
HAL Id: hal-00512877
https://hal.science/hal-00512877

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible automatic converting of nc programs
Thomas Schroeder, Michael Hoffmann

To cite this version:
Thomas Schroeder, Michael Hoffmann. Flexible automatic converting of nc programs. International
Journal of Production Research, 2006, 44 (13), pp.2671-2679. �10.1080/00207540500455841�. �hal-
00512877�

https://hal.science/hal-00512877
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

Flexible automatic converting of nc programs

Journal: International Journal of Production Research

Manuscript ID: TPRS-2005-IJPR-0003.R1

Manuscript Type: Original Manuscript

Date Submitted by the
Author:

24-Aug-2005

Complete List of Authors: Schroeder, Thomas; IWU Chemnitz
Hoffmann, Michael; IWU Chemnitz

Keywords: CNC, CONTROL, MACHINE TOOLS

Keywords (user): RS-274, Convert

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

International Journal of Production Research

Vol. 00, No. 00, 15 July 2004, 1–10

International Journal of Production Research:

Flexible automatic converting of nc programs

A cross-compiler for structured text

T. Schroeder1,2, M. Hoffmann3

(00. Month 2005)

The syntax and semantics of programs for CNC machines is defined in standards of the International
Organization for Standardization (ISO) and in local counterparts. Because of the very tight limits
of these standards, most manufacturers of numeric controls extend the NC language by including
specific structures. These could be simple commands, management of variables, control structures
etc.

By using the above mentioned manufacturer-specific commands, a NC program can not be used
on a numeric control of another manufacturer. Sometimes, even the manufacturer-specific commands
differ from newer software versions on the same control.

The present algorithms can be used to support the user by converting NC programs from one
type to another. The main focus was set up on on versatility and simple usage. A software tool was
programmed to verify the benefits of this approach.

1 Introduction

In general, the programing of CNC machines is done by NC programs written
in the RS-274 machine tool programming language. The syntax as well as
the semantics are defined in ISO (1982). These standards are not sufficient
to implement complex operations. Therefore, most manufacturers of numeric
controls extend the NC language by including specific structures. The range
of these specific structures reach from simple commands to complex control
structures similar to standard languages for computer programing like C or
PASCAL.

Therefore, existing parsers like the NIST RS274NGC Interpreter (Frederick
et al. (2000)) can only decode NC programs written in pure RS-274 code.
Programs which use all features of a given control can be parsed only partly.

1Fraunhofer Institute for Machine Tools and Forming Technology IWU, Reichenhainer Str. 88, 09126
Chemnitz, Germany; tel: +49-371-5397-405; fax: +49-371-5397-6405.
2To whom correspondence should be addressed. e-mail: thomas.schroeder.tu-chemnitz@iwu.fhg.de
3Fraunhofer Institute for Machine Tools and Forming Technology IWU, Reichenhainer Str. 88, 09126
Chemnitz, Germany; tel: +49-371-5397-108; fax: +49-371-5397-6108.

Page 1 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

2 Flexible automatic converting of nc programs

NC programs which include such specific commands can not be used on
controls of different manufacturers. Consequently, producers and users of CNC
machines have to carry on using controls of one manufacturer even if better
(or cheaper) controls are available.

Converting NC programs by human take very long because the differences
between the NC dialects are significant. Furthermore, it is difficult to keep
concentrated for 50’000 lines of NC code and more. Therefore manufacturers
of machine tools often use only one single type of controls. If, for any reason,
the controls have to change, all existing NC programs have to be converted
manually or completly written new.

Such tasks can be fulfilled by CAD/CAM-systems as far as possible auto-
matically. However, such systems have often a very limited and not expandable
language scope. This leads to the fact that some numerical control programs
are not produced by CAD/CAM-systems, but written or modified manually
to benefit most of the advantages of the installed control system. In addition
CAD/CAM-systems are very expensive and therefore usually not affordable
for many smaller companies. In other words, there is a multiplicity at numer-
ical control programs which are created manually and/or generated by own
software systems.

