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NEW INDUCTION RELATIONS FOR HOMOGENEOUS FUNCTIONS
IN JUCYS-MURPHY ELEMENTS

VALENTIN FERAY

ABSTRACT. The problem of computing the class expansion of some syrignet
function evaluated in Jucys-Murphy elements appears ferdifit contexts, for
instance in the computation of matrix integrals. Recerily,Lassalle gave a
unified algebraic method to obtain some induction relatiomshe coefficients
in this kind of expansion. In this paper, we give a simple pucembinatorial
proof of its result. Using the same type of argument, we afgaio new simpler
formulas. We also prove an analogous formula in the doulaslsscalgebra and
use it to prove a conjecture of S. Matsumoto on the subleaeimg of orthog-
onal Weingarten function. Finally, we formulate a conjeetfor a continuous
interpolation between the two problems.

1. INTRODUCTION

1.1. Background. The Jucys-Murphy element§ are elements of the symmet-
ric group algebréd[S,,], introduced separately by A. Jucys [Juc66, Juc74] and G.
Murphy [Mur81]. They play a quite important role in repretsdion theory be-
cause they act diagonally on the Young basis of any irretiicépresentatiofy:
the eigenvalue of/; on an element of this basis T is a standard tableau of
shape)) is simply given by the content.¢. the difference between the index of
the column-index and the index of the row-index) of the bo{ afontainingi.

In fact, representation theory of symmetric can be consduentirely using this
property (see [OV96]). We also refer to papers of Bicne [Bleghd Okounkov
[Oko00] for nice applications of Jucys-Murphy elementssgraptotic representa-
tion theory.

A fundamental property, already observed by Jucys and Muiglthat elemen-
tary symmetric functions evaluated in thigs have a very nice expression (this
evaluation is well-defined because Jucys-Murphy elememtsnwute with each
other). More precisely, ik(c) denotes the number of cycles®@fthen

ek(Jl,...,Jn): Z g.

cESn
k(o)=n—k
As this is a central element in the group algebra, all symim&inctions evaluated
in Jucys-Murphy elements are also central. Therefore iatsinal to ask of their

class expansion. In other terms, given some symmetricimét, can we compute
1



2 VALENTIN FERAY
the coefficients:{ defined by:

F(J,...,Jn) =Y _a}Cy,
A-n
whereC, denotes the sum of all permutations of cycle-tyyeThis problem may
seem anecdotic, but it in fact appears in different domaimsathematics:

e When F' is a power sunpy, it is linked with mathematical physics via
vertex operators and Virasoro algebra (see [I.TO1]).

e When F' is a complete symmetric functioly,, the coefficients appearing
are exactly the coefficients in the asymptotic expansionnitary Wein-
garten functions. The latter is the elementary brick to cot@polynomial
integrals over the unitary group (sée [Novi10, 2J10]).

e The inverse problem (how can we write a given conjugacy aasss
a symmetric function in Jucys-Murphy element) is equivakenexpress
character values as a symmetric functions of the contene |dtter has
been studied in some papers [CGS04, Las08a] but never umrgpmbi-
natorics of Jucys-Murphy elements.

1.2. Previous and new results.As mentioned in the paragraph above, the class
expansion of elementary functions in Jucys-Murphy elesi@&nvery simple and
was first established by A. Jucys. The next result of this kiad obtained by A.
Lascoux and J.-Y. Thibon via an algebraic method: they dieecbefficients of the
class expansion of power sums in Jucys-Murphy elementsras soefficients of

an explicit seried [LTO1].

Then S. Matsumoto and J. Novak [MNO9] computed the coeffisiehthe per-
mutations of maximal absolute length in any monomial furcin Jucys-Murphy
elements. Their proof is purely combinatorial but does eeins to be extendable
to all coefficients. As the monomial form a linear basis of syetric functions,
one can deduce from their result a formula for the top coeffitsi for any symmet-
ric function, in particular for complete functions (seece[Bur04,/CMQ09]). To be
comprehensive, let us add that the authors also obtain efficients of cycles in
complete symmetric functions using character theory ((tineithod works only for
cycles, but gives all coefficients, not only the top one).

Recently, M. Lassalle [Las10] gave a unified method to obsaime induction
relations for the coefficients of the class expansion ofrsgvamilies of symmetric
functions in Jucys-Murphy elements. These induction i@tatallow to compute
any coefficient quite quickly and he shows that we can recosirg them the re-
sults of Jucys, Lascoux and Thibon and also the top compaiemplete sym-
metric functions. So the work of Lassalle unifies most of #uits obtained until
now on the subject. To do that, he uses an involved algebradhimery: he begins
by translate the problem in terms of shifted symmetric fiomcand then introduces
some relevant differential operator which increases tlgeegeof functions.

In this paper, we give a simple combinatorial proof of hisuctibn formulas.
Our method of proof can also be adapted to find other formdlas.latter are new
and simpler than the existing ones. An example of applinaisothe following:
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using Matsumoto’s and Novak’s result on cycles, we are ableompute more
coefficients.

1.3. Generalizations. An analogous problem can be considered in the so-called
double class algebra. All the definitions will be given intgme3. If we look at
complete symmetric functions in this context, there sdikhirelation with integrals
over group of matrices, but the complex unitary group shagdeplaced by the
real orthogonal group (see [2J10, Mat10]).

The only previous work on this question is due to S. Matsunfigiat10d], who
has computed the coefficients of permutations of maximajtlerin monomial
symmetric functions (hence obtaining an analog of its tesith Jonathan No-
vak). Our new induction formula can also be extended quitlyeto this case.
This allows us to prove a conjecture of S. Matsumoto aboustibeading term of
orthogonal Weingarten function [Mat10, Conjecture 9.4].

