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A Simple Trick to Speed Up the Non-Local Means
Laurent Condat, Member, IEEE

Abstract—We show that the popular Non-Local Means method
for image denoising can be implemented exactly, easily and with
lower computation time using convolutions.

Index Terms—Non-Local Means, Denoising, Patches

I. INTRODUCTION

Images are often corrupted by noise during acquisition [1],

so that effective noise suppression methods are required. The

Non-local means (NL-means) is a popular technique developed

by Buades et al. [2], [3]. Its efficiency and conceptual sim-

plicity have made it very popular, but its main drawback is its

high computational complexity. For an image of size N ×M ,

patches of size 7×7 and a search window of size 21×21, which

is a typical use setting [2], the complexity is 72.212.N.M . This

makes accelerations necessary to maintain low computation

times. Numerous methods were proposed to accelerate the

NL-means, such as preselection of the contributing neighbor-

hoods based on average value and gradient [4], average and

variance [5], higher-order statistical moments [6], cluster tree

arrangement [7], mean values at different resolutions [8], or

probabilistic early termination [9]. The use of a data-driven

lower dimensional subspace of the space of image neigh-

borhoods has been investigated as well [10]–[12]. Also, the

computation of the distance between different neighborhoods

can be optimized using the fast Fourier transform [13], [14],

a moving average filter [15] or integral images of certain

error terms [8], [16]. Finally, Adams et al. proposed clever

data structures which are used to perform multi-dimensional

smoothing, including NL-means filtering [17], [18].

In this work, we show that there exists an easy and exact

implementation of the NL-means using convolution routines,

which accelerates the method significantly in comparison with

the classical naive implementation. Despite its simplicity, this

observation has not been made so far in the literature, to

the best of the author’s knowledge. In Section II, we briefly

describe the NL-means method and we present our new

implementation based on convolutions in Section III.

II. THE NON-LOCAL MEANS METHOD

We consider the following observation model. We have at

our disposal the image y = (y[k])k∈Ω, where Ω ⊂ Z
2 is the

image domain, of size N × M ; y is a noisy version of the

unknown image x corrupted by additive white Gaussian noise

(AWGN):

y[k] = x[k] + e[k], ∀k ∈ Ω, (1)
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where e[k] ∼ N (0, σ2) for every k ∈ Ω and σ2 is the noise

variance. The denoised image z, which is an estimate of x, is

formed as follows:

z[k] =

∑

n∈Z2 w[k,n]y[k + n]
∑

n∈Z2 w[k,n]
(2)

with the weights

w[k,n] =

f(n) exp

(

−

∑

m∈Z2 h(m)
(

y[k+n+m]− y[k+m]
)2

λ
∑

m∈Z2 h(m)

)

(3)

for every n 6= 0, where λ controls the amount of smoothing.

The weight attached to the current pixel is computed differ-

ently [3]:

w[k,0] = max
n 6=0

w[k,n] (4)

Let us call the set of pixels {y[m+k] ; m ∈ [−P, . . . , P ]2}
the patch of the image y centered at the pixel k. The NL-means

consists in blending every pixel of y with other pixels, based

on the similarity of their surrounding patches. Typically, the

search for the similar patches is limited to the neighborhood of

the local pixel so that f is the indicator function of the search

region: f = 111[−S,...,S]2 . f can be a more complex symmetric

function decaying away from zero, like a Gaussian function

in [2]. h is an indicator function, which characterizes the size

of the patches: h = 111[−P,...,P ]2 .

III. THE NL-MEANS EXPRESSED USING CONVOLUTIONS

The proposed acceleration consists in letting convolutions

appear in the computation process. For this, let us define the

images un and vn by

un[k] = (y[k + n] − y[k])2 (5)

and

vn = un ∗ h, (6)

where ∗ indicates the convolution, for every n ∈ [−S, . . . , S]2

and k ∈ Ω, using symmetric boundary conditions for pixel

values outside Ω. Next, we assume that f and h are arbitrary

but symmetric functions and that f has a compact support

included in [−S, . . . , S]2. Then, we have

w[k,n] = f(n) exp
(

− vn[k]/C
)

, (7)

where C = λ
∑

m∈Z2 h(m) is a constant. Moreover,

w[k,−n] = w[k − n,n]. (8)

Hence, the proposed implementation simply consists in

swapping the loops with respect to k and n, which yields the
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following algorithm:

Proposed Algorithm

1) for every n ∈ [−S, . . . , S]2 such that n < 0 (in

lexicographic order),

2) compute the image of squared pixel values un

3) perform the convolution vn := un ∗ h
4) for every k ∈ Ω, update the pixel values

z[k] := z[k] + f(n) exp(−vn[k]/C)y[k + n] and

z[k + n] := z[k + n] + f(n) exp(−vn[k]/C)y[k]
5) add the contribution of the noisy pixel values to their

denoised versions: ∀k ∈ Ω, z[k] := z[k]+maxn 6=0 y[k].
6) normalize the pixel values: ∀k ∈ Ω, z[k] :=

z[k]/
∑

n∈Z2 w[k,n].

For the classical NL-means with h = 111[−P,...,P ]2 , the

convolution with h is separable, so that the complexity of the

proposed algorithm is O((2P + 1)(2S + 1)2N.M) instead of

O((2P + 1)2(2S + 1)2N.M). A non-optimized C implemen-

tation of our algorithm running on a 2.4 GHz Macbook Pro

yields a computation time of 15.4s versus 50.2s for the naive

implementation, when denoising a 512×512 grayscale image,

with P = 3 and S = 10.

Further on, the moving average convolution with the 1-D

filter

H(z) = z−P + · · · + zP (9)

can be simplified, using the equality

H(z) =
−z−P−1 + zP

1 − z−1
, (10)

which yields the moving average implementations given

in [15] and [16]. Using this recursive implementation of mov-

ing averages, the complexity is reduced to O((2S+1)2N.M).
Furthermore, the proposed algorithm opens the door to the

use of non-binary filters h, yielding “fuzzy” patches. For

instance, a Gaussian filter h can be employed, using the fast

recursive implementations available for Gaussian filtering [19],

[20]. Preliminary results indicate that better denoising results

are obtained using the tensor-product of the simple two-poles

recursive filter

H(z) =
4

(2 − z−1)(2 − z)
. (11)

With the latter, the complexity is reduced to O((2S+1)2N.M)
as well.
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