In this article an different approach is presented. Because of the defined
structure of NC programs it is possible to do a lot of conversion work auto-
matically. By using state-of-the-art techniques of computer science, a tool was
developed to support the user by converting NC programs from one language
to another. The priority was set up on versatility for working on different con-
trols. The tool should be simple enough to be enhanced and modified by the
user. It was planned to start with a simple knowledge base and expand it step
by step.

2 Concept

NC programs are text files in which the biggest semantic structure is a line.
These lines are called ”NC blocks”. Although there are semantic structure in
the manufacturer-specific commands which can be longer than one line, the
converting tool should work on the NC program sequentially for every line.
In most cases the long commands can be subdivided into parts which can be
converted separately.

By converting each line sequentially, the problem of conditional branches
is eluded. If any algorithm should proceed through the program in the exact
same manner as a real control does, it have to evaluate the condition of all
conditional branches. But these conditions are often related to the process.
The problem gets even worse when programms for monitoring are designed as

Page 2 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

T. Schroeder and M. Hoffmann 3

NC-Block: G01 X150 Y=R33*4 F3000 G90

several token

N W ® ª +

Figure 1. NC block and token

time 0: G01 X150 Y=R33*4 F3000 G90

?

token G01 found

time 1: X150 Y=R33*4 F3000 G90

?

token X150 found

etc.

time 2: Y=R33*4 F3000 G90

Figure 2. Searching for token at begin of line and deleting them

infinite loops. Because of that, the presented algorithm does not follow any
branches, but converts each line sequentially.

Each NC block consists of some token (Fig. 1). If a token consists only of a
letter and a number like "X100" or "X=100" this token is called ”NC word”.
In this work, a token could also something completely different. The "IF" of
an "IF-THEN-ELSE" construct, for example, is also a semantic token.

In a NC block could be any number of token so that the blocks have to
be divided into semantic parts. Regular expressions are used to identify these
parts. To simplify the expressions, only the beginning of the actual line is
checked. If a token is identified its part of the line is deleted (Fig. 2) and the
token itself is kept in memory. So the user has only to think of the border that
is behind the token. The fore border is always the begin of the line.

By deleting each identified part of the NC block, it is ensured the no char-
acter string of this block is found more than once. This reduces the chance of
wrong identifications.

A problem occurs when none regular expression of any token matches. In

Page 3 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

4 Flexible automatic converting of nc programs

most cases, the current token has not been defined. Sometimes however, a
token was identified wrongly because of a bad regular expression. In both
cases, the software tool shows a message and tries to convert the line as far
as possible. So the user is warned and could check the specified line. By using
this approach, the chance of identifying and converting a token wrongly is
minimized. When the line is empty, all token have been correctly identified.

After dividing the line, there are some semantic token in memory. So, after
parsing the line, the converting process can be started. The work is done by
pre-defined converting operations. The user has to specify a number of opera-
tions for each token to convert the semantic of this token. These informations
are saved together with the regular expressions in a extern XML file.

3 Regular Expressions

The mathematician S.C. Kleene developed a formal syntax called ”regular
sets” to describe state machines in computer science (Kleene (1956)). Later,
this syntax became a standard called ”regular expressions” and was widely
used on unix for describing search patterns.

The regular expressions are complex enough to describe the grammar of
any regular language. Therefore, this description standard is a type 3 gram-
mar in the Chomsky hierarchy (Chomsky (1956,/)). So the morphology of all
natural languages as well as all computer languages can be described by reg-
ular expressions. It is complex enough to identify any construct of the RS-274
machine tool programming language.

There are parser generators like YACC (IEEE POSIX P1003.2 (1992)) for
generating parser code of a given grammar written in BNF notation. The
main drawback of this approach is the prerequisite to define the complete
language. To enhance or change the abilities of the parser, new code have to
be generated and compiled. Therefore a change of the convert program binary
will be necessary.

In the represented software tool, regular expressions are used to identify
semantic token. For example, the expression to identify a G0 command could
look like "G0*0(\s|[[:alpha:]]|$|;)". Due to this fact, the user is able to
define regular expressions for searched tokens on runtime. The convert program
binary can be left unchanged, all modifications are done in a external rules
file.

