
HAL Id: hal-00512767
https://hal.science/hal-00512767

Submitted on 31 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIC-testability of sequential logic controllers
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure

To cite this version:
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure. SIC-testability of sequential logic controllers.
10th International Workshop on Discrete Event Systems - WODES 2010, Aug 2010, Berlin, Germany.
pp.203–208. �hal-00512767�

https://hal.science/hal-00512767
https://hal.archives-ouvertes.fr

SIC-testability of sequential logic
controllers ?

J. PROVOST J.-M. ROUSSEL J.-M. FAURE

LURPA, ENS Cachan,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France.

(e-mail: {provost, roussel, faure}@lurpa.ens-cachan.fr)

Abstract:
SIC (Single Input Change) test sequences must be privileged for conformance test of logic
controllers, to prevent from erroneous test results when the test-bench and the implementation
under test are not synchronized. This paper proposes first a definition of the SIC-testable part
of a sequential specification model, i.e. the part of the model that can be tested by using a
sequence starting from the initial state and for which only one input can change at one at
the same time. Then, an algorithm to determine the SIC-testable part is given; if this part is
the whole specification, the specification model is declared totally SIC-testable. Once the SIC-
testable part obtained, a SIC sequence for conformance test of an implementation of this part
can be generated. These contributions are exemplified on an example.

Keywords: Conformance test, Model-based test, Test sequence generation, Logic systems,
Testability criterion

1. INTRODUCTION

Logic controllers are increasingly used in critical systems,
like power production and distribution systems or trans-
port systems, even for safety-related functions. To en-
sure dependability of these systems, it really matters to
check, before operation, whether each controller behaves
correctly with respect to its specification. This is the aim
of conformance test, a black-box test technique that is
experimentally performed (Figure 1) by sending to the
controller an input sequence and comparing the observed
output sequence, controller’s response to the input se-
quence, to the expected output sequence so as to build
the test verdict: the implemented controller is conform or
not. The set of the input sequence and expected output
sequence is termed test sequence.

Fig. 1. Conformance test execution

In industrial practice, test sequences are often built manu-
ally on the basis of the designer’s experience and skill; this
is a very tedious, time-consuming and error-prone task.

? This work is funded by the French National Research Agency
(TESTEC project, Ref. TLOG 07-022)

To solve this issue, it is possible to take benefit from
the numerous theoretical results that have been pub-
lished in the domain of conformance test, assuming that
the specification is formally described, for instance in
the form of a finite state machine (Lee and Yannakakis
(1996), da Silva Simão et al. (2009)), a transition system
(Tretmans (2008)) or a particular class of Petri net (von
Bochmann and Jourdan (2009)). (Provost et al. (2009)),
for instance, presents a method to translate a specification
described in an industrial standardized language into a
finite state machine to take benefit from the results on
conformance test of these models. Generally speaking,
these works provide a way to build automatically a well-
defined test sequence from the specification model and to
deliver a verdict from the observed output sequence. The
test sequence is constructed so as to meet a test objective
that is formally defined: exhaustiveness (all transitions are
visited at least once) and minimum-length, non-occurrence
of unexpected sequence of events, reachability of states,
. . . The SIC (Single Input Change) or MIC (Multiple Input
Change) feature of the input sequence is never considered,
though.

t0 t1 t2 t3 t4 t5

a) SIC sequence

a

b

c
t0 t1 t2 t3 t4 t5

b) MIC sequence

a

b

c

Fig. 2. Example of SIC and MIC test sequences

In a SIC input sequence, named SIC sequence in the
remainder of this paper for simplicity reasons, (Figure 2),

the value of only one input can change at one and the
same time; synchronous values changes are not allowed.
This is not the case in a MIC input sequence. These
concepts are used for electronics circuits testing where
SIC sequences are privileged to limit power consumption
(Yi et al. (2008)) or to increase the efficiency of delay
fault testing (Virazel et al. (2001)). Power consumption
limitation is not a significant concern during the test of a
logic controller and only non-timed systems are addressed
in this work. SIC sequence generation is to be investigated
however because such a sequence prevents from erroneous
test results (biased results if a conform implementation is
declared non-conform or non-valid results if implementa-
tion errors are not detected) when the test-bench and the
logic controller are not synchronized. In this case indeed,
when a MIC input sequence is generated by the test-bench,
synchronous inputs changes may be seen asynchronous by
the controller under test. For technological reasons, all
inputs are not read simultaneously by the controller and,
in case of two synchronous changes, it may get the value of
one input just before its change and the value of another
input just after its change. In figure 2 b), the simultaneous
changes of a and b at date t1 that are issued from the test-
bench may be interpreted by the controller in one of the
following fashions:

• Simultaneous changes of a and b;
• Change of a just followed by change of b;
• Change of b just followed by change of a.

