics on 
the Bullwhip effect in supply chain. International Journal of Production Economics,
2003, 85, 199-215. 
Disney S. M., Towill D. R. On the Bullwhip and inventory variance produced by an 
ordering policy. Omega, 2003, 31, 157-167. 
Disney S. M., Grubbstrom R. W. Economic consequences of a production and inventory 
control policy. International Journal of Production Research, 2004, 42 (17) 3419-3431. 

Page 16 of 19

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

17

Disney S. M., Naim M. M. Potter A. Assessing the impact of e-business on supply chain 
dynamics. International Journal Economics, 2004, 89, 109-118. 
Disney S. M., Towill D. R., Velde W. Variance amplification and the golden ratio in 
production and inventory control. International Journal of Production Economics, 2004, 
90, 295-309. 
Drezner Z, Ryan J, Simchi-Levi D. Quantifying the bullwhip effect: the impact of 
forecasting, lead time and information. Working Paper, Northwestern University, 
Evanston, IL, 1996.  
Forrester, J. W. Industrial dynamics, MIT Press, 1961, Cambridge, MA.  
Cachon G. P. Lariviere, M. A. Capacity choice and allocation: strategic behavior and 
supply chain performance. Management Science, 1999, 45 (8), 1091–1108.  
Graves, S. C. A single-item inventory model for a nonstationary demand process. 
Manufacturing & Service Operations Management, 1999, 1 50–61.  
J.D. Sterman, J. D. Modeling managerial behavior: misperceptions of feedback in a 
dynamic decision making experiment. Management Science, 1989, 35 (3) 321–339. 
Kahn, J. Inventories and the volatility of production. The American Economic Review, 
1987, 77, 667–679.  
Kaminsky P, Simchi-Levi D. A new computerized beer game: a tool for teaching the 
value of integrated supply chain management, POMS series in technology and 
operation management, Global supply chain and technology management, USA, 1998, 
1. 
Kelle P. Milne, A. The effect of (s,S) ordering policy on the supply chain. International 
Journal of Production Economics, 1999, 59, 113–122.  
Makridakis, S. (1993): Accuracy Measures: Theoretical and Practical Concerns. 
International Journal of Forecasting, 9 527-529. 
Reilly D. P. Experience with an automatic Box-Jenkins Modelling in Time Series 
Analysis, O. D. Anderson, Amsterdam: North-Holland, 1980. 
Slutsky, E. The summation of random causes as the source of cyclic processes.
Econometrica, 1937, 5, 105-46. 
Sterman, J. Modelling managerial behaviour: Misperceptions of feedback in a dynamic 
decision making experiment, Management Science, 1989, 35(3), 321-339. 
Sterman, J. D. Teaching takes off, fight simulators for management education. OR/MS 
Today, 1992, 19 (5) 40–44.  
Sterman, J. D. The beer distribution game. In: J. Heineke and L. Meile, Editors, Games 
and exercises for operations management, Prentice Hall, Englewood Cliffs, NJ, 1995, 
101–112. 
West, K. D. A variance bounds test of the linear quadratic inventory model. Journal of 
Political Economy, 1986, 94 (4) 374–401.  
Wold, H. A study in the analysis of stationary time series. Estocolmo: Almgrist & 
Wiksell 1938. 
Yule, G.U. Why do we sometimes get nonsense-correlations between time series? A 
study in sampling and the nature of time series. Journal of Royal Statistical Society, 
1926, 89, 1-64. 
 

APPENDIX: Explanation of pseudocode 
 
In order to clarify the computation of the fitness, there are two kinds of Supply Chain 
levels: the Shop retailer who faces the demand and which order to the retailer is 
passed along the other levels, which takes the shop retailer information (detall) as a 
input in the GA evolution process.  
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SHOP RETAILER
sub fitdetall { 
 w = .5+rand(0:1);   # random between 0.5 and 1.5 
 media=0; 
 for z (p-1..período actual p){ # loop from z=p-1 up to z=p 
 x=demanda[z]-invfdetall[z]+rstockdetall[z]; 
 # x = demand – final inventory retail shop+ stockout retail shop (all of the 
period z) 
 y = abs(w*x);     # y = absolute value of random per x 
 media += y;       # acumulated value of y over z periods 
 }

detall=media/2;  # final value, from 2 periods, which could be ordered to retailer  
 # (this data is exported) 
 return 1/detall;  # the minor, the better, thus the inverse is taken 
 
RETAILER
sub fitmino { 
 w = .5+rand(0:1); 
 media=0; 
 for z (p-1..p){ 
 x=pidedetall[z]-invfmino[z]+rstockmino[z]; 
 # x = order from – final inventory + stockout (all from retailer, period z) 
 y = abs(w*(x+detall)/2); 
 # y = random between 0.5 and 1.5 per the mean between x and the what the 
shop retailer has orderered in the actual period (variable imported) 
 media += y;    # accumulated of y, 2 periods 
 }

mino=media/2; # mean of y, 2 periods 
 return 1/mino;  # return the inverse, the maximum is the fittest 
 } 
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