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We exhibit a Probabilistic Cellular Automaton (PCA) on {0, 1} Z with a neighborhood of size 2 which is non-ergodic although it has a unique invariant measure. This answers by the negative an old open question on whether uniqueness of the invariant measure implies ergodicity for a PCA.

Introduction

Consider a random process on Σ Z d , where Σ is a finite set, with local interactions and a translation invariant dynamic. There are two natural instanciations, one with asynchronous updates of the sites of Z d , and one with synchronous updates. In the first case, the model is a continuous time Markov process, known as a (finite range) Interacting Particle System (IPS). In the second case, the model is a discrete time Markov chain known as a Probabilistic Cellular Automaton (PCA).

The relevance of IPS in statistical mechanics, as well as in many other contexts, is well established. Let us mention a couple of motivations for studying PCA. First, the investigation of fault-tolerant computational models was the motivation for the Russian school [START_REF] Toom | Discrete local Markov systems[END_REF][START_REF] Gács | Reliable cellular automata with self-organization[END_REF]. Second, PCA appear in combinatorial problems related to the enumeration of directed animals [START_REF] Borgne | Directed animals and gas models revisited[END_REF]. Third, in the context of the classification of (deterministic) cellular automata (Wolfram's program), robustness to random errors can be used as a discriminating criterion [START_REF] Fatès | Fully asynchronous behavior of double-quiescent elementary cellular automata[END_REF].

For IPS and PCA, the first question is to study the equilibrium behavior. An equilibrium is characterized by an invariant measure, that is a probability measure on the state space which is left invariant by the dynamic. An invariant measure µ is attractive if, for any initial condition, the state of the system converges (weakly) to µ as time goes on.

By a compactness argument, there always exists at least one invariant measure. Therefore, there are, a priori, three possible situations:

(1) several invariant measures;

(2) a unique invariant measure which is not attractive;

(3) a unique invariant measure which is attractive. In the last case, which corresponds to the nicest possible situation, the model is said to be ergodic. Roughly, an ergodic system completely forgets about its initial condition, while a non-ergodic one remembers something forever.

A classical foundational question is whether the intermediate case exists. In other words, does uniqueness of the invariant measure imply convergence to it ? For monotone systems, the intermediate case does not exist. But in general, the question is open.

For IPS, this question is Open Problem 4 in Chapter 1 of the classical textbook by Liggett [START_REF] Liggett | Interacting Particle Systems[END_REF]. In [START_REF] Mountford | A coupling of infinite particle systems[END_REF], Mountford proves that the intermediate case does not exist for 1dimensional IPS (that is d = 1). Quoting [START_REF] Mountford | A coupling of infinite particle systems[END_REF], "it seems more than plausible that the conclusion (...) is true in higher dimensions". However, the question remains unsettled. For PCA, the same question is Unsolved problem 3.4.3 in Toom [START_REF] Toom | Cellular automata with errors: problems for students of probability[END_REF], or Unsolved problem 5.7 in Toom [START_REF] Toom | Contours, convex sets, and cellular automata[END_REF].

In the present paper, we answer the question for PCA by exhibiting a 1-dimensional PCA, model A, corresponding to the intermediate case (Theorem 3.1). There is a unique invariant measure of the form (µ 0 + µ 1 )/2 and the PCA maps µ 0 to µ 1 and µ 1 to µ 0 . Starting from an initial measure µ 0 , the probability measure of the state of the system is µ 0 at even times and µ 1 at odd times. Therefore there is no convergence.

Observe that the situations for IPS and PCA are different: in 1-d, the intermediate case exists for PCA, and not for IPS. This is consistent with the situation for Markov processes on a finite state space: in discrete time, periodic phenomena may occur which result in the existence of the intermediate case; in continuous time, the intermediate case does not exist.

