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NEW INDUCTION RELATIONS FOR COMPLETE FUNCTIONS IN
JUCYS-MURPHY ELEMENTS

VALENTIN FERAY

ABSTRACT. The problem of computing the class expansion of some syrianet
functions evaluated in Jucys-Murphy elements appeardfereit contexts, for
instance in the computation of matrix integrals. Recerily,Lassalle gave a
unified algebraic method to obtain some induction relatiomshe coefficients
in this kind of expansion. In this paper, we give a simple pucembinatorial
proof of his result. Besides, using the same type of argunvesitobtain new
simpler formulas. We also prove an analogous formula in thekid algebra of
(S2n, Hn) and use it to solve a conjecture of S. Matsumoto on the suibigad
term of orthogonal Weingarten function. Finally, we propasconjecture for a
continuous interpolation between both problems.

1. INTRODUCTION

1.1. Background. The Jucys-Murphy elements lie in the symmetric group al-
gebraZlS,]. Despite their beautiful properties, their definition isywelementary:

Ji = Z(] i)

i<t

where (5 i) is the transposition irb,, exchangingi and j. They have been in-
troduced separately by A. Jucys [Juc66, Juc74] and G. Mujidlay81] and have
played since a quite important role in representation thdodeed, they act diago-
nally on the Young basis of any irreducible representatipnthe eigenvalue of/;
on an elemengt of this basis T is a standard tableau of shapgis simply given
by the contenti(e. the difference between the column-index and the row-indéx)
the box ofT" containing;.

In fact, representation theory of symmetric groufyscan be constructed en-
tirely using this property (seé [OV96]). We also refer to @apof Biane([[Bia98]
and Okounkovi[OkoQ0] for nice applications of Jucys-Murghgments to asymp-
totic representation theory.

A fundamental property, already observed by Jucys and Muiglthat elemen-
tary symmetric functions evaluated in thigs have a very nice expression (this
evaluation is well-defined because Jucys-Murphy elememtsnwute with each

Key words and phrasessymmetric functions, Jucys-Murphy elements, symmetrizgralgebra,
Hecke algebra fofS2., Hy).
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2 VALENTIN FERAY

other). More precisely, if(o) denotes the number of cycles of a permutation

o €S, then
ek(Jl,...,Jn): Z g.

cESn
k(o)=n—k

As this is a central element in the group algebra, all symim&inctions evaluated
in Jucys-Murphy elements are also central. Therefore iafanal to wonder what
their class expansion is. In other terms, given some synimfatiction £, can we
compute the coefficientsf defined by:

F(Ji,...,Jn) =Y _a}Cy,
AFn
where the sum runs over all partitionsondC, denotes the sum of all permuta-
tions of cycle-type\? This problem may seem anecdotal at first sight, but it in fact
appears in different domains of mathematics:

e When F' is a power sump, it is linked with mathematical physics via
vertex operators and Virasoro algebra (see [I.TO1]).

e When F' is a complete symmetric functioly,, the coefficients appearing
are exactly the coefficients in the asymptotic expansionnithry Wein-
garten functions. The latter is the elementary brick to cot@polynomial
integrals over the unitary group (sée [Novi10, 2J10]).

e The inverse problem (how can we write a given conjugacy dalasas a
symmetric function in Jucys-Murphy element) is equivalentry to ex-
press character values as a symmetric function of the cent€his ques-
tion has been studied in some papers [CGS504, L as08a] but nswng the
combinatorics of Jucys-Murphy elements.

1.2. Previous and new results.As mentioned in the paragraph above, the class
expansion of elementary functions in Jucys-Murphy elesi@énvery simple and
was first established by A. Jucys. The next result of this kiad obtained by A.
Lascoux and J.-Y. Thibon via an algebraic method: they ghgecoefficients of
the class expansion of power sums in Jucys-Murphy elemerdsrae coefficients

of an explicit series [LTO1].

Then S. Matsumoto and J. Novak [MNO9] computed the coeffisiehthe per-
mutations of maximal absolute length in any monomial furcin Jucys-Murphy
elements. Their proof is purely combinatorial but does petsto be extendable to
all coefficients. As monomial functions form a linear badisyanmetric functions,
one can deduce from their result a formula for the top coeffitsi for any symmet-
ric function, in particular for complete functions (seece[Bur04,/CMQ09]). To be
comprehensive, let us add that the authors also obtainedefficients of cycles
in complete symmetric functions using character theorgiftapproach works for
all cycles, not only the ones of maximal length).

Recently, M. Lassalle [Las10] gave a unified method to obsaime induction
relations for the coefficients of the class expansion ofrsgvamilies of symmetric
functions in Jucys-Murphy elements. These induction i@tatallow to compute
any coefficient quite quickly. Besides, it is possible to tlsem to recover the
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results of A. Jucys, A. Lascoux and J.-Y. Thibon and also tipecomponent of
complete symmetric functions. Therefore, the work of M.dalke unifies most of
the results obtained until now on the subject.

He proves his result with a sophisticated algebraic machinke begins by
translating the problem in terms of shifted symmetric fiored and then introduces
some relevant differential operators.

In this paper, we give a simple combinatorial proof of hisuaiibn formulas.
Our method of proof can also be adapted to find another forifidaoren 2.6).
The latter is new and quite simple. An example of applicat®the following:
using Matsumoto’s and Novak’s result on cycles, we are ableotmpute more
generating series of coefficients.

1.3. Generalizations. An analogous problem can be considered in the Hecke al-
gebra of the Gelfand paiiSs,, H,,) (here,H,, is the hyperoctahedral group seen as
a subgroup of5,,). Definitions are given in sectidn 3. In this algebra, it ievant

to consider symmetric functions in odd-indexed Jucys-Myrplements.

It is a remarkable fact that complete symmetric functionalwated in these
elements are also linked with integrals over groups of @dti but the complex
unitary group should be replaced by the real orthogonalg(see([ZJ10, Mat10]).

In paper [Matl10], S. Matsumoto computed the coefficientseshqutations of
maximal length in the case of monomial symmetric functidmenge obtaining an
analog of his result with J. Novak).

Our new induction formula extends quite easily to this framek. A conse-
guence is a proof of a conjecture of S. Matsumoto (see pgrh@Ed.2).

In fact, one can even define a generalization of the probleim ayparameted
which interpolates between both frameworks:

¢ the class expansion of symmetric functions in Jucys-Mumdbynents cor-
responds to the cage= 1,

¢ the analogue in the Hecke algebra(6h,,, H,,) corresponds to the case
a =2,

We recall this construction in sectidh 4.

A very interesting point in Lassalle’'s method to obtain iotlon formulas is
that it works almost without changing anything with a gehpesameter [Las10,
section 11]. Unfortunately, we are not (yet) able to extemdveork to this general
setting. However, computer exploration suggests that sufrtte results still hold
in the general case and we present a conjecture in thisidindatsectiori 4.

1.4. Organization of the paper. In section 2, we present our results in the sym-
metric group algebra.

Then, in sectio]3, we look at the analogous problem in thekeledgebra of
(S2n> Hn)

Finally, in sectior[#, we present a conjecture for the camirs deformation
between these two models.
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2. INDUCTION RELATIONS

2.1. Definitions and notations. The combinatorics of integer partitions is impor-
tant in this work as they index the conjugacy classes in sytmengroups. A par-
tition A of n > 0 (we note) F n) is a non-increasing finite sequence of positive
integers (called parts) of sum Its number of elements is denoté@d\). We use
the notation\\; for the partition obtained from by erasing one part equal t¢we
only use this notation wheh has at least one part equalijoIn a similar fashion,

A Ui is the partition obtained by adding a part equal {on an appropriate place
such that the sequence remains non-increasing).