In fact, one can even define a generalization of the probleim ayparametes
which interpolates between the expansion of symmetrictiongn JM elements
(which corresponds ta. = 1) and the analog in double class algebra (which cor-
responds tax = 2). We recall this construction in sectiéh 4. A very intenagti
point in Lassalle’s method to obtain induction formulashattit can be extended
almost without changing anything to this generalizatioadl0, section 11]. Un-
fortunately, we are not able yet to extend our work to thissgalsetting. However,
computer exploration seems to indicate that some of thdtsestill old in the gen-
eral case and we present a conjecture in this sense in sdction

1.4. Organization of the paper. In section 2, we present our results in the sym-
metric group algebra.
Then, in sectiofQl3, we look at the analogous problem in théléazlass algebra.
Finally, in sectior’#, we present a conjecture for the camtirs deformation
between these two models.

2. INDUCTION RELATIONS

2.1. Definitions and notations. Let us denote bys,, the symmetric group of size
n and byZ[S,] its group algebra over the integer ring.

Definition2.1 The Jucys-Murphy elements (for 1 < ¢ < n) are defined by:
Ji=Q1)+@2)+---+(—14) €Z[S,]
Note that/; = 0 but we include it in our formulas for esthetic reasons.

Proposition 2.2. e Jucys-Murphy elements commute with each other.
e If F'is a symmetric functior#'(.J1, Ja, . . ., J,,) belongs to the center of the
symmetric group algebr& (Z[S,,)).

We recall that the cycle-type of a permutationdp is by definition the non-
increasing sequence of the lengths of its cycle. This is sager partition, which
determines the conjugacy class of the permutatios,in Hence a basis of the
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center of the group algebt&(Z[S,,]) is given by the sums of the conjugacy classes,
that is

Cy = Z o forAkFn

g€Sn
o has cycle-type\

Therefore, there exists some integer numh§rsuch that:
,]17 ey Z ay C)\
An

We will here focus on the case whefeéis a complete symmetric function (so
aﬁ’@ will be denoteoh’;) because of the link with some integrals over unitary groups
mentioned in introduction. All the results of this sectiauld be easily adapted to
elementary and power-sum symmetric functions. Unforelgatve are not able to
deal with a linear basis of symmetric functions.

Example2.3. As an illustration, let us look at the cake= 2 andn = 3:
ho(J1, o, J5) = (12)* 4 ((13) +(23))" + (12) - (13) + (23))

—1d+21d+(123)+ (132) +(123) + (132)
:3613 +2Cg

Note that the coefficients of a permutation at the end of tmeprdation does de-
pend only on its cycle-type, althoudh 2 and3 play different roles in the compu-
tation.

In other terms, we have computed the following coefficients:

a?lg) =3, a%z =0, a??)) =2.
2.2. A combinatorial proof of Lassalle’s formula.

Theorem 2.4(Lassalle, [[Las1i0]) The coefficientsa’; are determined by the fol-
lowing inductions formulas. For any partition, one has:

(k—1)
1) pUl - a )+ sz Co\(pi)U(pi+1)
(k)
@ Z Pi%o\(pi)u(pi+1) — ; pipj@ p\(p“pj U(pit+p;+1)
) 1#£]

+> D, a p\(m U(r,s)’

7 r+s=p;+1
r,s>1

We refer to[[Las10, end of page 13] for an explanation of wigséhequations
characterize the numbet§ together with initial conditions:

) _ J 1if phasonly parts equal tg
%"= 0 else;

a](fl) = 6k70.
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Proof. We start from the obvious induction relation:
(3 hi(Ji, -y Ing1) = h(J, - In) + Jnrhie—1(J1, -, Jng)
and we apply to it the following operator:

ZSun] — Z[S, |
E: PN o/{l,...,n}ifo(n+1)=n+1;
0 else.

We look at the coefficient of a permutatienof type p (denoted[o]...) in both
sides:
0/]hk(J1, ey Jn+1) = agﬁ)l,

[
o]k (1, Jn) = alP),

> (G n+ 1o hor (- ga)

1<n

- sz p\(pz U(pi+1)?

[0]E (hy(J1, - ., Jn1))
OB (hi( 1, - )
[O]E(Jnt1hik—1(J1s -, Ing1))

whereo’ is the image obr by the canonical embedding &f, into S, ; (we add
n + 1 as fixed point). The third equality comes from the fact tHaf,helongs to a
cycle ofo of lengthp; then(j n + 1)o” has cycle-type \ (p;) U (p; + 1).

Using equation[(3), this finishes the proof of Lassalle’s firduction relation.

The second equality is obtained the same way except that wWiplyequation
(3) by J,,+1 before applying the operaté. One obtains:
@) E(Jnpilhi(Jr, ..o Jns1) = E(Jnprha(J1s .., Jn))
+ E(Jn+1hk 1(']17 EE) Jn+1))
O

The coefficient ofo’ in the left-hand side has already been computed and is

equal to
Zp,a(k)
— PP\ (pi)U(pit1)

Note that all permutations in hy(.J1, ..., J,) fixesn 4+ 1. Thusn + 1 can not be
a fixed point of(j n + 1)7 and

E(Jns1hi(J1s-..,Jn)) =0
For the last term, we write:
5)
E(J2 qhg—1(J1, ...\ Jns1)) = Z [(j1 n4+1)-(jo n+1)-0'The—1(J1, - . -, Tny1)
Jj1,J2<n

We split the sum in two parts, depend on whetleand j, are in the same cycle
of ¢ or not:
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e Suppose that they are in the same cycle of lepgthe. jo = ¢ (j1) with
1 < m < p; (eventuallyj; = jo, which corresponds tev = p;). Then
(jin+ 1) (j2n+1) -0 has the same cycles asexcept for the one
containingj; andjs, as well as two other cycles:

(j1,0(1),--. 0™ (G1)) and (jz, o (j2), ... o (G2), m + 1).