The user may start with a small rules file for the main syntax of the source
and target control. Later on, when using the tool to convert real programs,
the user can enhance and adapt the rules by simply change the XML rules
file. There is no need to alter the algorithm or the binary. Therefore, the tool
can also be used for each combination of source and target controls.

Page 4 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

T. Schroeder and M. Hoffmann 5

Additionally to the regular expression, a special context is required for some
token. For example, if "X=" is written in NC code, a context for the following
string is set. On order to search for token, context conditions can be set within
the XML rules file.

4 XML Rules File

Extensible Markup Language (XML) (Yergeau et al. (2004)) is a simple, flex-
ible text format that derives from Standard Generalized Markup Language
(SGML) (WWW Consortium (1986)). There are many applications for work-
ing with XML. Most of them are used in connection with Internet related
processes like CSS and HTML.

In this project, XML is used to structure the extern conversion rule file. The
user can edit the rules file with any XML editor or just change the plain text
to define new token or change the convert operations for existing token.

Because XSLT processors (Tidwell (2001)), which also use rules files based
on XML (XSLT code), require XML tags in the source dokument, they cannot
be used easily for converting NC programs. To process a NC program with
a XSLT processor, a XML tag have to be set before and after each token.
Therefore, in this work, the parsing is implemented by regular expressions
and the conversion is realized by special rules.

The rules file is a tree of defined token in XML. Because of the fact that
each knot can expect conditions (for variables and context), only these routes
have to be traced which are relevant to the current convert situation. For
example a NC block starts with the function call "MSG(". The following char-
acter string may only consist of elements which are allowed as parameters of
the message function. Therefore the identification of "MSG(" as the message
function triggers a change of the current context.

When working on mathematical expressions, opening parentheses change the
context to a new value. Closing parentheses, however, change the context back.
Therefore the information about the current context have to be implemented
as a stack memory. There are more examples in the manufacturer-specific
commands where this is useful.

Each single token has to be defined in the XML file. Every one of them fills
a given XML structure or parts of it. These are the leafs of the XML tree.
What a token is in fact, can be decided by the user when defining them. It
should be the smallest semantic structure of the source control for a successful
conversion. Figure 3 shows the structure of a token definition in the XML rules
file.

In the structure for one token, its identification is provided by regular ex-
pressions and its conversion is defined by convert operations. A change of the

Page 5 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

6 Flexible automatic converting of nc programs

XML element
-

context/conditions

regular expression

remove expression

- new context

-
operations

priority/time/conditions

- list of parameters

- convert string

- priority

Figure 3. Structure of a token definition

current context can be set as well as a simple conversion string and a list
of appendant parameters which are assigned to the token in the conversion
process. Finally, a priority can be set. All operations are executed with de-
creasing priority. Consequently, this also influences the position of the token
in the converted NC block.

5 Variables and Operations

The convert operations work on three different types of variables.

• There are local variables which scope is only the token they belong to.

• The scope of global variables is a NC block (one line).

• Eventually there are resistant variables with a scope of the whole NC pro-
gram.

The user can even call a convert operation which sets a complete token resis-
tant. This is very useful when working on resistant command words.

Conversion variables can be used as simple strings, one dimensional arrays
and subsets of parameter token.

The operations mainly change strings. There are also convert operations
which work with regular expressions, do NC variables management, specialized
operations for modal commands and even operations for writing to disk.

Page 6 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

T. Schroeder and M. Hoffmann 7

search for token, disassemble NC block

?

sort token for defined priority

?

when needed, generate token for modal commands

?

assign parameter token to command token

?

process convert string

?

output converted NC blocks

Figure 4. Structure of the conversion process

It could be shown that the program is able to convert each NC block which
semantic can be done by n NC blocks (n ∈ N) of the target system. Of
course, a comprehensive rules file has to be provided. Even with small rule
sets, however, the automatic conversion rate is about 85 percent. If the set of
rules is ad

The conversion process has a defined structure (Fig. 4). Between each step,
convert operations could be done. The user can specify the time of execution
of all operations in the XML rules file.