Let us denote bys,, the symmetric group of size and byZ|[S,] its group
algebra over the integer ring. Throughout the paper, thiicieat of a permutation
o € S, in an element: € Z[S,] will be denoteds|z. If this coefficient is non-
zero, we say that is in z (this is a small abuse of language, where we consider
as its support).

Definition2.1 The Jucys-Murphy elements (for 1 < ¢ < n) are defined by:
Ji=1)+2d)+---+(—110) €Z[Sy).
Note thatJ; = 0 but we include it in our formulas for aesthetic reasons.

Proposition 2.2. e Jucys-Murphy elements commute with each other.
e If F'is a symmetric functionF'(Jy, Ja,...,J,) lie in the center of the
symmetric group algebr& (Z[S,,]).

We recall that the cycle-type of a permutatiernin S,,, which we will denote
type(o), is by definition the non-increasing sequence of the lengttits cycle.
This is an integer partition af, which determines the conjugacy class of the per-
mutation in the grou,.

A basis of the center of the group algel#éZ[S,,]) is given by the sums of the
conjugacy classes, that is the family of elements

C\= Z o,

gE€Sn
o has cycle-type\

where )\ runs over all partitions ofi. Therefore, for any symmetric functioh,
there exists some integer numbefssuch that:

F(Ji,...,Jn) =Y _a5Ch.
AFn

In other termsaf is the coefficient of any permutatienof type A in F(Jy,. .., J,).

We will here focus on the case whefeéis a complete symmetric function (so
aﬁ’“ will be denotedz’i) because of the link with some integrals over unitary groups
mentioned in introduction. All the results of this sectioputd be easily adapted
to elementary and power-sum symmetric functions. Unfateily, we are not able
to deal with a linear basis of symmetric functions (as thefaments af depend
linearly onF', this would solve the problem for all symmetric functions).
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Example2.3. As an illustration, let us look at the cake= 2 andn = 3:
ha(Jy, Jo, J3) = (12)2 + (13) + (23))* + (1 2) - ((13) + (23));

=1d+2Id+(123)+(132)+(123)+(132);
= 3Cy3 + 2Cs.

Note that the coefficient of a permutation at the end of themdation does depend
only on its cycle-type, although, 2 and3 play different roles in the computation.
In other terms, we have computed the following coefficients:

a%lg) = 3, a%z 1) = O, CL?3) = 2.
2.2. A combinatorial proof of Lassalle’s formula. In this paragraph, we give an
elementary proof of the following theorem, which has beaved by M. Lassalle
[Las10] using sophisticated algebraic tools.

Theorem 2.4(Lassalle, 2010) For any partitionp and integerk, one has:

k 1
(1) pUl = a )+ sz ( U(pi+1)’
&) (k—1)
(2) sz Do\ (pi)U(pi+1) = Z PiPi%o\(pi,p5)0(pi+ps+1)
1<i,5<(p)
i#j
£(p) (E-1)
+sz >, a p\(m)uvs)
r+s=p;+1

r,s>1

Proof. We start from the obvious induction relation
(3 hi(J1, -y Ing1) = he(J, - In) + Jnrhie—1(J1, -, Jng)
and we apply to it the following operator:

Z[Sn+1] — Z[Sy) .
E: PN {J/{l,...,n}lfd(n+1):n+1;
0 else.

Then we look at the coefficient of a permutatiemf type p F n (in the following,
o’ is the image ofr by the canonical embedding 6f, into .S,, 1, which means
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that we addh + 1 as fixed point).
(4) OIE (7 (1, ., Jns1)) = [0 (1, - Jngr) = oy,
(5) [J]E(hk(levjn)) [J]hk(J17>Jn) :a/()k)>
OB (Jnsrhe—1(J1,- -, Ing1)) = (071> (G n+ D1 (i Jnsn)

Jj<n

Z[(j n+1)0"Thp—1(J1, .., Jnt1)

D oy
type( Jj n+l)o

i<n

Let us label the cycles of with the numberd, 2, ..., ¢(p) such that theé-th cycle
of o has lengthp;. It is easy to see thdtj n + 1)o’ has exactly the same cycle
decomposition as except that + 1 has been added right befoje Therefore, if

j is in thei-th cycle ofo, then(j n + 1)o’ has cycles of lengthy, po, ..., p;i +
L,..., pep)- In other terms, its type is\ (p;) U (p; + 1). As there are; elements
in thei-th cycle ofo, one obtains:

k—1)
(6) [U]E(Jn—l—lhk—l(Jh s n+1 Z pz 2\ (ps)U(pi+1)"
1<i<t(p

Putting together equations (3)] (4)] (5) ahtl (6), we obtafirst part of the theo-
rem.

The second equality is obtained the same way except that vtiplypequa-
tion (3) by J,, .1 before applying the operaté. One obtains:

(7)) E(Jnsrlh(Jr, ..o Jng1) = E(Jnprha(J1s ., Jn))
+ E(Jn—i-lhk 1(']17 ERE) Jn—l-l))'
The coefficient ofr in the left-hand side has been computed: see equaiion (6). Le

T be a permutation in(Ji,. .., J,). Itfixesn + 1 and, hence(j n+ 1)7 can not
fixn+1forj =1,...,n. Therefore,
(8) E(Jpg1hi(J1, .., Jn)) = 0.

For the last term, we write:

[U]E(J2+1hk—l(¢]1> ey Jn+1))
=[] > Gin+1)Gan+1) he(J1,-.. s Jnsr)

J1,525n

= Z [(Gen+ 1) (i n+1) -0 Thp1(J1, ..., Jns1)
J1,j2<n
_ (h-1)
- Z Ytype((j2 nt+1)-(jr n+1)-0')’

J1,J2<n
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As before, we label the cycles of We split the sum in two parts, depending on
whetherj; andjs are in the same cycle of or not:

e Suppose that botly, andj, are in thei-th cycle ofo. That implies that
jo = o™(j1) for some integern betweenl andp; (eventuallyj; = ja,
which corresponds toy = p;). Then(ji n+1) - (j2 n + 1) - o’ has the
same cycles as except for itsi-th cycle, as well as two other cycles:

(j1,0(j1),...a™ 1 (j1)) and (j2,0(j2), - - - o T Go), n + 1),

Thus it has cycle-type \ (p;) U (m, p; — m + 1). There arep; elements
in thei-th cycle ofo and, hencep; possible values fof;. For each value
of j1, there is exactly one value g corresponding to each value of
betweenl andp;. Therefore, one has:

(k—1) _ (k 1)
Z Atype((jo nt1)-(jr n+l)o’) — Z pi Z @0\ (pi)U(m,pi—m+1)

Jj1,j2<n i<l(p) m=1

Jj1~oi2
- Z pi Z gi plz

iSl) g

wherej; ~, jo means thaj; andjs are in the same cycle of.

e Let us suppose now thdt andj, are respectively in thé -th andiy-th
cycles ofo with iy # is. In this casgj1 n + 1) - (joe n + 1) - ¢/ has the
same cycles as except for itsi;-th andis-th cycles, as well as one new
cycle:

(j17 U(j1)7 o O-pil_l(jl)7n + 17j27 U(j2)7 s O-piQ_l(jQ))-

Thus(ji n+1)-(j2 n+1)-0' has cycle-type\ (pi, , pi, ) U (piy +pi, +1).
As there arep;, (resp. p;,) elements in thé;-th (resp.i2-th) cycle ofo,
one obtains:

> = > purna,)

type((j2 n+1)-(j1 nt1)-0") — PirPiz@p\ (p;, iy )U(piy +pin+1)°
j1,d2<n i1,i9<L(p)
J1*od2 i1 74

wherej; =, jo means thaj; and;j, are not in the same cycle of
Finally,

©) [OJE(J3 1hi-1(J1,- . Jnr1)) =

(k 1) o (k=1)
Yoo Y Um>+ > PiPi%p\(piy i) (piy +piy+1)°

1<l(p) 7+s §L1+1 i,jé@(p)
S 17]
Putting together equations] (7)) (6] (8) and (9), we obthagecond part of the
theorem. O

Remark2.5. This theorem allows to compute inductively the coefficiatﬁssee
[Las10, end of page 13].
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2.3. New relations. In this paragraph, we prove new induction relations on the
coefficientSa’;, using the same kind of method as above.

Theorem 2.6. For any partitionp and positive integers, m one has:

k . k—1
(10) Ay =0madp+ Y Pl Goupeam T D e

L=i<te) T

Proof. The casen = 1 corresponds to equation (1) and has already been proved.

Supposen > 1. Once again, we begin with equatidn (3) and we will look at the
coefficient of some permutatianon both sides.

Letn = |p| + m — 1 ando be a permutation iy, ; of type p U (m) such that
n + 1is in a cycle ofo of lengthm (in particular, asn > 1, n + 1 is not a fixed
point of o). By definition,

(11) o1k (1 s Jng1) = Al -
Besides, as all permutationshp(.Jy, ..., J,) fix n + 1, but noto, one has:

We shall now compute

0]t hi1(J1s - Tns1) = [0] Y (G n+ Vb1 (i Jngn)

i<n

_Z ]TL—|— hk 1(J17"'7Jn+1)

i<n

= z :atype (( n+1l)o

1<n

As before, we label the cycles of the cycle containing.+1 gets the label(p)+1
the others are labelled such that thid cycle has length; (for 1 < i < ¢(p)). We
distinguish two cases:

e Suppose that is in thel(p) + 1-th cycle ofo (asn + 1). This implies that
j = o"(n + 1) for someh betweenl andm — 1 (asj # n + 1, h can not
be equal tan). Then(j n + 1)o has the same cycles tharexcept for its
¢(p) + 1-th cycle, as well as two new cycles:

(n +1,0(n+1),... ,Uh_l(n + 1)) and (j,a(j), e ,Um_h_l(j)).

Thus its cycle-type i® U (h,m — h). Exactly one value of corresponds
to each integeh betweenl andm — 1. One has:

— k—1 _ k—1
Z atype(jn-l-l Jo) apU(h,m—h)_ Z apU(r,s)'

j<n h=1 r4+s=m
j~on+1 r,s>1
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e Otherwise,j is in thei-th cycle ofo for somei < ¢(p) (in particular, it is
not in the same cycle as+ 1). In this case(j n+ 1)o has the same cycles
thano except for itsi-th and/(p) + 1-th cycles, as well as one new cycle:

(j,a(j), Lo ) n+ Lo(n+1),. . 0™ n+ 1))

Thus its cycle-type ip \ (p;) U (p; +m). As there arg,; elements in the
i-th cycle ofo for eachi, one obtains:

k—1
Z Utype((j nt+1)o Z pia p\(m)U(pHrm)
j<n 1<i<t(p)
Jjeon+1
Finally,
(13) [ ] Jnt1hi— 1(<]17~' n+1 Z a + Z pPia p\(m (pi+m)”
’:;21’" 1<i<l(p)
The theorem follows from equatiorid (3),(11),1(12) dnd (13). O

Remark2.7. This type of case distinctions, depending on whether soeraahts
are in the same cycle or not, is quite classical and leads tft¢the same kind of
induction relations, calledut-and-joinequations: see for instance [GJ97].

Remark2.8. This theorem implies Theoreim 2.4. Indeed, equafidn (2) eanrit-
ten as a linear combination of specializations of equafid}), (but the converse is
not true.

Remark2.9. Our new induction relation allows to comput§ by induction over

|p| andk in several different ways. Indeed, a given partitivican be written as
pU (m) in several different ways. Itis not evideatpriori that the final result does
not depend on this choice. This relies on the initial condsi

1 1if p = 21° for somei;
a =
r 0 else.

2.4. Taking care of the dependance inn. As mentioned by Lassalle [Las10,
paragraph 2.7], the coeﬁ|C|emi§U1n ,» S€en as functions of, have a very nice

structure. More precisely, let us deﬂn% where) is a partition, by induction on
|A| by the formula:

mi1 (P) ml(p)
k k

(14) al = ; c[w( ; )
wherem; (p) is the number of parts equal foin p andp is obtained fromp by
erasing its parts equal o

The interesting fact now is thaf is equal ta) as soon ag| — £(p) + m1(p) is
bigger thank, while, for a givenk, one has infinitely many non-zenfg (this fact
is explained in paragraph 2.4.2). As a consequence, cegifizi are convenient
to compute simultaneously the class expansiohdf/y, . .., J,,) for all positive
integersn (the integelk being fixed): see Examgle 2]15 at the end of this paragraph.
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Using equation[(14), one can translate Theorems 2.4 ahat®.@dlations over
thec's, but it is rather technical (se€le [Las10, section 12]). \Wdqr here to explain
the combinatorial meaning of tle&s and derive directly relations over this using
this interpretation.

2.4.1. Algebra of partial permutationsA good tool for that are the partial per-
mutations introduced by Ivanov and Kerov in [IK99]. LBt, be the following
Z-algebra:

e A partial permutations.e. is a couple(d, o) whered is a finite set of pos-
itive integers andr a permutation ofl. As aZ-module,B, is the set of
infinite linear combinations of partial permutations.

¢ the product on partial permutations is given by:

(15) (d,o)-(d,0o')=(dud,G-d),

wheres (resp. ¢’) is the canonical continuation of (resp. ¢’) to d U d’
(i.e. we add fixed points, we will use this notation throughout taper).
It extends ta3., by biliearity:

(Z Cd,a(dv U)) ) ( Z Cd’,a’(d/70/)) = Z Cd,acd’,a’(d70) : (dlv 0/)'
(d',0")

(d,o) (d,o),(d’',07)

It is easy to see that in the formula above, only a finite nunobéerm can
contribute to the coefficient of a given partial permutatidt, ") (indeed,
the indices of such terms must fulfill &  d”). Therefore the right-hand
side is a well-defined element 6f,.

The infinite symmetric group, acts naturally o3 if 7 belong toS., that is
7 is a permutation oN* with finite support, we define
Te(d,o) = (r(d), o7 1).