To prove the result for model A, we introduce two auxiliary PCA. The first one, model B, corresponds to independently moving particles annihilating when they meet (p + p → ∅). The second one, model C, corresponds to independently moving particles merging when they meet (p + p → p). We compute exactly the evolution of the onedimensional marginals for model C (Theorem 5.2) and models A and B (Prop. 6.1) starting from a "full" configuration. In particular, it proves that the speed of convergence to the invariant measure is of order 1/ √ n for the three models.

Continuous-time versions of models B and C have been studied in the IPS literature under the names of annihilating random walks and coalescing random walks, respectively, see [START_REF] Arratia | Limiting point processes for rescalings of coalescing and annihilating random walks on Z d[END_REF][START_REF] Bramson | Clustering and dispersion rates for some interacting particle systems on Z[END_REF][START_REF] Griffeath | Additive and cancellative interacting particle systems[END_REF]. The PCA and IPS versions of B and C share the same features: ergodicity with the invariant measure being the "all empty" Dirac measure, and with similar and subexponential speed of convergence. In the IPS setting, the asymptotic speed of convergence was given by Bramson & Griffeath [START_REF] Bramson | Clustering and dispersion rates for some interacting particle systems on Z[END_REF] for model C, and by Arratia [START_REF] Arratia | Limiting point processes for rescalings of coalescing and annihilating random walks on Z d[END_REF] for model B. Also, the coupling between the models B and C, that we use in Section 6, already appears in Griffeath [START_REF] Griffeath | Additive and cancellative interacting particle systems[END_REF]Ch. 3,Sec. 5] and in Arratia [START_REF] Arratia | Limiting point processes for rescalings of coalescing and annihilating random walks on Z d[END_REF] in the continuous-time setting. The novelty is that we get exact computations for the PCA models, as opposed to asymptotic results for the IPS ones. At last, let us mention that IPS versions of models B and C on a finite set of sites have also been studied, see for instance [START_REF] Ayyer | Exact results for an asymmetric annihilation process with open boundaries[END_REF] for B, [START_REF] Momčilović | On throughput in stochastic linear loss networks[END_REF] for C, and the references therein.

Probabilistic Cellular Automaton

Let Σ be a finite set. Denote by M(Σ) the set of probability measures on Σ. Let us equip X = Σ Z with the product topology. Denote by M(X) the set of probability measures on X for the Borelian σ-algebra. Weak convergence of (µ n ) n to µ is denoted by µ n w -→ µ. Let K be a finite subset of Z and consider x ∈ Σ K . The cylinder defined by x is the set *

x * = u ∈ Σ Z , ∀k ∈ K, u k = x k . Given k ∈ Z and V = (v 1 , . . . , v n ) ∈ Z n , we use the notation k + V for (k + v 1 , . . . , k + v n ), and the notation V (K) for {i | ∃k ∈ K, ∃v ∈ V, i = k + v}.
Let us introduce probabilistic cellular automata, restricting ourselves to 1-dimensional models.

Definition 2.1. The alphabet is a finite set Σ; the set of sites is Z. The set of configurations is X = Σ Z . Given V ∈ Z n , a transition function of neighborhood V is a function f : Σ V → M(Σ). The probabilistic cellular automaton (PCA) F of transition function f is the application M(X) → M(X), µ → µF defined on cylinders by: ∀K, ∀y ∈ Σ K ,

µF ( * y * ) = x∈Σ V (K) µ( * x * ) k∈K f ((x i ) i∈k+V )(y k ) .
Let us look at how F acts on a Dirac measure δ x . The value of all the sites are updated. The value x k of the k-th site is changed into the letter a ∈ Σ with probability f ((x i ) i∈k+V )(a), independently of the evolution of the other sites.

By specializing Definition 2.1, we recover two famous models:

• Assume that V = {0}, then all the sites behave independently. The restriction of the PCA to one site is a Markov chain evolving on Σ. Conversely, any Markov chain on a finite state space E can be realized as (a restriction of) a PCA on the alphabet E with neighborhood V = {0}. • Assume that the transition function f is such that: ∀u ∈ Σ V , f (u) is a Dirac probability measure. Then we may view f as a function Σ V → Σ. We obtain a (deterministic) cellular automaton.