The conversion program is working on the given plan and executing all
operations which have been defined for the found tokens.

One special operation is ”ShowWarning”. It generates a message for the
user. All these messages are written to the output file. The line number of
the NC block which caused the message is added to help the user in checking
them. The level of a message can be set to ERROR or WARNING to indicate its
importance.

6 Technical Features

Sometimes, the new control works on different axis names. For this reason, a
text file can be specified to define old and new axis names. If any of the old
names is found, it will be replaced by the assigned new one.

In most controls there are machine specific switches called ”help functions”.
They could be used for switching the cooling or control the tool pallet. They
are constant for one machine and they do not have any parameters. So, in
this tool the user may define such help functions as simple strings. The search

Page 7 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

8 Flexible automatic converting of nc programs

Figure 5. Graphical user interface

for help functions has a higher priority than the search for a matching with
regular expressions. If any of these possibilities are found, a token is generated
which only consists of the defined target help function. Of course any character
string can be defined as help function.

On each control, some modal commands are active on startup. Some NC
programs refer to these initialization values. Therefore, the user can provide
a text file to setup the initialization values. This way also global variables in
NC programms as well as extern functions can be defined. The conversion tool
indentifies them correctly and converts them as described in the XML rules
file.

Finally a intuitive graphical user interface have been programmed (Fig. 5).
Most options can be set in this windows application.

To keep close contact to the user while converting, the program stops op-
tionally if an error occurs. In this case, a window (Fig. 6) is opened where the
user can change on-line the generated code. It’s also possible to set specified
messages not to be shown again or not to be written to the output file.

7 Conclusion

There is a need of a software tool that helps the user of CNC machines to
convert NC programs from one manufacturer-specific NC dialect to another in

Page 8 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

T. Schroeder and M. Hoffmann 9

Figure 6. Online edit mode

order to be more flexible concerning the usages of controls. Because the differ-
ences between these dialects are significant, the conversion effort is enormous.
On the other hand, the NC programs are very structured that most of the
work can be done automatically.

The represented software is very flexible by using an extern rules file. The
structure of this file is written in XML to have a widely used base. This set
of rules can be extended easily by the user. Each defined token enhances the
functionality of the converter.

The parsing of the NC code is done by regular expressions so that all com-
puter languages can be parsed. The conversation is executed by provided con-
vert operations that range from simple string editing to NC variable manage-
ment. In tests this tool translates up to 90 percent of complex NC programs
automatically. For the last 10 percent, the user is provided with specific in-
formations about the problem and possible solutions. So the time to get an
existing NC program usable on different control is very shortened.

Page 9 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

October 14, 2005 12:1 International Journal of Production Research convert

10 REFERENCES

REFERENCES

Chomsky, Noam (1956), ‘Three models for the description of language’, IRI
Transactions on Information Theory 2(3), 113–124.

Chomsky, Noam (1956/1975), The Logical Structure of Linguistic Theory,
Plenum.

Frederick, Thomas Kramer, Frederick Proctor and Elena Messina (2000), ‘The
nist rs274ngc interpreter - version 3’, National Institute of Standards and
Technology. NISTIR 6556.

IEEE POSIX P1003.2 (1992).
ISO (1982), Numerical control of machines - Program format and definition

of adress words.
Kleene, S. C. (1956), Representation of events in nerve nets and finite au-

tomata, in ‘Automata Studies’, Pinceton University Press, pp. 3–42.
Tidwell, Doug (2001), XSLT, 1st edn, O’Reilly.
WWW Consortium (1986), Information processing – Text and office systems

– Standard Generalized Markup Language (SGML), ISO 8879.
Yergeau, Franois, Eve Maler, Jean Paoli, Tim Bray and C. M. Sperberg-

McQueen (2004), Extensible Markup Language (XML) 1.0 (Third Edition),
W3C, http://www.w3.org/TR/REC-xml/.

Page 10 of 10

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