The invariants by the action ¢f,, form a subalgebral, of B... As explained in
[IK99| § 6], a basis of this subalgebra is

(PC)) wherePCy, = > (do).

dCN*, |d|=|A|
o€Sg, cycle-typgo)=X

A partition

The nice property of this construction is that, for eachhere exists a morphism
©n, from B, to the symmetric group algeb#S,,] defined by:

ogifdc{1,...,n};
#n(d; ) :{ 0 else. { }

These morphisms restrict to morphistds, — Z(Z[S,]). The image of vectors
of the basis is given by [IK99, equation (4.3)]:

n— ])\]—i-ml()\))C)\ -
uln=ial:

mren = ("0
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We shall need a last property of the algeBra. Let us define, for a partial permu-
tation (d, o) its degree to be
deg(d, o) = |d| — # cycles ofo + # fixed points ofo.
We consider the subspa¢B..)<; to be the set of infinite linear combinations of
partial permutations of degree smaller or equal.to
Lemma 2.10. The decompositioBS,, = U (B)<s defines an algebra filtration.
5>1
Remark2.11 Considerdeg’ defined by
deg/(d, o) = |d| — # cycles ofo,

deg’ is the minimal number of factors needed to wrtgor &) as a product of
transpositions. It is known to define a filtration &fS,,] and hence oB, (see
[IK99!| equation (10.3)]).

Proof. We have to prove that ifr, f) = (0,d) - (7, e), then
deg(m, f) < deg(o, d) + deg(7, €).
We make an induction on the numbey of fixed points ofr.
If m; =0, then
deg(m, f) = deg/(m, f) < deg'(0,d) + deg/(7, €) < deg(o,d) + deg(7, ).
Otherwise, let € f be a fixed point ofr. We consider the linear operatby
B — Bs
F; : (0.d) (ovi,d\{i})ified
(0,d) else,
whereo,; is the permutation obtained by erasingn the expression of as a
product of cycles of disjoint supports. Equivalenty, by aigifon, o\;(j) = o(j) if
j # o7 1(i) ando; (071 (i) = o(i). Itisimmediate to check thaleg(F;(o, d))
deg(o,d) — 1 unlessi is in a cycle of lengtf2 in o, in which caseleg(F;(o,d)) =
deg(o, d).
Note thatF; is notan algebra morphism. However, as Fix(7), one has:
(16) ‘FZ(Tﬁf) :E(Uad) E(T,ﬁ)
Let us explain why this is true. First, it is obvious that
(d\{i}) U (e\{i}) = (dUe)\{i} = f\{i}.
Then, ifj # i,77'(i), thenn,(j) = j and thus

i (ni(9) = 0 (7)) = o (7(j)) = 7(j) = m;(j)
becauser(7(j)) = w(j) is different fromi (indeed,x (i) = ¢ andj # ). Finally,
one only has to check that:

i (na(r7H(2)) = ma(r 7))
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But n;(7~'(i)) = 7(i) and, ass(7(i)) = = (i) = i, the left-hand side is equal
to o\;(7(7)) = o(i). But, asi is a fixed point ofr, the permutatlonr\l is simply
7/(f\{i}) and thus the right-hand side is equalte-—'(i)) = o(i). This ends
the proof of equatiorf (16).
As F;(r, f) has one less fixed point than f, we can apply the induction hy-
pothesis and one has:
deg(Fi(, f)) < deg(Fi(o,d)) + deg(Fi(7, €)).

As mentioned above:

deg(Fi(m, f)) = deg(m, f) + 1;
deg(F;i(o,d)) = deg(o,d) + 1 — d1;
deg(Fi(r,e)) = deg(r,e) + 1 — 0o,
whered; (resp. d9) is equal tol if 7 is in a cycle of lengti2 in o (resp. ) and0

else.
If one of thed’s is equal taD, one has

deg ((, f)) = deg(Fi(m, f)) + 1 < deg(Fi(o,d)) + deg(Fi(7,e)) + 1
< deg(0, d) + deg(7, €)
and the proof is over in this case. So the only case we haveidy & wheni is

in cycles of lengti2 in o andr. Of course, ag(7(i)) = ¢, botho (i) andr (i) are
equal to the same numbgrIn this case, we have:

Ej(Fi(m, f)) = Fj(Fi(o,d)) - Fj( 2( ))
deg(m, f) = deg (Fj(Fy(r, )))
deg(o,d) = deg( Fi(o,d)))

deg(r,e) = deg( Fi(t,e)))

and we can conclude by induction. O

Remark2.12 In their paper, V. Ilvanov and S. Kerov considered a large faofi
filtrations onB., [IK99] Proposition 10.3], but it does not contain this one.

2.4.2. Complete functions in partial Jucys-Murphy elemeritdas been observed
in [EérQ9, Section 2] that, if we define natural analogs alydtMurphy elements
in B, by:
Xi=Y ({4 i}, (Gi) fori>1,
j<i
e then they still commute with each other;
e besides, the evaluatiof( X1, X2, X3,...) of any symmetric functiorf’
in the infinite sequence of partial Jucys-Murphy elementsai-defined
and lies inA..

Therefore there exist coefficient§ such that

hk(Xl,XQ,Xg, .. ) = ZC’;\PC)\
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In other terms¢} is the coefficient of any partial permutatiod, o) with |d| = |A|
ando of cycle-typel in hy (X1, Xo, X3, ... ). Applying ¢, one obtains:

n— Al +mi(A

A

2z ).

n A such that
PE N adin=IN =,

ml(p) ml(p)
k
= E : Cpu1i< i > Cp

pkn \ =1

Therefore, the numbez§ fulfill equation [14) and this definition is equivalent to
the one given at the beginning of the subsection. Note thet this construc-
tion, it is obvious that the's are non-negative integers (fact which was observed
numerically by Lassalle, private communication).

The fact that} is equal to) as soon agp| — £(p) + m.(p) is bigger thark is
also natural because eadf is in (B )<1 and hencéy, (X1, X2, X3,...) liesin
(Bx)<k- This can of course be generalized to any symmetric functioterms of
a's, using equatior (14), this implies the following propert

Proposition 2.13. Let p be a partition andF' a symmetric function of degree
The functiort — o _, is a polynomial it of degree smaller or equal to

— (lpl = £(p))-

The fact that this function is a polynomial is already knoWwfNO9, Theorem
4.4], but not the bound on the degree.

Besides, we can obtain induction relations on #sewith the same kind of
argument we used for thes:

puULt

Theorem 2.14. For any partition p and positive integers: and k, one has

”Ul sz a\( pz JU(pi+1)°

Cpun —sz Copue+2) Tt oy T 2600

pUm sz p\ pz YU(pi+m) + Z (r,s) —|—2cpu(m 1) if m > 3.

r4+s=m
r,s>1

Proof. Letn + 1 = |p| + m and fix a partial permutatiofd, o) with:

ed={1l,...,n+1};
e o has cycle-type U (m) andn + 1 is in a cycle of lengthn.