A PCA F may be viewed as a Markov chain on the state space Σ Z . Thus we borrow the classical terminology of Markov chains.

Definition 2.2. An invariant (probability) measure of F is a probability measure µ ∈ M(X) such that µF = µ. The PCA F is ergodic if it has a unique invariant measure which is attractive, i.e. if (1) (i) ∃!µ ∈ M(X), µF = µ , (ii) ∀ν ∈ M(X), νF n w -→ µ .
Consider for a moment a Markov chain on a finite state space with transition matrix P . Let G(P ) be the graph of the matrix P . Classically, we have

(i) ⇐⇒ G(P ) has a unique terminal component (2) (i)+(ii) ⇐⇒ G(P ) has a unique terminal component which is aperiodic .
In particular, uniqueness of the invariant measure does not imply ergodicity. The simplest example of a non-ergodic Markov chain with a unique invariant measure is the following: the state space is X = {0, 1} and the transition matrix is

(3) P = 0 1 1 0 .
The unique invariant measure is µ = (δ 0 + δ 1 )/2 and for ν = δ 0 , we do not have νP n w -→ µ.

For PCA, it was an open question to know if (i) implies (ii) in [START_REF] Arratia | Limiting point processes for rescalings of coalescing and annihilating random walks on Z d[END_REF]. The purpose of the present paper is to settle the question by proposing a non-ergodic PCA with a unique invariant measure.

To get a hint of the difficulty, consider for instance a PCA F with neighborhood V = {0}. Recall that each site behaves independently and as a finite Markov chain P . As recalled in (2), P may satisfy either [¬(i)], [(i), ¬(ii)], or [(i), (ii)]. We show in Table 1 how this gets reflected on the PCA F .

Markov chain

P PCA F ¬(i) ¬(i) (i), ¬(ii) ¬(i) (i), (ii) (i), (ii)
Table 1. Finite Markov chain versus "neighborhood 0 PCA".

Let us justify the Table . If µ is an invariant measure of P , then the product measure µ ⊗Z is an invariant measure of F . Therefore, if P has several invariant measures, the same holds for F . Assume now that P is ergodic with unique invariant measure µ. One proves easily that µ ⊗Z is attractive, so F is ergodic. Let us concentrate now on the intermediate case for P . If P satisfies [(i), ¬(ii)] then G(P ) has a unique terminal component which is periodic, say of period 2. Let (µ 0 + µ 1 )/2 be the unique invariant measure of P . Then F has an infinite number of invariant measures. Indeed, consider any (u i ) i∈Z ∈ {0, 1} Z , and let (v i ) i∈Z be defined by v i = 1 -u i for all i. Then the probability measure (⊗ i∈Z µ u i + ⊗ i∈Z µ v i )/2 is clearly an invariant measure of F . 

a(00)(1) = 1/2, a(01)(1) = 0, a(10)(1) = 1, a(11)(1) = 1/2 .
A realization of the Markov chain is obtained as follows. Consider the function 

A : {0, 1} Z × U Z → {0, 1} Z (4) (x i ) i∈Z , (u i ) i∈Z → (x i ) i∈Z , 0 1 1 0 1 0 1 0 0 1 1 proba 1/2 0 proba 1/2 0 proba 1/2 1 proba 1/2
= 0 if x i-1 x i = 01 or (x i-1 x i , u i ) ∈ (00, →), (11, ↑) 1 if x i-1 x i = 10 or (x i-1 x i , u i ) ∈ (00, ↑), (11, →) . Let U = (U i,j ) (i,j
)∈Z×N be a doubly-indexed sequence of i.i.d. r.v.'s with common law

P (U i,j =↑) = P (U i,j =→) = 1/2, called the update process. Set U n = (U i,n ) i∈Z . Given a {0, 1} Z -valued r.v. X 0 = (X i,0 ) i∈Z , such that U ⊥ X 0 , define the sequence of {0, 1} Z -valued r.v.'s (X n ) n∈N as follows: X n+1 = A(X n , U n ). (5)
Then (X n ) n∈N is a realization of model A. The process U is used to randomly update the value of a site, when needed, with → being interpreted as "keep" and ↑ as "switch", and X i,n is the state of site i at time n, so that X n = (X i,n ) i∈Z denotes the state of the system at time n.