It could be argued that a simple solution is to synchronize
the bench and the controller; this is not technically so sim-
ple and often impossible if non-invasive test is compulsory.
This explains why generation of SIC sequences deserves to
be investigated.

It is always possible and easy to build a SIC sequence for a
combinatorial logic system by arranging the inputs values
according to the Gray code. This is no more the case when
sequential systems are focused on; in this case indeed,
the aim of the test sequence is to explore a part or the
totality of the evolutions and some evolutions may require
simultaneous inputs changes. Then, the aim of this work is
to propose a method to determine the SIC-testable part of
the specification model, i.e. the part that can be explored
by using a SIC sequence which starts from the initial
state. If this part corresponds to the whole specification,
the specification is declared totally SIC-testable. Once the
SIC-testable part defined, a SIC sequence for conformance
test of an implementation of this part can be built.

Analysis of the SIC-testability requires a formal definition
of a test sequence that relies on inputs-outputs values. This
implies to model the behavior of the logic controller on the
same bases. This behavioral model is proposed in section 2,
while the model and properties of the test sequence are
given in section 3. Section 4 shows how the SIC-testable
part can be obtained by a fixed-point calculation and
section 5 deals with SIC sequence construction. Some
prospects for further research are sketched in section 6.

2. MODELING THE BEHAVIOR OF SEQUENTIAL
LOGIC CONTROLLERS

Several event-based formalisms have been proposed to
model sequential systems; they have permitted to obtain
worthwhile theoretical results in the domains of synthesis
and analysis of DES. However, when design, implementa-
tion and test of sequential logic controllers are considered,
it is more convenient to select a modeling formalism whose
inputs and outputs are logic variables, and not events, and
that allows a behavior be represented by a state machine
whose transition conditions depend on combinations of in-
puts values. This section aims to define this formal model.

2.1 Definitions

Formally, a Sequential Logic Controller (SLC) is defined
by a 3-tuple (I,O,B) where:

• I is a non-empty set of logic inputs.
• O is a non-empty set of logic outputs.
• B is the behavior of the controller.

As inputs are logic variables and not events, they can be
combined together to give inputs valuations. If the cardi-
nality of I is |I|, there exist 2|I| distinct inputs valuations
vI . Let us note VI the set of the inputs valuations and VO

the set of the outputs valuations. As an inputs valuation
of a given set I of logic inputs is a Boolean combination,
it can be represented by a minterm 1 .

A sequence of inputs valuations is an ordered list of inputs
valuations and will be noted as follows:

[
v0

I , v
1
I , · · · , vn

I

]
∈ V ∗I (1)

The behavior B of a SLC is defined by a 4-tuple
(S, sInit, δ, λ), where:

• S is a non-empty set of states.
• sInit is the initial state, sInit ∈ S.
• δ is the transition function, defined as follows:

δ : S × VI → S
(s, vI) 7→ s′ = δ(s, vI) (2)

• λ is the output function, defined as follows:
λ : S → VO

s 7→ vo = λ(s) (3)

2.2 Properties of a SLC

By definition, the behavior B of a SLC is deterministic:
there is only one initial state and δ and λ are two functions.
Moreover, to avoid misinterpretation errors during the
test, the behavior B must be:

• completely defined: δ and λ are total functions 2

(equation 4);
• reduced to its only reachable part (equation 5);
• without transient evolution (equation 6), i.e. no in-

puts change introduces successive changes of states.

1 A minterm is the product of all the n Boolean input variables in
the positive or complemented form.
2 ∃!: There exists exactly one.