Let us look at the coefﬁmertﬂ;Um of (d,o) in hy(X1, Xa,...). Asn + 1 is the

biggest element i, it implies that every monomials in th&;'s contributing to
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the coefficient of(d, o) contains naX; with i« > n + 1 and contains at least one
Xna1. Thus:
o = (d, )i (X1, X2, .0 ) = [(dy )| X1 ha—1 (X1, -+, X1

pum

=[(d,0)] Z Z Z Clli_l ’ (d/ U{j,n+1} (Gn+1)7);

j<n+l v (&), |d|=|v|
cycle-type r)=v

> 2.
type(r)’
j<n+1 (@7
cond.(1)

where conditior(1) is the equalityd'U{j,n+1}, (j n+1)7) = (d, o). Foragiven
integerj betweenl andn, we have to determine which setsand permutations
7 € Sy fulfill d U{j,n+ 1} =dand(j n+ 1)7 = o. Of course, one must have
7= (j n+ 1)o. Asin the previous paragraphs, we make a case distinction:

e If jis not in the same cycle of asn + 1, then they are in the same cycle
of 7. In particular, neitheg norn + 1 are fixed points of, so both belong
to d’. Therefore, necessarily, = d. The discussion on the possible cycle-
types ofr = 7 is exactly the same than in paragraph 2.3 and one has:

Z Z Cﬁy Z pic p\ pz JU(pi+m)’

RN 1i<H()

e If jis in the same cycle of asn + 1 (this impliesm > 1), we write

j=oc"(n+1). Ifd =d, thent = 7 = (j n + 1)o and its possible
cycle-types has been discussed in paragragh 2.3, so one has:

E : k—1 § k—1
C = C

Z type(r) pU(r,5)

j<n+1 (d’,1) r+s=m

J~n+1 cond.(1) andd’=d rys21

But, in this case¢’ is not necessarily equal tb Indeed, wherh = 1, the
permutation? hasn + 1 as a fixed point. Ifn > 2, j can not be a fixed
point in this case s¢ € d'. Therefored’ = dord’ = d\{n+1}. Inthe last
case is a permutation of cycle-typeuU (m — 1). A similar phenomenom
happens wheh = m — 1: j is a fixed point of7, but notn + 1, sod’
can be equal t@\{j} and the corresponding permutatiomas cycle-type
pU (m —1). Therefore, ifm > 2, one has:

Z Z ny e( Z C +2C’;U(lm 1)°

o) T
If m = 2, the only possible value gfis o(n + 1) and, in this case; fixes
bothj andn + 1. Therefored’ can be equal either @, d\{n + 1}, d\{j}
ord\{j,n + 1}. Itis easy to see that the cycle-types of the corresponding
permutations are respectively U (1,1), pU (1), pU (1) andp. Thus, for
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m =2

k—1 k-1 k—1 k—1
D D St = o) 200 TG

J<ntl (d!,r)
Jj~n+1 cond.(1)

Summing the different contributions in the different cases obtain our theorem.
O

Example2.15 Here are the non-zero valuesaﬁffor small values of (k < 3).
It is immediate thaté) is equal tol, while all othercL are0. Then Theorerh 2.14
allows to compute:

iy =1 ¢ = 1;
Clay = 260y + a1 T 260 T Clpy = 1
C%g) = 2C%2’1) + 20%2) = 2,

Using equation[{14), we can compute all coefficiezﬁs‘or k = 2,3 and we find
the following class expansion (true for any> 1):

n
hg(.]l, RN Jn) = 5n23 26(3717#3) + 5n24 6(272’1n74) + <2>Cln;

hs(Ji, ..., Jn) = On>4 56(4717#4) + On>5 26(3’2717#5) + 0n>6 6(272’2717#6)

o () (e

This kind of results could also have been obtained with Téx@02.6 but the com-
putation is a little harder (it involves discrete integrafgpolynomials).

2.5. Generating series for some coefficientsS. Matsumoto and J. Novak have
computed, using character theory, the following genegdftimction [MNQ9, The-
orem 6.7].

Theorem 2.16(Matsumoto, Novak, 2009)For any integern > 2, one has:

Caty,_1 2" 1

(n zk:“?mzk T -1222)(1 - 2222) . (1— (n— 1)222)°

whereCat,,_; = + (")) is the usual Catalan number.
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As ak = c , the same result holds on this. Unfortunately, we are not able
to find a proof of their formulavia Theorem 2,14, but the latter can be used to
derive new results of the same kind.

For instance, withp = (n — 1) andm = 1, our induction relation writes as

k—1
c’(“n_u) =(n—1) ¢, andthus

ch 1,1)? —zZ(n—l) C(n )1zk_1

k
B (n —1)Caty_q 2"
(1 —1222)(1—2222) ... (1 — (n — 1)222)°

In terms ofa’s, this result implies:

D =D (len—l,n T C’fn—l)) 2
k k

(n —1)Catyp_1 2" + (1 — (n —1)222) Caty,_o 2" 2

(18) T (- Z2)(1—2222)... (1— (n—1)222)

This expression is simpler than the one obtained by Matsoirmwad Novak for the
same quantityl [MNQ9, Proposition 6.9] and their equivaéeiscnot obvious at all.

If we want to go further and compute other generating sedes,has to solve
linear systems. For instance, denotifig= ", cﬁzk, Theoreni 2.14 gives:

Fnon1) =2 ((n —2)Fp11) + F(n—2,2)) ;
Fln22)y =2 ((n = 2)Fipy + Fm1,1) + Fln—2,1) + Fln—2)) -
After resolution, one has:
22 (’I’L(’I’L — Q)F(n) + Z(TL — 2)F(n—1) + F(n—Z)) )
1— 22 ’

2 ((n = 2)Fp) + Fu—21) + Flu—2)) + 22 (n — 2)F;,_11)
1—22 ’

F(n_zvlvl) =

Fl22) =

Using results above, one can deduce an explicit generatiigssor the:'s which
can be easily transformed into series for tfe

3. ANALOGUES IN THE HECKE ALGEBRA OF (Sa,,, H,,)

In this section, we consider a slightly different problemieh happens to be
the analog of the one of the previous section. It was firstidensd recently by
P. Zinn-Justin[[ZJ10] and S. Matsumoto [Mat10] in connettidth integrals over
orthogonal groups.
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3.1. Hecke algebra of(Ss,, H,,). The results of this section are quite classical.
A good survey, with a more representation-theoretical tpafiview, can be found
in 1.G. Macdonald’s book[Mac95, Chapter 7].

Let us consider the symmetric group of even sizg, whose elements are seen
as permutations of the sét, 1,...,n,n}. It contains the hyperoctahedral group

which is the subgroup formed by permutatians So,, such thatr (i) = o (i) (by

convention,i = i). We are interested in the double coséts\ Sy, /H,, i.e. the
equivalence classes for the relation:

oc=rifandonlyif3h,h € H, s.t.oc = hrh'.

Conjugacy classes in the symmetric group algebra can badatesared easily
using cycle-types. We recall a similar result for the dowdasets: they are charac-
terizedvia coset-types.

Definition3.1 Let o be a permutation ofs,,. Consider the following grapt¥',:

e its 2n vertices are labelled b{1, 1, ... n,n};
e we put a solid edge betweerand: and a dashed one betweefi) and
o (i) for eachi.
Forgetting the types of the edges, we obtain a graph with wentices of degree.
Thus, it is a collection of cycles. Moreover, due to the hication of edges, it is
easy to see that all these cycles have an even length.
We call coset-type of the partitionu such that the lengths of the cycles@§

are equal t®u1, 2uso, . . .

Example3.2 Letn = 4 ando be the following permutation:
13, 1—1,24,2+—3,3—2,3—2 44, 4 1.

The corresponding graph,, is drawn on figurell.

- -~ -~

]‘- 2\ ‘3 4\
1.2 3---4.

FIGURE 1. Example of graplds,,

This graph is the disjoint union of one cycle of lengtki, 3, 3, 4,4, 1) and one
cycle of length2 (2, 2). Thus the coset-type of is the integer partitiori3, 1).