3.2. Invariant measure. Let x = (01) Z be the configuration defined by: ∀n ∈ Z, x 2n = 0, x 2n+1 = 1. The configuration (10) Z is defined similarly.

Theorem 3.1. The PCA F A has a unique invariant measure which is µ = (δ (01) Z + δ (10) Z )/2. The PCA is non-ergodic.

On configurations without 00 and 11, the PCA acts as the translation shift. Therefore µ = (δ (01) Z + δ (10) Z )/2 is an invariant measure. Assume that it is the unique one. Then µ is non-attractive, the situation being the same as for (3): consider ν = δ (01) Z , then νF n A = δ (01) Z if n is even, and νF n A = δ (10) Z if n is odd. The purpose of Sections 4 and 5 is to prove Theorem 3.1.

Two auxiliary models

We now define two new PCA, that we call respectively model B and model C. For both models, the alphabet is Σ = {•, •} and the set of sites is Z. Given a configuration u ∈ {•, •} Z , the following interpretation holds: if u i = •, the site i is "empty"; if u i = •, the site i contains a "particle". At a given time step, a particle decides (independently of the others and independently of the past) to remain at its site with probability 1/2, or to jump to the site on the right with probability 1/2. In model B, if two particles collide, then they annihilate. In model C, if two particles collide, they are merged into one particle. Let us define the models more formally. 

B : {•, •} Z × U Z → {•, •} Z (6) (y i ) i∈Z , (u i ) i∈Z → (ỹ i ) i∈Z , with U = {↑, →}, and ỹi = • if (y i-1 y i , u i-1 u i ) ∈ {(••, → U ), (••, U ↑), (••, ↑↑), (••, →→)} • otherwise .
Let U be an update process, defined as in Section 3.

1. Given a {•, •} Z -valued r.v. Y 0 , such that U ⊥ Y 0 , define the sequence of {•, •} Z -valued r.v.'s (Y n ) n∈N as follows: Y n+1 = B(Y n , U n ). (7) Then (Y n ) n∈N is a realization of model B. proba 1/4 proba 1/4 proba 1/4 proba 1/4
Step n

Step n+1 Remarks. In the above presentation, model B is a Markov chain with synchronous updates and local interactions, but not stricto sensu a PCA. Indeed, if Y 0 is deterministic, then the r.v.'s Y i,1 and Y i+1,1 are not independent, since they are updated using the non-disjoint r.v.'s {U i-1,0 , U i,0 } and {U i,0 , U i+1,0 }. However, it is possible to give a PCA presentation of model B on a larger alphabet. Define the sequence of {

•, •}×U Z -valued r.v's ( Y n ) n∈N by Y n = (Y n , U n ).
We have: Step n

( Y n+1 ) i = B( Y n ) i , U i,n+1 . 
Thus ( Y n ) n is
Step n+1 

C : {•, •} Z × U Z → {•, •} Z (z i ) i∈Z , (u i ) i∈Z → (z i ) i∈Z , with zi = • if (z i-1 z i , u i-1 u i ) ∈ {(••, → U ), (••, U ↑), (••, ↑↑), (••, → U )} • otherwise .
Let U be an update process. Given a {•, •} Z -valued r.v. Z 0 , such that U ⊥ Z 0 , define the sequence of {•, •} Z -valued r.v's (Z n ) n∈N as follows:

Z n+1 = C(Z n , U n ) .
Then (Z n ) n∈N is a realization of model C.