Thus it has cycle type \ (p;) U (m, p; —m + 1).

e If j; andjs are not in the same cycle of then(j1 n+1)- (jon+1) -0’
has the same cycles asxcept for the ones containing respectivghand
j2, as well as one new cycle:

(jl?a(j1)7' * 'O-pll_l(]l)7n —"_ 17]17U(j2)7' * 'O-pl2_1(]2))7

wherep;, andp;, are length of the cycles ef containingj; andj,. Thus
(jin+1)-(jan+1)- 0 hascycle-type \ (pi,, pi,) U (pi, + piy + 1).
Putting everything together, we obtain the two terms in igletrhand side of (2).

Remark2.5. This method is in fact closer to Lassalle’s one that it seetfgst
sight. More details are given in appendix.

2.3. New relations. Let us come back to equatidn (3). Instead of applyihgne
can directly look at the coefficient of a given permutatonf typep - n + 1 in
both sides of[(3). In the left-hand side, by definition:

[J]hk(le SR Jn-i-l) = aI;‘

In the right-hand side, this coefficient depends on the leofthe cycle containing
n+ 1. This length is a parnt;, of partition p. The coefficients of in the two terms
in the right-hand side of(3) are given by:

[U]hk(']b ey JTL) = 5[)1'071&];\1;
(o] Jn+1he-1(J1s ooy Tnt1) = Z[U(j n+ Dlhg—1(J1, ..., Jnt1)

i<n
Z pia p\ pz,mo JU(pitpig) * Z p\(mo
1<i<{(p) r+s= Pig
i7#iQ r,s>1

The second equation has been obtained as above by lookiagssp at the cycle-
type ofo(j n+1). The latter depends on whetheandn + 1 are in the same cycle
of o or not. We do not give all the details. Finally one obtain,

o
ap 5%,1%\14‘ Z pia p\(p“pzo) (pitpig) T Z P\(Pm) ()

1<:i<l(p) r4s= Pig
i#ig rs>1
As one can choose any permutatiomf type p to compute the coefficientfa’;,
we do not have any condition ap in the previous equation (we use the fact that
although we know that(.Jy, ..., J,+1) is centralyn + 1 plays a particular role in
the definition). Therefore, we have proved:
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Theorem 2.6. For any partitionp and positive integers, m one has:

k _
(6) Qpum) = mla + Z p’ p\ DU(pi+m) T Z pUTs

1<i<{(p r+s=m
r,s>1

Note that the casen = 1 corresponds to Lassalle’s first equatioh (1). His
second equatiori(2) can be easily recovered ffdm (6) byrioembination, but
the converse is not true.

2.4. Taking care of the dependance inn. As mentioned by Lassalle [Las10,
paragraph 2.7], the coeﬁ|C|emi§U1n »» Seen as functions of, have a very nice

structure. More precisely defmﬁ where\ is a partition, by induction by the
formula:

k " k mi(p)
) b= (™).
=0
wherem;(p) is the number of parts equal foin p and p is obtained fromp by
erasing its parts equal o The interesting fact now is thaﬁ is equal tad as soon
as|p| — £(p) + mi(p) is bigger thank, while, for a givenk, one has infinitely
many non-zer@’; (see an explanation below). As a consequence, coefficiemts

convenient to comute simulteneously the class expansiép(fi, .. ., J,,) for all
positive integers: (the integerk being fixed): see Example 2.8 at the end of this
paragraph.

Using equation[{7), one can translate Theoremk 2.4 amd t Geakations over
thec's, but it is rather technical (se€le [Las10, section 12]). \\dqr here to explain
the combinatorial meaning of the coefficients and derive directly relations over
thec’s using this interpretation.

The good tool for that are partial permutations introducgdvbnov and Kerov
in [IK99]. Let B, be the followingZ-algebra:

e as aZ-module, B, is freely generated by partial permutatiors. pairs
(d, o) whered is a finite set of positive integers anda permutation ofl.
¢ the product on the basis elements is given by:

(d1,01) - (d2,02) = (d1 Udz, 01 - 02),
whered; (resp.ds) is the canonical continuation ef; (resp.os) to d; Uds
(i.e. we add fixed points, we will use this notation throughout thpqy).
The infinite symmetric group, acts naturally o3, if 7 belong toS., that is
7 is a permutation oN* with finite support, we define
Te(d, o) = (r(d), o7 1).