Proposition 3.3. [Mac98, section 7.1Jwo permutations are in the same double
coset if and only if their coset-types are the same.
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If 1 is a partition ofn, we denote
CP= > o cZSu)

oc€Sopy

coset-typéo ) =p

Itis immediate that the elemer(téz), wheny runs over partitions of span linearly

a subalgebreZ,(f) of Z[Ss2,]. Equivalently, one can definﬁ’,(f) as the algebra of
functions onSsy,, invariant by left and right multiplication by an element &t,,
endowed with the convolution product

frglo)=">_ f(m)g(r).

T1,72€52n
T1TQ=0

One can prove using representation thepry [Mac95, secti@jrihvat this algebra is
commutative (in other term$Ss,,, H,,) is a Gelfand pair).

3.2. Odd Jucys-Murphy elements. In this section we will look at symmetric
functions in odd-indexed Jucys-Murphy elementsSi). Rewriting as permuta-
tions on the sef1,1,2,2,...,n,n} (ordered byl <1 <2 <2 < --- <n < n),
these elements are:

Ji(Z) = Z (J9)-

j=1,1,...,i—1,i—1
They were considered by P. Zinn-Justin [Z2J10] and then Ssivhabto [Mat10].
Let us consider also the following element(@iSs,,]:

1
Pn = h.
2
Then the following result holds, which may be seen as an gnalof the fact that
symmetric functions in Jucys-Murphy elements are centréthié symmetric group
algebra.

Proposition 3.4. If F'is a symmetric function, then:
tnr = FPD, I, =p PP, ID).

Moreoverz,, r belongs to the algeer,(f).

Sketch of proofThe first step is to prove by induction that
er(12, . TP = pren(1D,. TPy = Y .

pEn
|| —€(p)=k

The result follows for allF" by multiplication and linear combination. See [Z]10,
Proposition 3] and [Mat10, Proposition 3.1] for details. O

Inspired by the results of sectibh 2, we may look at the clapamsion ofz,, r,
i.e. the coefficients such that:

FUIP, .., TP)p, = o,
ukEn
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As seen in the sketch of proof for the proposition abovebthare easy to compute
in the case of elementary functions.

In the following paragraph, we will establish some induetielations for thé'’s
in the case of complete symmetric functions. We focus ondase (and thus use
the short notation® = b/*) because these coefficients appear in the computation
of the asymptotic expansion of some integrals over the gahal groupl[[Mat1D,
Theorem 7.3].

3.3. A simple induction relation. In this paragraph, using the same method as in
subsection 213, we prove the following induction formulatfeb’s.

Theorem 3.5. For any partitionp and positive integeré andm, one has:
(19)
k— 1 k—1 k—1
bPU(m) = m 1b +2 Z plb U(pi+m) + Z bpu(rs - 1)bpu(m)'
1<i<l(p razm

Proof. As before, the starting point of our proof is an inductioratiein on com-
plete symmetric functions:

h(J2, TP T2 ) = (P T2

+ I g (T2 T, T,
Multiplying both sides by,, 1, one has:

20) he(JP T2 TP pa = (I TP e
+ I8 e (I T2 T .

Let us begin with the case = 1. We choose a permutatien € Ss,, of coset-
type p and we denote’ its image by the canonical embeddifg, < Sa,12. It
has coset-typg U (1). By definition,

(21) 0TI, T2 T b = By

For the second term, we write:

b I TDY iy = e (TP, TP py,

A1+ @m+1in+D+ ) m+1i)n+1i)].
i=1,1,...,n,n
Notice thathk(J(z), R J,(f))pn lies in the algebr&[Ss,] C Z[S2,+2] and hence
is a linear combination of permutations fixing+ 1 andn + 1. For such permuta-
tions 7, neitherr(n +1n + 1) nor7(n + 1 4)(n + 1 4) can be equal to’ (these
two permutations do not fix + 1 andn + 1). Therefore,
22  [)h(T2, T2 i = [o)he (P TP) py = bR,

n
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We still have to compute:
23) (o] e (T T2 T2 b
= > [+ 1) heoa (KD TP T2 e

— Z bk‘ 1
£ coset-typé(n+1 j)o’)"
j=11,..n,n

Let us look at the coset-type 6f + 1 j)o’. Denote byd; (resp.d,1) the other
extremity of the dashed edge of extremijtfresp.n+1) in G, (see definition 3]1).
Then the grapld-(,,;1 j),» has exactly the same edgeg’as, except for(j, d;) and
(n+1,d,41), which are replaced b, d,,11) and(n + 1,d;).

As (n+1,n+ 1) is aloop of lengtt2 in G, if we assume that was in a loop
of size2p;, then these two loops are replaced by a loop of 3ige-2in G, 41 j)o
(it is a particular case of the phenomenon drawn on Figure 2).

Y S S
/ * J'—'J- )/ \~‘—|. j
// \\ : : 'l J :
' n+1 X X I n+ X
| .= . I
1 1 N 1

______ n+1 """n+1

FIGURE 2. G, andG,1 ;) in the “join” case

Therefore(n + 1 j)o’ has coset-type\p; U (p; + 1). As there ar@p; elements
in thei-th loop of G/, one obtains:

2 2
(24) [U,]Jéﬁlhk—l(tfl( P, Jr(le “Pnt1 = 2 Z( pib p\(pl U(pi+1)
1<i<t(p)

Putting together equations (20), [21),1(22) and (24), waiakthe casen = 1 of
the theorem.

Let us consider now the case > 1. We choose a permutation € Sy, o of
coset-typep U (m) such thatr + 1 is in a loop of siz&m in G,. Asm > 1, this
implies thato—1(n + 1) # o~ !(n + 1). On the other hand, i lies in Z[S,] C
Z[Sonio] andi = 1,1,...,n,n, one has:

(rlin+D)@EnT1) (n+1) =
(tin+1)(Ein+1))" ( ):Z

Thus,o can not be written as(i n + 1)(: n + 1) with the conditions above. It can
not be equal to- or written asr(n + 1 n + 1) either. Therefore

olhe (T2, TP )iy =0
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As a consequence, one has:

bI;U(m) = [U]hk(J(2)7 - '](2) Jr(z—izl) " Pn+1

= o172 hama (I T2 2L - P
- Y
- coset-typé(n+1 j)o’)"

j:1717~“7n7ﬁ

and we have to look at the possible coset type@wof 1 i)o (equation[(ZB) is still
true).

Let us number the loops of the gragly with the integerd, 2, ..., ¢(p)+1 such
that thei-th loop has lengti2p; for i < ¢(p) and thel(p) + 1-th loop is the one
containingn + 1. As before, the graptF(,, ., ;) is obtained fronG,; by replacing
edges(j,d;) and(n + 1,d,+1) by (4, dp+1) @and(n + 1,d;). We distinguish three
cases:

“join”: I j lies in thei-th loop of G, thenG,, 1, ), is obtained fromG, by
erasing itsi-th and ¢(p) + 1-th loops and replacing them by a loop of
size2(p; + m) (see figurdR). In this casén + 1 i)o has coset-type
p\p; U (p; +m).

As there i2p; elements in thé-th loop of G,,, one obtains:

k—1 k—1
Z bcosettype(n—i-lz =2 Z psz\(pl U(pi+m)’

j=11,...,n,n 1<i<t(p
J*Gyntl
wherej ~g_ n + 1 means thaj andn + 1 lie in different loops ofG,,.
“twist”: If j lies in thel(p) + 1-th loop of G, and if the distance betwegnand

n + 1 is odd, thenG(,, ;1 ), is obtained fromG, by the transformation
drawn on figurd 8. In particular, in this case; + 1 j)o has the same
coset-type as, that isp U (m).