Again, the continuous time version of model C, with exponential holding times, is called a coalescing random walk (cf. [6, Ch. 2, Sec. 9]). 4.3. Links between models A, B, and C. One-step transition of the model B, resp. C, defines the mapping

F B : M({•, •} Z ) -→ M({•, •} Z ) µ -→ µF B ,
respectively,

F C : M({•, •} Z ) -→ M({•, •} Z ) µ -→ µF C . Define ϕ : {0, 1} Z -→ {•, •} Z (x i ) i∈Z -→ (y i ) i∈Z ,
with

y i = • if x i x i+1 ∈ {00, 11} • if x i x i+1 ∈ {01, 10}
By extension, define ϕ :

M({0, 1} Z ) → M({•, •} Z ).
Lemma 4.1. The diagram below is commutative:

M({0, 1} Z ) ϕ F A / / M({0, 1} Z ) ϕ M({•, •} Z ) F B / / M({•, •} Z ) If (X n ) n∈N is a realization of the Markov chain A, then (ϕ(X n )) n∈N is a realization of the Markov chain B.
Proof. Recall that A and B are defined in ( 4) and ( 6) respectively. We are going to prove

(8) ϕ • A = B • (ϕ, Id) .
The statement of the lemma follows. Set

(x i ) i , (u i ) i A -→ (x i ) i ϕ -→ (ỹ i ) i , (x i ) i , (u i ) i ϕ,Id -→ (y i ) i , (u i ) i B -→ (ŷ i ) i .
To obtain [START_REF] Liggett | Interacting Particle Systems[END_REF], it is enough to check that ỹ0 = ŷ0 . This is done by systematic inspection in Table 2. Each one of the 32 cases mimicks the commutative diagram: in the first line, from left to right, (x -2 , x -1 , x 0 ), (u -1 , u 0 ), and (x -1 , x0 ); in the second line, from left to right, (y -1 , y 0 ), (u -1 , u 0 ), and ỹ0 = ŷ0 . If the process X is defined by [START_REF] Gács | Reliable cellular automata with self-organization[END_REF], relation [START_REF] Liggett | Interacting Particle Systems[END_REF] entails that the process Y , defined by Y n = ϕ(X n ), satisfies relation [START_REF] Borgne | Directed animals and gas models revisited[END_REF].

Lemma 4.2. Model B is dominated by model

C: for x, u ∈ {•, •} Z × U Z , B(x, u) ≤ C(x, u) ,
where ≤ is the coordinate-wise product ordering on {•, •} Z , with • ≤ •.

Proof. This can be checked directly on the definitions of B and C. Intuitively, particles are merged in model C, and annihilate in model B.

Lemma 4.3. The following implications hold:

[C is ergodic with invariant measure δ • Z ] =⇒ [B is ergodic with invariant measure δ • Z ] ⇐⇒ [A is non-ergodic with invariant measure (δ (01) Z + δ (10) Z )/2] .
Proof. This is a direct consequence of Lemmas 4.1 and 4.2.

Therefore, in order to prove Theorem 3.1, it is sufficient to prove that model C is ergodic with invariant measure δ • Z . This is the purpose of next section.

111 or 000 →→ 11 or 00 101 or 010 →→ 10 or 01 

•• ↑↑ • •• ↑↑ • Table 2. The 32 possible cases. 5. Model C is ergodic Lemma 5.1. Model C is monotone, that is: for z ∈ {•, •} Z , z ∈ {•, •} Z , u ∈ U Z , z ≤ z =⇒ C(z, u) ≤ C(z, u) ,
where ≤ is the coordinate-wise product ordering.

Proof. It can be checked directly on the definition of C.

With this monotonicity, to get the ergodicity, it is enough to prove that δ • Z F n C → δ • Z . Indeed, consider two realizations of model C, one, say Z = (Z n ) n , that starts with all sites occupied, the other, say Z = ( Zn ) n , that starts with an arbitrary initial condition, their evolution using the same update process U . According to Lemma 5.1, at any time n ∈ N, Zn ≤ Z n .