The invariants by the action &, form a subalgebrad,, of B... A basis of this
subalgebra is

(PCy) wherePC, = Z (d, o).

dCN*, |d|=|X]
o€Sy, cycletypgo)=X

A partition
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The nice property of this construction is that there existsphismsy,, from B,
to every symmetric group algeb¥4.S,,] defined by:

cgifdc{1,...,n};
n(d, 0) :{ 0 else. { }

These morphisms restrict to morphistds, — Z(Z[S,]). The image of vectors
of the basis is given by:

It has been observed in_[F&r09] that if we define natural agsalof Jucys-
Murphy elements B, by

Xi=> ({5 i}, (1) fori>1,
j<i
e they still commute with each other;

e the evaluationF' (X, Xs, X3, ... ) of any symmetric functiorF’ in partial
Jucys-Murphy elements lies A

Therefore there exist coefficient§ such that

hk(Xl,XQ,Xg, .. ) = ZC’;\'PC)\
A

Applying ¢,,, we see that this definition caf; is coherent with the previous one
(equation[(¥7)). Note that with this construction, it is alow that the’s are non-
negative integers (fact which was observed numerically &gshlle, private com-
munication). The fact thd; is equal ta) as soon afp| — 4(p) + mi(p) is bigger
thank is also natural because

deg(d, o) = |d| — # cycles ofo + # fixed points ofo

defines a filtration of3.,, for which eachX; is of degreel. We can also obtain
induction relations on the's like we did with thea’s:

Theorem 2.7. For any partition, and positive integers: and k, one has

uUl Z’“’ u\(m U(i+1)°

k—1.
S = Z”Z ) +2) T oy 2600 TG

k—1 :
HUm Zﬂz u\(uz U(ui+m) T Z CuU(r,s) T 2€,0(m—1) if m > 3.

r4+s=m
r,s>1

Proof. Letn + 1 = |u| + m and fix a partial permutatiofd, o) with:

ed={1,...,n+1};
e o has cycle-typg:, U (m) andn + 1 is in a cycle of lengthn.
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Let us look at the coeﬁicierttfwm of (d,o) in hy(Xy, Xo,...). Asn + 1is the
biggest element i, it implies that every monomials in th&;'s contributing to
the coefficient of(d, o) contains naX; with i > n + 1 and contains at least one
Xna1. Thus:

; = [(dv U)]hk(le Xo, ... ) = [(dv U)]Xn-l-lhk—l(Xh ce >Xn+1)§

CuUm

=[do)]) > > > @ ulin+1}Gn+ DA,
j<n+1 v (d’,lr)t, \g’\)z\u\
cycle-typdr)=v

We have already discussed in the previous paragraph thélgosgcle-types of
7 = (j n+ 1)o. The only new thing we have to take care of is the fact that if
or/andn + 1 are fixed points fofr, they may not belong td’. This explains the
two last terms in the second equation and the last one in ittkguation. Details
are left to the reader. O

Example2.8. Here are the non-zero valuesaﬁffor small values ok (k < 3). Itis
immediate that%z) is equal tol, while all otherc/, are0. Then Theoreri 217 allows
to compute:

Using equation{[7), we can compute all coefficierﬁéor k = 2,3 and we find the
following class expansion (true for amy> 1):

n
hQ(Jl, RN Jn) = 5n23 26(3717L73) + (5n24 6(272’1n74) + <2>C1n;

hs(Ji,...,Jn) = On>4 50(4717#4) + 0n>5 26(3’2717#5) + 0n>6 6(272’2717#6)

b () ()

This type of result could also be obtained with Theofem 26 (hitial conditions
for the a’s are the foIIowing:a%Q’ln,Q) = 1 for anyn > 2 and all othera}b are

equal to0), but the computation are a little harder (it involves diterintegrals of
polynomials).
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2.5. Generating series for some coefficientsS. Matsumoto and J. Novak com-
puted, using character theory, the following generatimgfion [MNO9, Theorem
6.7].

Theorem 2.9(Matsumoto, Novak, 2009)For any integem > 2, one has:

Caty_q 2" 1
k _k _ n—1
® Zk:%)Z T2 - 2222) .. (1 (n— 1)222)’

whereCat,,_; = 1 (

n

2(n—1)
n—1

) is the usual Catalan number.

As a’fn) = ¢k |, the same result is true on this. Unfortunately, we are not able

to find a proof of their formulavia Theoren{ 2.7, but we can use it to derive new
results of the same kind.

For instance, withu = (n — 1) andm = 1, our induction relation writes:

Z cl(“n_l’l)zk =z Z(n — 1)0?7:)12k_1
k k

(n — 1) Caty—q 2"
(1—1222)(1 —2222)...(1 — (n—1)222)

In terms ofa’s, this result implies:

D =) (len—l,n T C’fn—l)) 2
k k

(n —1)Catyp_1 2" + (1 — (n —1)222) Cat,,_o 2" 2
(1—-1222)(1—2222)...(1— (n—1)22?)

This expression is simpler than the one obtained by Matsoirsued Novak for the
same quantity [MNO9, Proposition 6.9] and their equivaéeiscnot obvious at all.

9) =

If we want to go further and compute other generating seades,has to solve
linear systems. For instance, denotifig= ", cﬁzk, Theoren 2.7 gives:

Floo11y=2((n—2)F_11)+ Fn_22):
Fin-22) = 2 ((n = 2)Fo) + Fln-21.1) + Fln-21) + Fin-2)) -
After resolution, one has:
2% (n(n — 2)Fny + 2(n = 2)Fln_1) + Flu_g))
1 — 22 ’
z ((n - 2)F(n) + Fln—21) + F(n_2)) +2%(n — 2)F(n_171)
1— 22

Using results above, one can deduce an explicit generatiigssor the:'s which
can be easily transformed into series for tfe

F(n_27171) =

Fln_22) =
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3. ANALOGUES IN THE DOUBLECLASS ALGEBRA

In this section, we consider a slightly different problemieh happens to be
the analog of the one of the previous section. It was firstidensd recently by S.
Matsumoto[[Mat10] in connection with integrals over ortbagl groups.

3.1. Double class algebra.The results of this section are quite classical. A good
survey, with a more representation-theoretical point efwican be found in I.G.
Macdonald's book[Mac85, Chapter 7].