As j can not be equal ta + 1, there ism — 1 possible values foy in
this case. Thus,

k—1 _ k—1
Z bcoset -typé(n+1 j)o’) — (m — 1)pr(m)'

j=1,1,...,n,a
jNGU n+1
dg(j,n+1) odd

cut”:  We consider now the case wherkes in thel(p) + 1-th loop of G, and the
distance betweej andn + 1 is even. We choose an arbitrary orientation
of the ¢(p) + 1-th loop of G, (we keep the same for gllin this situation)
and we denoteh (1 < h < m — 1) the distance betweemn + 1 andj
when following the loop along this direction. Thé#,,, ;), is obtained
from G, by erasing it¥(p) + 1-th loop and replacing it by two loops of
length2h and2(m — h).(see figur€4). Thus, in this cage, + 1 j)o has
coset-typep U (h,m — h).
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n+1 n+1 n+ n+1
, \ ’ ‘
’ N , \
’ N , \
’ N ’ \
\
N
\/
— n
7\
;
N P \ /
N , N ’
N , N
\ P \ !/
N~ ~— 7

FIGURE 3. G, andG, 1 ;) in the “twist” case

There is exactly one integegrfor each integeh betweenl andm — 1,

SO:
m—1
D Yoo = D4 = 2. Y5
coset-typg(n+1 j)o’) pU(h m—h) pU(r,s)
j=1,1,...,n,n h=1 r+s=m
jNGan+1 r,s>1
d(j3,n+1) even
n+1 n+1 n+ n+1
—_— —
’ S ’ v
’ S ’ ’
4 N 4 v
’ S ’ ’
’
v ,
’ ’
’ ’
— ’ ’
’ ’
’ ’
’
N , ’ ,
N 7 7 7
S , ’ ,
N , ’ ,
e

FIGURE4. G, andG , 4, j), in the “cut” case

Putting the different cases together, one has

k _ k—1 k—1
b = 2 Z prP\(P U(pi+m) + Z pU(T’S ’I’)’L - 1)bpu(m)
1<i<t(p r4+s=m
r,s>1
which is exactly what we wanted to prove. O

Remark3.6. As in sectiorl 2, define coefficiem& as solution of the sparse trian-
gular system

(25) Z de12< , )>.
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Then, for a giverk, only finitely manyd’; are non-zero. But, unfortunately, we have
no combinatorial interpretation in this case to obtainatlgeinduction relation on
d. This raises the question of the existence of a partial Haldebra of( S, H,,),
out of the scope of this article.

A result similar to Theorerh 3.5 could be obtained for powen symmetric
functions.

3.4. Subleading term. The induction relation proved in the previous paragraph is

a good tool to study the leading and subleading terM&Qﬁf% e Jr(?))pn, that
is the coefficient@’; with |p| — ¢(p) = k or k — 1. Indeed, an immediate induction
shows that if the degree conditigp| — ¢(p) < k is not satisfied, thehﬁ =0. We
can also recover the following result proved by S. Matsunibtatld, Theorem
5.4].

Proposition 3.7. If p is a partition andk an integer such thafp| — ¢(p) = k, then

bh = ][ Catp,—1-

But our induction allows us to go further and to compute theleading term
(case|p| — 4(p) = k — 1), proving this way a conjecture of S. Matsumato [Mat10,
Conjecture 9.4] corresponding to the case wheisea hook.

Before stating and proving our result (in paragraph 3.4v2) need a few defi-
nitions and basic lemmas on the total area of Dyck paths gpaph3.4.11).

3.4.1. Area of Dyck paths.

Definition3.8 If I = (i1,...,1,) is a weak composition.e. a sequence of non-
negative integers), let us defifi®g as the set of Dyck paths of length= i1 +-- -+
i, whose height afteiy, i1 + 4o, ...Steps is zero (such a path is the concatenation
of Dyck paths of lengthsg,, is,...).

If C'is a subset of Dyck paths of a given length, denot@pythe sum over the
pathsc in C of the are&!. underc. In the cas&” = P;, we shorten the notation
and denoté&l; = Ap,.

For a weak compositiod = (k) of length 1, the setP; is the set of all Dyck
paths of lengths:. In this case, the ared;, has a closed form, which has been
computed by D. Merlini, R. Sprugnoli, and M. C. Verri in [MSGP

2k +1
_ 4k _
no o (%0

The general case can be deduced easily, thanks to the fofjdeimnma:

Lemma 3.9. Let C; and C, be respectively subsets of the set of Dyck paths of
length2m and2n. DefineC ~ C; x C5 the set of Dyck paths of leng®tm + n)
which are the concatenation of a pathd and a path inCs. Then

Qo =Ac, - |Ca] + [C1] - A, .
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Proof. The area between a concatenatign ¢, of two Dick pathsc; ande; is
clearly equal to the sum of the ares undeandcs. Therefore:

QlC: Z Q[cl“‘mcz: Z Qlcl"i' Z Q[CQ

c1€Cy c1€Cy c1€Cy
cg€Cy cg€Cy cg€Cy
=[Cal Y ey +1C1] Y Aoy = Ac, - |Co| +|C1] - A, O
c1€Ch c2€C>

With an immediate induction, we obtain the following coayl.

Corollary 3.10. For any weak compositioh of lengthr, one has:

Ar = ZT:QLZJ H Catik .

J=1 kA

One will also need the following induction relation in thexhparagraph.

Lemma 3.11(Merlini, Sprugnoli and Verri[MSV96]) If m is a positive integers,
one has:

U1 =(m—1)Catyn_1+ » (A1 Cate1+A_1 Cat,_1).

r4+s=m
r,s>1

Proof. This is a consequence of the usual first return decomposifibyck paths.
Indeed, letc be a Dyck path of lengtB(m — 1). We denote2r the z-coordinate
of the first point where the path touches thaxis ands = m — r. Thenc is the
concatenation of one climbing step, a Dyck pattof length2(r — 1), a down step
and a Dyck patla, of length2(s — 1) and this decomposition is of course bijective.

area of ¢

area: 2r-1

area of ¢,

FIGURE 5. First-passage decomposition of a Dyck path
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The area underis the sum of the areas undgrandcs, plus2r—1 (see figuréb).
So we write:

Un1= > | D A, +Ae, + (2r — 1)

r+s=m c1€EPr_1
ms21 cg€Ps—1

=D | D Mt D Yt Y, (-1

r+s=m | c1€P,_q c1€EPr_1 c1€Pr_1
r,s>1 co€EPgs_1 co€Pgs_1 c2€Ps 1
= Z Ups—1’ Z qu + ’,Pr—ll Z 22[cz + ‘Ps—ly : ‘Pr_l, ' (2T - 1)]
r+s=m c1E€EPr_1 c2€Ps—1

r,s>1

= Z [Qlf_l Catg_q +2s_1 Cat,_1 +(2r — 1) Cats_q Cat,_q ]

r4+s=m
r,s>1

The last part of the sum may be symmetrized emds:

Z (2r — 1) Cats_y Cat,—1 = Z %(27’ —142s—1)Cats_; Cat,_q

r4+s=m r+s=m

rs2>1 r,s>1
=(m-—1) Z Cats—q Cat,—1 = (m — 1) Caty,—1,
st
which ends the proof of the lemma. O

3.4.2. Proof of a conjecture of Matsumot@omputing the subleading term of

hk(Jl(z), . (2)) pn, CONSIsts in computing the coefﬂueb{t with & = |u| —
() + 1. Therefore for a partitiop, we denote:

SD,, = blI=fU L,
Theorem 3.12. Let i be a partition. Then
SD, =2,_.