From now on, we focus on the process Z. Recall that for each n, Z n = (Z k,n ) k∈Z is the state of the system at time n. The process Z n is stationary, i.e. invariant by translation, since Z 0 , U , and C are invariant too. Define ( 9)

d n = P (Z k,n = •) = P (Z 0,n = •) .
This is the density of particles at time n. The density d n can also be viewed as an evaluation of the distance between Z n and δ • Z . Indeed, for any finite subset E of Z, consider the Hamming distance on {•, •} E , and denote by W H the corresponding Wasserstein distance on

M({•, •} E ). Setting Z E,n = (Z k,n ) k∈E , we have: W H (Z E,n , δ • E ) = |E| d n .
Theorem 5.2. Let T be the time that a simple symmetric random walk on Z needs to reach 2, starting from 0. We have

d n = P (T > 2n) (10) = 4 -n 2n + 1 n . ( 11 
)
In particular, d n ∼ 2/ √ π n, hence converges to 0 as n grows.

In continuous time, when the particles perform a simple symmetric random walk, Bramson & Griffeath [START_REF] Bramson | Clustering and dispersion rates for some interacting particle systems on Z[END_REF] obtain the same asymptotic behavior for d n , up to a scaling factor, as expected.

Corollary 5.3. Model C is ergodic with unique invariant measure δ • Z .
Proof. We first prove [START_REF] Toom | Cellular automata with errors: problems for students of probability[END_REF], assuming [START_REF] Mountford | A coupling of infinite particle systems[END_REF]. Let S = (S k ) k∈N be a realization of the simple symmetric random walk on Z, starting from 0. Define M k = max{S i , 0 ≤ i ≤ k}, the maximum of the random walk at time k. Recall that T = inf{i ≥ 0 | S i = 2}. We have

P (T > 2n) = P (M 2n ≤ 1) = 1 -P (M 2n ≥ 2) = 1 - ℓ∈Z P (M 2n ≥ 2, S 2n = ℓ) = 1 -P (S 2n ≥ 2) - ℓ≤1 P (M 2n ≥ 2, S 2n = ℓ)
According to the reflection principle, for ℓ ≤ 1, P (M 2n ≥ 2, S 2n = ℓ) = P (S 2n = 4 -ℓ). Therefore,

P (T > 2n) = 1 -P (S 2n ≥ 2) -P (S 2n ≥ 3) = 1 -P (S 2n ≤ -2) -P (S 2n ≥ 3) = P (S 2n ∈ {0, 2}) = 4 -n 2n n + 2n n + 1 = 4 -n 2n + 1 n .
Using Stirling's formula, we get

4 -n 2n + 1 n ∼ 2 √ πn .
Now let us prove [START_REF] Mountford | A coupling of infinite particle systems[END_REF]. Recall that Z = (Z n ) n∈N is a realization of model C with Z 0 = • Z . One can extend the definition of Z via coupling from the past. Consider the i.i.d. r.v.'s (U k,n ) (k,n)∈Z×Z with P (U i,j =↑) = P (U i,j =→) = 1/2. For each s ∈ Z, define

Z (s) = (Z (s) n ) n≥s by Z (s) s = • Z , ∀n ≥ s, Z (s) 
n+1 = C(Z (s) n , (U k,n ) k∈Z )
. The starting time of Z (s) is s, but, besides that, the dynamic is the same as that of process Z. Observe that Z (0) = Z. More generally, Z (s) has the same distribution as (Z -s+n ) n≥s . Thus, we have In Figure 4, we have represented space-time diagrams for the model. The point of coordinate (k, n) corresponds to site k at step n. We have also represented the updating variables with the following convention: at the point (k, n), there is an arrow pointing north if U k,n =↑ and an arrow pointing north-east if U k,n =→. This allows to visualize the evolution of particles in the processes Z (s) . In Figures 4.b and 4.c, the processes Z (-3) and Z (-5) are represented; the grey nodes are the ones whose color depend on updating variables outside of the represented window. In We have a 0 = b 0 = 0, and

d n = P Z (-n) 0,0 = • .
|I 0 | = 1. Define ρ = 1 4 δ -1 + 1 2 δ 0 + 1 4 δ 1 .
We check the following:

• Assume that a n < b n . Then, We define a new PCA, called model D, which is a coupling of models B and C. The alphabet is {•, b, g} and the set of sites is Z. Given a configuration u ∈ {•, b, g} Z , the interpretation is as follows: if u i = • then site i is empty; if u i = b then site i contains a blue particle; if u i = g then site i contains a green particle. Particles move as in models B and C. When two particles collide, they get merged into one particle as in model C. In absence of collision, particles keep their color. In case of a collision, the merged particle is colored according to the rules:

a n+1 = a n -1 if U an-1,-n-1 =→ a n if U an-1,-n-1 =↑ , b n+1 = b n -1 if U bn,-n-1 =→ b n if U bn,-n-1 =↑ . Thus, |I n+1 | -|I n | ∈ {0, ±1},
(13) b + b → g, g + g → g, b + g → b, g + b → b .
We have represented a realization of model D on Figure 5. The "question mark" nodes are the ones whose color depend on updating variables outside of the represented window. Define

π B :{•, b, g} -→ {•, •}, π B (•) = •, π B (b) = •, π B (g) = • , π C :{•, b, g} -→ {•, •}, π C (•) = •, π C (b) = •, π C (g) = • .
We keep the same notations for the product applications: andd A n ≤ d n . Let (D n ) n be a realization of model D with D 0 being defined as follows: the r.v.'s D i,0 are i.i.d. with P (D 0,0 = b) = P (D 0,0 = g) = 1/2. At step n, the colors of the remaining particles are still i.i.d. and uniform : whatever the shape of the binary tree of coalescences leading to the presence of a particle at a given position at time n (see Figure 5 for an example), if the colors of the initial particles are independent and if one of these particle's color is uniform, then, due to [START_REF] Toom | Discrete local Markov systems[END_REF], the resulting color will still be uniformly distributed. Therefore we have ( 14 This completes the proof of Prop. 6.1.

π B : {•, b, g} Z → {•, •} Z , (u i ) i → (π B (u i )) i , and π C : {•, b, g} Z → {•, •} Z , (u i ) i → (π C (u i )) i . Lemma 6.2. If (D n ) n is a realization of model D, then (π B (D n )) n is a realization of model B, and 
(π C (D n )) n is a realization of model C. As consequences, model D is ergodic with unique invariant measure δ • Z ,

Conclusion.

The following question remains: does there exist a positive-rates PCA which is non-ergodic with a unique invariant measure?

Let us provide some context. By definition, a PCA has positive-rates if all its probability transitions are different from 0 and 1 (more formally, if f : Σ V → M(Σ) is the transition function, then ∀u ∈ Σ V , ∀v ∈ Σ, f (u)(v) ∈ (0, 1)). It had been a long standing conjecture that all 1-dimensional positive-rates PCA are ergodic. In [START_REF] Gács | Reliable cellular automata with self-organization[END_REF], Gács disproved the conjecture by exhibiting a complex counter-example with several invariant measures. The existence of the intermediate case (unique but non-attractive invariant measure) remains open. A priori, it is not possible to perturbate model A to get a positive rates example.
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 1 Figure 1. The transition function of the PCA F A .
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 2 Figure 2. The transition function of model B.

  a realization of a PCA on the alphabet {•, •} × U , with neighborhood V = {-1, 0}. The same remark holds for model C below.The continuous time version of model B, with exponential holding times, is called an annihilating random walk (cf.[START_REF] Griffeath | Additive and cancellative interacting particle systems[END_REF] Ch. 3, Sec. 5]).
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 3 Figure 3. The transition function of model C.
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 2 Model C. It is the Markov chain on {•, •} Z defined as follows. Consider the function

Figure 4 .