Let us consider the symmetric group of even sizg, whose elements are seen
as permutations of1,1,...,n,n}. It contains the hyperoctahedral group which

is the subgroup formed by permutatiomss Sz, such thatr (i) = o(i) (by con-
vention,i = i). We are interested in the double coséis\S,/H,, i.e. the

equivalence classes for the relation:
oc=rifandonlyif3h,h € H, s.t.c = hrh'.
As conjugacy classes in the symmetric group algebra candracterized easily
using cycle-types, one can characterize these double dassewia coset-types.
Definition3.1 Let o be a permutation ofs,,. Consider the following grapt¥,:

e its 2n vertices are labelled b1, 1,...,n,n};
e we put a solid edge betweerandi and a dashed one betweefi) and
o(7) for eachi.
Forgetting the types of the edges, we obtain a graph with wetiices of valence
2. Thus, it is a collection of cycles. Moreover, due to the hication of edges, it
is easy to see that all these cycles have an even length.
We call coset-type of the partitionu such that the lengths of the cycles@§

are equal t@u1, 2uso, . . .

Example3.2 Letn = 4 ando be the following permutation:
13, 1—1,24,2+—3,3—2,3—2 44, 4 1.
The corresponding graph,, is drawn on figuréll.

- -~ -~

]‘- 2\ ‘3 4\
1.2 3---4.

FIGURE 1. Example of grapld7,,

This graph is the disjoint union of one cycle of lengtki, 3, 3, 4,4, 1) and one
cycle of length2 (2, 2). Thus the coset-type of is the integer partitior3, 1).
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Proposition 3.3. [Mac98, section 7.1Jwo permutations are in the same double
class if and only if their coset-types are the same.

If 1 is a partition ofn, we denote
¢ = > o eczSu]

o€Soy
coset-typéo ) =p

Itis immediate that the elemer(téz), wheng runs over partitions of span linearly
a subalgebraZ(® of Z[S,,]. Equivalently, one can defing® as the algebra of
functions onSsy,,, invariant by left and right multiplication by an element &t,,
endowed with the convolution product

frglo) =" f(m)g(m).

T1T2=0

One can prove using representation thepry [Mac95, sectijrihvat this algebra is
commutative (in other term$S,,,, H,,) is a Gelfand pair).

3.2. Odd Jucys-Murphy elements. In this section we will look at symmetric
functions in odd-indexed Jucys-Murphy elementsSiy. Rewriting as permuta-
tions on the sef1,1,2,2,...,n,7} (ordered byl <1 <2 <2 < --- <n < n),
these elements are:
2 .
J}) = j{: (J i)

j=1,1,...,i—1,i—1
They were first considered by S. Matsumoto in the peaper [Matiifere he proved
some analogs of results of Jucys. To state them, we need teedb following

element inSy,,:
1
Pp = —— h.
AP

Then the following result holds.
Proposition 3.4(Matsumoto, 2010)If F'is a symmetric function, then:

tnp=FID, T, = pF(IPD, T2
Moreoverz,, r belongs to the algebra (?).
Sketch of prooflt is easy to prove by induction that

ek(J1(2)7 SRR Jr(Lz))pn = pnek(']1(2)> R J7(L2)) = Z CEL2)
el iy

The result follows for allF" by multiplication and linear combination. O

As in sectiori R, we may look at the class expansion,gf, i.e. the coefficients
bl such that:

FUIP, .., 0P)p, = o,
ukEn
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As seen in the sketch of proof for the proposition abovebthare easy to compute
in the case of elementary functions.

In the following paragraph, we will establish some induetielations for thé’s
in the case of complete symmetric functions . We focus ondase (and thus use
the short notatiom® = b/*) because these coefficients appear in the computation
of the asymptotic expansion of some integrals over the gahal groupl[[Mat1D,
Theorem 7.3].

3.3. A simple induction relation. In this paragraph, using the same method as in
subsection 213, we prove the following induction formulatfeeb’s.

Theorem 3.5. For any partitionp and positive integers, m one has:

k k—1 k—1
(10) b5y = Om w4a }: P ooy pﬁf+§: st +(m—1)bE"

1<’L<Z(p 7“7‘+;>1n

Proof. As before, the starting point of our proof is an inductioratiin on com-
plete symmetric functions:
a1) h(J2,... J®

n

Jﬁzl) = hk(‘]l(z)v SR Jr(L2))
+ I g (T2 T2, T2,

n

Multiplying both sides by,, 11, one has:
(12 T2 I s = hi(IP TP Paves
Jr(lehk l(J(2)7 B J(2)7 Jy(jzl)pn—i-lv

n
wherep,\,41 =1+ (n+1n+1)+3 11m
fulfills p,+1 = py, - pn\n+1)
Let us look first at the case = 1. We choose a permutatienc S,,, of coset-
type 1 and we denote’ its image by the canonical embeddisg, < Son12.
Then

[0 ]h (J(2)7---7J(2)7Jr(321)pn+1 = bl;ul

0N (T - T - pansr = oI, TP )p, = BE.

Indeedhk(J(z), A J,(f))pn lies in the algebr&[Ss,| C Z[Sa2,+2] and hence is a

linear combination of permutations fixing+ 1 andn + 1. For such permutations

7, neitherr(n + 1 n+1) nor7(n + 1 i)(n + 1 7) can be equal to (these two

permutations do not fix + 1 andn + 1). This explains the second equality above.
We still have to compute:

a(n=+14)(n+14) (it obviously

12) (0172 hea (I TP T8 paia

= ¥ [<n+1i)a’]hk_wfz’,...,Jf),Jfﬁl)an
i=1,1,...,n,n

_ Z bk 1
- coset-typé¢(n+1 i)o’)"

i=1,1,....n,n
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Let us look at the coset-type ¢f + 1 7)o’. Denote byd; (resp. d,+1) the other
extremity of the dashed edge of extremiffyesp.n+1) in G, (see definition 3]1).
Then the grapld-,, 1 ;),» has exactly the same edges(as, except for(s, d;) and
(n+ 1,dn+1) which are replaced by, d,,+1) and(n + 1,d;).