Proof. Let . be a partition and = |u| — £(p) + 1
Suppose that we write = pU (m), for some partitiorp and integern. We will

write Theoreni 3.6 fop andm.
(26)
_ k— 1 k—1
Dpisimy = Omabp +2 Y Plb Sprrm) T D Yooy + (= DV
1<i<t(p r+s=m

r,s>1
If m = 1, the partitionp fulfills
lpl = t(p) = (lul = 1) — (l(p) —1) =k -1
and thug* = SD,,.
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For anyi < ¢(p), the partition\ = p \ (p;) U (p; + m) fulfills
IA[ = £(A) = || = (b(p) —1) =k

and therefore, thanks to the degree conditign;' = 0.
In a similar way, asu| — ¢(u) = k — 1, the coefficien'bﬁ—1 is simply given by
Propositior 3.17:

m) (p)
v = H Cat,,—1 = Caty,—1 H Catp,—1 .

i=1 i=1

For the last term, for any, s > 1 with » + s = m, the partition\ = p U (r, s)
fulfills:

A= € = [l = (B) + 1) =k — 2,

Therefore, the coefficiert ~! corresponds to a subleading term &fjd' = SD.
Finally, Theoreni_3]5 becomes in this case:

£(p)
(27) SD,0m) = 6m1SD, + (m — 1) Caty, 1HCatp 1+ Y SDurg)

r,s>1
r4+s=m

This equation gives an induction relation on the coefficieg. We will prove
that SD, = 2, by a double induction, first on the sizeof the partition,, and
then on the smallest part pf

Forn = 1, one has only partitiop = (1) and SD;) = b(1) =0=2p.

Fix now somen > 1 and suppose that the theorem is true for all partitions of
size smaller tham.

If = pU (1) is a partition ofn with smallest part equal to, then, by equation
(27) and the induction hypothesis, one has:

SD, =SD, =2, ; = A, 1.

Let i be a partition of, with smallest partn > 1 and suppose that SD= 2(,,_;
for all partitions ofn with smallest partn’ < m. We writep = p U (m) (i.e.

p = p\m). By equation[(2l7),

SD, = (m—1)[] Catp,-1+ > SDyre):
r+s=m

r,s>1

By induction,

SDpU(r,s) = Q[(pu(r s))—1 = = Cat, 1 Cats 1 (Z lez_l H Catpjl)

) VE=)
+ As_q Caty_g H Caty,—1 +2l,—1 Cats_1 H Catp,_1 -
7 7
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If we make the substitution in the previous equation, weiabta

SDu = Z Catr_l Cats_l Zﬂpi_l H Catpj_l

r,s>1 j?é’l

r4+s=m

+ (m — 1) Catyp_1 + Z [le—l Cat,_1 +20,_1 Cats_l] H Catpz._l .

r4+s=m
r,s>1

Therefore, using both Lemnia 3]11 and the classical inductioCatalan number
> rts—m Catr_1 Cats_; = Cat,, 1, One has:

SD, = 2,1 [ ] Caty,—1 = A
7 jF#i
Finally, for any partitionu, one has SP = 2, which is exactly what we wanted
to prove. O

S. Matsumoto established a deep connection between trfn'z:'cmttfsbfj and the
asymptotic expansion of orthogonal Weingarten functidviatlLO, Theorem 7.3].
In particular, Theorern 3.12 gives the subleading term ofespratrix integrals over
orthogonal group when the dimension of the group goes toityfin

4. TOWARDS A CONTINUOUS DEFORMATION?

The questions studied in sectidds 2 ahd 3 may seem quiteatiffat first sight
but there exists a continuous deformation from one to theroth

We denote by, the set of all Young diagrams (or partition) of size For any
a > 0, we consider two families of functions gw,.

e First, we calla-content of a box of the Young diagram the quantity
a(j — 1) — (i — 1), wherei is its row index andj its column index. If
A(;“) stands for the multiset of the-contents of boxes af one can look
at the evaluation of complete symmetric functio}rﬁA&“)).

e Second, we consider Jack polynomials, which is the basiyrahsetric
function ring indexed by partitions and depending of a pai@m (they
are deformations of Schur functions). The expansion of patknomials
on the power sum basis

DL RV
"
defines a famil;@,(f‘) of functions onY,, (we use the same normalization
and notation as in_[Mac95, Chapter 6] for Jack polynomials).

Proposition 4.1. The functions@,(f‘), wheny runs over the partitions aof, form a
basis of the algebr&,, of functions ovep,,.
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Proof. As the cardinal of this family corresponds to the dimensibthe space, it
is enough to prove that it spavs,. Let f be a function ory,,.
For a fixeda, Jack polynomials form a basis of symmetric functions, efae

there exist some coeﬁiciemiéf“; such that:
pu = dII".
A
Let us define the scalar:
Cn = Z dﬂf(/\)
Then one has: '

Do) = 3 (deef () Fw) = £,
w

24

where the last equality comes from the fact that the matnﬂ@é%) (M) and(dfﬁ‘;)
are by definition inverse of each other.

Finally, any functionf on)),, can be written as a linear combinatiorﬁz)ff’).

Remarkd.2 This proposition is also a consequence of the fact thattsyitdnosen

normalizations OB,(f”), wheny runs over all partitions, form a linear basis of the
algebra ofv-shifted symmetric functions (see [Las08b, Section 3])wieer, such
a sophisticated tool is not needed wheis fixed.

The proposition implies the existence of some coeﬁicieﬁt@) such that:
=3 a@e,0)
nw

For « = 1, using the action of Jucys-Murphy element on the Young basis
[Muc66] and the discrete Fourier transformSyf one can see thaﬁ’(l) = afj.

For « = 2, using the identification between Jack polynomials for gpe-
cial value of the parameter and zonal polynomials for thefa®el pair(Sa,,, H,)
[Mac95, Chapter 7], as well as the spherical expansiohk(@ﬂl(2), e ,(f))pn
established by S. Matsumofo [Mai10, Theorem 4.1], oneuﬁ’c%) = bﬁ.

It is natural to wonder if there are results similar to Theese2.6 and 315 in the
general setting. Computer exploration using Sagel[§ leads to the following
conjecture:

Conjecture 4.3. The coefficienta';’(a) fulfill the linear relation: for anym > 2,

k(o)  _ k—1,(a)
Cpu(m) = Z pU r,) +a Z mp\p U p +m) +(a=1)-(m-1) @pu(m)

r4+s=m < <
g 1<i<t(p)

Unfortunately, as we do not have a combinatorial descriptibthe basisﬁ)fﬁ)

in the algebraz,,, we are not able to prove it. With Lassalle’s algebraic appho
one can prove a generalization of Theorlem 2.4 (see [lLasifio8€l1]) which



COMPLETE FUNCTIONS IN JUCYS-MURPHY ELEMENTS 29

is weaker than Conjectufe 4.3. Nevertheless, his formuafficient to compute

inductively thea';’(a) and has been used in our numerical exploration.

In the author’s opinion, this conjecture is a hint towards éiistence of combi-
natorial constructions for other values of the paramatéike the conjectures of
papers([GJ96, Las08b, Las09]).
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