 4 Figure 4. a. The updating (U k,n ) (k,n)∈[[-9,0]]×[[-6,0]] . b. The process Z (-3) during the span [[-3, 0]]. c. The process Z (-5) during the span [[-5, 0]]. d. The merging of particles.

Figure 4 .

 4 d, the particles painted in orange (gray) are those that merged into the particle present at time 0 and site 0. Let I n , n ≥ 0, be the set of indices of particles present at time -n in Z (-n) that merge into particle 0 at time 0. Either I n = [[a n , b n ]], a n ≤ b n , in which case Z (-n) 0,0 = •, or I n = ∅, in which case Z (-n) 0,0 = •. We focus on |I n |. For instance, in Figure 4.d, we have (|I n |) n∈[[0,6]] = (1, 2, 1, 2, 3, 4, 3). Observe that (12) d n = P Z (-n) 0,0 = • = P (|I n | ≥ 1) .

  and the conditional law of |I n+1 | -|I n | is ρ.

Figure 5 .

 5 Figure 5. A realization of process D (gray for g(reen), black for b(lue)).
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 22 )P (π B (D 0,n ) = •) = P (D 0,n = b) = 1 (D 0,n ∈ {b, g}) = 1 (π C (D 0,n ) = •) = 1 2 d n ,where the last equality follows from Theorem 5.2.Now let ( D n ) n be a realization of model D with D 0 = b Z . Define E = (E i ) i by E i = b if D i,1 = b g if D i,1 = • or g . The r.v.'s (E i ) i are i.i.d. with P (E 0 = b) = P (E 0 = g) = 1/2.Let us justify this point. The state at time 1 of a realization of model A that starts from 0 Z is uniformly distributed by definition. Hence, the state at time 1 of a realization of model B that starts from • Z is uniformly distributed. And E has the same law as the latter up to the transformation b ↔ •, g ↔ •.So we have E ∼ D 0 . Observe also that π B ( D 1 ) = π B (E). We deduce that, for all n ≥ 1, we have π B ( D n ) ∼ π B (D n-1 ). In particular, using (14), P π B ( D 0,n ) = • = P D 0,n = b = P (D 0,n-1 = b) = d n-1 /2 .

• Assume that a n = b n . Then

For instance, the third case appears between lines -3 and -2 in Figure 4.d. Here again, the conditional distribution of

Consequently (|I n |) n∈N is a random walk with step ρ, starting from 1, and killed when it reaches 0. Using [START_REF] Toom | Contours, convex sets, and cellular automata[END_REF], we obtain (10).

Speed of convergence for models A and B

Let (A n ) n∈N be a realization of model A, with A 0 ∼ µ, µ ∈ M({0, 1} Z ). The possible limits for weakly-converging subsequences of (A n ) n∈N are of the form pδ (01

]. An evaluation of the distance to the limits is given by

Since model A is not monotone, we do not know for which initial measure µ this distance will be maximized. Hence we evaluate the "speed of convergence" for model A by the quantity:

The quantity d A n is also the speed of convergence to δ • Z for model B. Indeed we have P (A 0,n A 1,n ∈ {00, 11}) = P (ϕ(A n ) 0 = •), which implies that

where (B n ) n denotes a realization of model B and ν denotes its initial distribution (B 0 ∼ ν).

Recall that d n = 4 -n 2n+1 n is the speed of convergence for model C, see (9) and Theorem 5.2. Proposition 6.1. We have

Let (A n ) n be a realization of model A, with A 0 ∼ µ. If µ is the uniform distribution on {0, 1} Z , i.e. the r.v.'s A i,0 are i.i.d. with P (A 0,0 = 0) = P (A 0,0 = 1) = 1/2, then we shall see that The end of the section is devoted to the proof of Prop. 6.1, through the study of model A with the two initial distribution mentioned previously.