As (n+1,n + 1) is aloop of lengti2 in G/, if we assume thatwas in a loop
of size2p;, then these two loops are replaced by a loop of 8iget-2in G, )0
(it is a particular case of the phenomena drawn on Figure 2).

Y SS
J/ ' f—— / e
’ \ | | 7 | |
/I \ | I /I I
n+1 X : n+ |
1 1 % 1
1 1 \\ 1

______ n+1 v

FIGURE 2. G, andG ;41 ), in the first case

Therefore(n + 1 7)o’ has coset-type\p; U (p; + 1). Finally

(2 (2) (2) _ k—
[J/]Jn+1hk—1(‘]1 P Jr(z2)7 Jn+1)pn+1 =2 Z pjbp\(i)j)u(/’j"‘l)
1<5<4(p)

and this ends the proof of the case= 1.

Let us consider now the case > 1. We choose a permutation € .S, of
coset-typep U (m) such thatr + 1 is in a loop of siz&m in G,. Asm > 1, this
implies that ther—1(n + 1) # o~ (n + 1) and consequently:

ol (J2 . TP )iy =0
Hence one has
Oy = o1, I I8 = (0] 02 hea (I T2 T b,

pU(m n
and we have to look at the possible coset type@:ef 1 i)o (equation[(1R) is still
true).

As before, the graplt:(,, 1 ), is obtained fromG, by replacing edgesi, d;)
and (n + 1,dp+1) by (i,dn4+1) and(n + 1,d;). But here, we have to consider
different cases:

o If i lies in G, in a loop of size2p; different from the loop containing
n + 1, then these two loops @, are replaced i, 1, ;), by a loop of
size2(p; + m) (see figuréR).

In this case(n + 1 7)o has coset-typp\p; U (p; +m).

e If i liesin G, in the same loop as + 1 and if the distance between these
two nodes is odd (ascan not be equal ta + 1, there ism — 1 possible
values fori in this case), then they still lie in the same loop(gf, ;1 4, of
size2m.(see figur€13).

In this case(n + 1 7)o has the same coset-typeathat isp U (m).
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n+1 n+1 n+1 n+1
—_—— A
’
’ \\ , \
’ N v \
7’ N ’ \
\
N/
\/
— n
7\
7
N , AN /
N ’ N /
S , S ’
N , S
N— ]

FIGURE 3. G, andG,41 4), in the second case

e If i lies in G, in the same loop as + 1 and if the distance between this
two nodes (in an arbitrary direction) is equal2io(1 < r < m — 1), then
their loop inG, is replaced inG, ;), by two loops of lengtier and
2(m — r).(see figuré}).

In this case(n + 1 7)o has coset-type U (r,m — r).

n+1 n+1 n+ n+1
—_—
’ S ’ ’
’ S ’ ’
4 N 4 ’
, N , P
,
, ,
’ ’
, ,
— , ’
, ,
’ ,
’

A ’ ’ ’
S ’ 7 ’
N ’ 4 ’

S ’ ’ ’
N—— —

FIGURE4. G, andG(,41 ), in the third case

Finally
0172 hea (I TP TP

n
_ k-1 k—1 ypk—1
=2 > pbypanem T D Ypons T (m = 1bp
1<i<l(p) e
and this ends the proof of the theorem. O
Remark3.6. As in sectiorl 2, if we define coefficiemi% as solutions of the sparse
triangular system

k k
(13) bp = E : dpu1i< i >’
1=0
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then, for a giverk, only finitely manyd’; are non-zero. But, unfortunately, we have
no combinatorial interpretation in this case to obtainatlgeinduction relation on
d. This raises the question of the existence of a partial doabset algebra, out of
the scope of this article.

A result similar to Theoreri 3.5 could be obtained for powen symmetric
functions.

3.4. Subleading term. The induction relation proved in the previous paragraph is
a good tool to study the leading and subleading terrrtsc(ﬂ'l(z), R Jr(f))pn, that

is the coefﬁcient:b’; with |p| — ¢(p) = k or k — 1. Indeed, an immediate induction
shows that if the degree conditigp| — ¢(p) < k is not satisfied, theh’; =0. We

can also recover the following result proved by S. Matsunjbtat1d, Theorem
5.4].

Proposition 3.7. If p is a partition andk an integer such thafp| — ¢(p) = k, then

bh =] Catp,—1-

But our induction allows us to go further and to compute theleading term
(case|p| — ¢(p) = k — 1), proving this way a conjecture of S. Matsumato [Mat10,
Conjecture 9.4] corresponding to the case wheisea hook.

Before stating and proving our result (in paragraph 3.4v2) need a few defi-
nitions and basic lemmas on the total area of Dyck paths gpaph 3.4.11).

3.4.1. Area of Dyck paths.

Definition3.8 If I = (i1,...,14,) is a weak composition.g. a sequence of non-
negative integers), let us defifig as the set of Dyck paths of length= i1 +- - -+
i, whose height afteiy, i1 + 4o, ...steps is zero (such a path is the concatenation
of Dyck paths of lengthsg,, is,...).

If C'is a subset of Dyck paths of a given length, denot@pythe sum over the
pathsc in C of the area undet. In the cas&” = P, we shorten the notation and
denote(; = Ap,.

For a weak compositiorh of length1, the setP; is the set of all Dyck paths of
lengthsk. The are&!,, in this case has a closed form (see [MSV96]), nhamely

2k +1
_ 4k _
no o (%)

The general case can be deduced easily, thanks to the fofjdvivial lemma:

Lemma 3.9. Let C; and C, be respectively subsets of the set of Dyck paths of
length2m and2n. DefineC ~ C; x (5 the set of Dyck paths of leng#tm + n)
which are the concatenation of a pathd and a path inCs. Then

Qo =Ac, - |Ca] + [C1] - A, .

With an immediate induction, we obtain, the following cdaoy.



HOMOGENEOUS FUNCTIONS IN JUCYS-MURPHY ELEMENTS 17

Corollary 3.10. For any weak compositioh of lengthr, one has:

A = Zr:Qlij H Catik .

=l k#j

One will also need the following induction relation in thexhparagraph.

Lemma 3.11. If m is a positive integers, one has:

U1 = (m — 1) Caty_1+ » (A1 Caty_y +As_; Cat,_1).

r4+s=m
r,s>1

Proof. This is a consequence of the usual first return decomposifibyck paths.
Indeed, letc be a Dyck path of lengtB(m — 1). We denote2r the z-coordinate
of the first point where the path touches thaxis ands = m — r. Thenc is the
concatenation of one climbing step, a Dyck pattof length2(r — 1), a down step
and a Dyck patfa; of length2(s — 1) and this decomposition is of course bijective.

G o G

area of ¢

area: 2r-1

area of ¢,

FIGURE 5. First-passage decomposition of a Dyck path

The area undet is the sum of the areas undgrandcs, plus2r — 1 (see figure
[B). Using the lemma above,

Q[m—l = Z [m¢_1 Cats_1 +Q[s_1 Catr_l —|—(27‘ — 1) Cats_l Cat¢_1 ] .

r4+s=m
r,s>1

The last part of the sum may be symmetrizea snds:

1
Z (2r — 1) Cats_q Cat,—1 = Z 5(27" —1+42s—1)Cats_q Cat,_q
r4+s=m r4+s=m
r,s>1 r,s>1
=(m-—1) Z Cats—y Cat,—1 = (m — 1) Caty,—1,
r4+s=m

r,s>1

which ends the proof of the lemma. d

3.4.2. Proof of a conjecture of Matsumoto.
Theorem 3.12. Let . be a partition andk = |u| — £(u) + 1. Then

by = 1.
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Proof. We make a double induction, first on the sizef partition . and then on
its smallest partn.

Let us suppose that the theorem is true for all partitiondzaf smaller tham.

If w =/ U (1) is a partition ofn, with smallest part, then, using Theorefn 3.5,
one has:

by = by,
Indeed, the other term is equal to zero because of the degneiition. The theo-
rem is thus true fop by induction.

We now look at the case where= 1/ U (m) is a partition ofn with smallest
partm > 1 and suppose that the theorem is true for partitions wfith smallest
part smaller thamn. In this case, using the degree condition and the value of the
leading term, Theorein 3.5 becomes:

m—1 Hcatm_l—i- Z bf’;ulrs
r+s=m

r,s>1

By induction,

bhiir) = Lwiray-1 = Catr1 Cats ZQ‘ 1] [ Cati -
J#i

+ As_1 Cat,_q H Catug_l 42,1 Catg_q H Catug—l
7 )

Putting it in the previous equation, we obtain:

bl = Catyy—1 Zm, 1HCat/

J#i
+ ((m — 1) Catyy 1 +A,—1 Cat, 1 +A,—1 Cato 1) [ [ Catyr 4

Therefore, using Lemma 3111, one has:

Zﬂul_ln(}at“]_l = O

JFi

S. Matsumoto established a deep connection between trﬁa:'&mrfsbﬁ and the
asymptotic expansion of orthogonal Weingarten functidviatllO, Theorem 7.3].
In particular, Theorerin 3.12 gives the subleading term ofespratrix integrals over
orthogonal group when the dimension of the group goes toityfin

4. TOWARDS A CONTINUOUS DEFORMATION?

The questions studied in sectidds 2 ahd 3 may seem quiteatiffat first sight
but there exists a continuous deformation from one to theroth

We denote by, the set of all Young diagrams (or partition) of size For any
a > 0, we consider two families of functions gw,.
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e First, we calla-content of a box of the Young diagramthe difference

between times its column index and its row index.fllfga) stands for the
multiset of thea-contents of\, one can look at the evaluation of complete
symmetric functionshk(A(f)).

e Second, we consider Jack polynomials, which is the basiyrohsetric
function ring indexed by partitions and depending of a pai@m (they
are deformations of Schur functions). The expansion of patknomials
on the power sum basis

L =3 e,
w

defines functions-)ff”)()\) (we use the same normalization and notation as
in [Mac95, Chapter 6] for Jack polynomials).

The functions@,(f”) spans the algeerr(f‘) of functions over),, because Jack
polynomials form a basis of symmetric functions. Therefone has coefficients

al’'® such that:
=) ;e
m

For « = 1, using the action of Jucys-Murphy element on the Young basis

[Juc66] and the discrete Fourrier transformSyf one can see tha () afj.
For o = 2, using the identification between Jack polynomials for #pe-
cial value of the parameter and zonal polynomials for thefa®el pair(Ss,,, H,,)

[Mac95, Chapter 7], as well as the spherical expansiothﬂl(z), e Jr(?))pn
established by S. Matsumoto [Mail0, Theorem 4.1], onezﬁézs) = bﬁ.

It is natural to wonder if there are results similar to Theasg.6 and 315 in the
general setting. Computer exploration using Sagel[ leads to the following
conjecture:

Conjecture 4.1. The coefficienta’;’(o‘) fulfill the linear relation:

k—1,(c «
(14) afth, = Y eyt ran 0@ 4 (a—1) (pi — 1) ak T

r+s=p; rep
r,s>1

Unfortunately, as we do not have a combinatorial descripiche algebraZ,ga)
(and of a bigger algebra containing deformation of Jucysgily elements), we
are not able to prove it. With Lassalle’s algebraic approack can prove a gener-
alization of Theorerh 214 (see [Las10, Section 11]) whichésker as Conjecture
[4.7, but has been used in our numerical exploration.

A motivation for this conjecture is that it is a hint towardi® texistence of com-
binatorial constructions for other values of the parametéike the conjectures of
papers([GJ96, Las08b, Las09]).
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APPENDIXA. LINK WITH LASSALLE’'S METHOD

In this appendix, we establish a link between Lassalle’slaigic method and
our combinatorial one for his theorem. In fact, the mainedé#hce between them
is that we are using elements in the center of the symmetoigpgalgebra, while
Lassalle is making computation with their eigenvalue iaducible representations
of the symmetric group. Indeed, the left-hand side of egunat{4.6) and (4.7) in
[Las10] correspond to the normalized character value ofdftéhand sides of (4)
and [%). More generally, the following proposition holds:

Proposition A.1. For any partition A of n, non-negative intege¢ and element
x € Z(Z[Sn+1]), one has:

dim(A® i
(15) XME(f2)) = %r mc(i)zfcx ().
corner of A
Here, {* stands for the normalized (i.e. divided by the dimensian()\)) char-
acter value of the irreducible representation indexed\byvhile (%) is the Young
diagram obtained from\ by adding a box at the corner(the inner corners of\
are exactly the places where we can add a box to obtain a newgYdiagram of

sizen + 1) andc(i) is the (-)content of;.

The caser = 1d,,+; was proved by P. Biane [Bia®8, Proposition 3.3]. Our proof
follows roughly the same guideline.

Proof. As it is not central in this paper, we assume in this proof thatreader is
familiar with the representation theory of symmetric group

We consider the central idempotenf € C[S,]. Left multiplication by
is the projectionp : C[S,] — C]S,] on the isotypic component of type As
C[Sn] C C[S)+1], one can consider the subspa€e= m,C][S,+1] (note that the
fact thatr) is acting on the left is important becausgis not central inC[S;,+1]).
We will compute in two different ways the trace of the left tiplication byJ£+133
onk.

It is well known that, as a representation $f; x 5,1 (acting by left and
right multiplication), one has the isomorphism:

ClSni1]~ €D Va®Va.
AFn+1
Using the branching rule, we know that, as representatid), of

Vi = @ V.

AbFn st .
3 ist A=x(0)

Moreover, the restrictiorV, C V), of the left multiplication by.J, ., is an ho-

mothetic transformation of ration(:) where: is the inner corner of\ such that
A = A (this is a classical result on Jucys-Murphy elements, [S&9@Dfor
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example). Finally, as a representationgf x S, 1, one has:

Sn+1] EB Va®@ Vi
,\U =A
Therefore, E = m\Z[Sp+1] @ VA @ Vi
AA=AD

As mentioned before, the left multiplication h¥, . ; coincides on each compo-
nent with the multiplication by:(7), while the left multiplicationz coincides with
multiplication byx* (z) (indeed,V), ® V, is a subspace of the isotypic component
Va ® Vi, on which the central elementacts as an homothetic transformation).
Thus the trace of the left multiplication by, ;= on E is

3" dim(A) dim(A)e() A (@) = dim(n) Y dim(AD)e(@) " (@).
A’A:)\(i) i inner

corner ofA
To compute the same number in a second way, let us considfiitihveing de-
composition ofC[S,,+1] (by convention(n + 1 n+ 1) is the identity permutation):

n+1
Sn+1] EB(C in+1).

Of course, this implies (the sum is direct because each coemtn,C[S,](i n+1)
is contained irC[S,](i n + 1))

n+1
E = 7)\C[Sp+1] @7‘1’)\@ in+1).

But there exist somg; € C[S,,] such that:

1 = E(J @) + ) yilin+1).
=1

J,

The matrix of the left multiplication byE(.J, +1x) on E is block diagonal (with
respect to the decomposition above) and each diagonal blacksponds to the
left multiplication by elemenE(J¢_,z) onm,C[S,], that is an homothetic trans-
formation of ratiog*(E(J, ,z)) on a space of dimensiafim(\)2.

In addition, if we write the block decomposition of the mplitation byy; (i n+
1), the diagonal blocks are equal to zero. Indeed, for ang C[S,] and any
Jj<n+1,

yiintDproGnt)= 3 zknt1)(Gn+1)

k<n+1
=Sz + Y k) (kn+1) e @ mClSu(in+1).
k<n-+1 i<n+1

k#j i
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Finally, one has:
Trp(Jh2) = Trp(E(Jp02)) = (n+ 1) dim(A) (B} 42)).

The proposition follows by comparing the two expressiomsTig: (.J¢ ). O

As particular cases of this proposition, one obtains a neeff [Las10, The-
orem 4.1], but also of a recent result of J. Gallovich [Gallideorem 3].
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