∀(s, vI) ∈ S × VI ,

{
∃!δ(s, vI) ∈ S
∃!λ(s) ∈ VO

(4)

∀s ∈ S,

∃[v0
I , · · · , vn

I] ∈ V ∗I |

 s1 = δ(sInit, v
0
I)

∀k > 1, sk = δ(sk−1, vk−1
I)

s = sn
(5)

∀(s, vI) ∈ S × VI , δ(s, vI) = δ(δ(s, vI), vI) (6)

2.3 Illustration on an example

The above definitions and properties will be illustrated
on the example of figure 3. This controller owns 4 inputs
(c, o, r and v), and 2 outputs (CG and OG); then, 16
inputs valuations (vI) and 4 outputs valuations (vO) can
be defined. If the state space comprises 3 states (s1: initial
state, s2 and s3), the transition function is defined on 48
couples (s, vI); an enumerated description of this function
is given in table 1, in which each line corresponds to a
state s and each column to an inputs valuation vI . Column
2, for instance, represents the inputs valuation such that
c, o and r are False and v is True; this valuation can be
represented either by the minterm c·o·r ·v or by the subset
of I that contains the only variables which are True for this
valuation {v}.

Sequential
Logic

Controller

CG

OG

c

o

r

v

Fig. 3. Inputs/Outputs of the example

Each cell of the table contains the value of δ(s, vI). A
circled state name means that the same state is both
source and target of the transition (self-loop structure).
The output function is merely defined by:
λ(s1) = CG ·OG ; λ(s2) = CG ·OG ; λ(s3) = CG ·OG ;

The behavior given table 1 is deterministic and completely
defined since every cell contains one and only one state
name. This behavior does not contain any transient evolu-
tion since the value of each cell is either a circled value or
leads to a cell with a circled value. For example, when the
active state is s1, for the inputs valuations c · o · r · v, the
system evolves towards state s3. Since δ(s3, c ·o ·r ·v) = s3,
no other evolution is possible without a new change of
inputs valuation.

This tabular description cannot be used obviously for
non-trivial examples. Hopefully, it can be replaced by
an equivalent graphical description (Figure 4) in which
a Boolean expression Eij is associated to each transition
from state si to state sj . This expression represents the
set of inputs valuations that cause this transition. For the
example, E12 for instance is True only for the two inputs
valuations c·o·r·v and c·o·r·v, then E12 represents the set of
these two inputs valuations. This behavior can be obtained
automatically from standardized language (Provost et al.
(2009).

The determinism and completeness conditions can then be
respectively reformulated as follows:
∀(si, sj , sk) ∈ S3, sj 6= sk ⇒ Eij · Eik = ExpAlwaysFalse

(7)
∀si ∈ S,

∑
sj∈S

Eij = ExpAlwaysTrue (8)

where ExpAlwaysFalse and ExpAlwaysTrue correspond to
the Boolean expressions “always False” and “always True”.

The condition on absence of transient evolution becomes:
∀(si, sj) ∈ S2, Eij · Ejj = ExpAlwaysFalse (9)

s1

s2 s3

start

E12

E23

E31

E13

E32

E21

E11

E22 E33

λ(s1) = ∅
λ(s2) = {CG}
λ(s3) = {OG}

Notation: · means AND,

+ means OR, and

¯ means NOT

E11 = o · (c+ r + v) + c · r
E22 = c · r · v
E33 = o

E12 = c · r · v
E13 = o · (r + c · v)

E21 = o · (c+ r + v) + c · r
E23 = o · r + c · o · v
E31 = o · (c+ r + v)
E32 = c · o · r · v

Fig. 4. Graphical representation of the behavior

3. SIC TEST SEQUENCE DEFINITION

3.1 Formal definition of test sequences

During test execution, a test sequence is seen as an
ordered list of couples (inputs valuation,expected outputs
valuation) which represents its external view:[

(v0
I , v

0
O), (v1

I , v
1
O), ..., (vn

I , v
n
O)
]
∈ (VI × VO)∗ (10)

Conformance test implies that the expected outputs val-
uation is obtained from the behavior model. More pre-
cisely, this valuation is associated to the target state of
the evolution that is provoked by the inputs valuation,
when the model is in a given source state. To obtain this
expected valuation, the source state (ss) and target state
(st) must compulsorily be known. Hence, an elementary
conformance test step et is defined by the following 4-tuple:

et = (ss, vI , st, vO) ∈ S × VI × S × VO

where
{
st = δ(ss, vI)
vO = λ(st) = λ(δ(ss, vI))

(11)

Thus, a test sequence is an ordered list of elementary test
steps and a consistent test sequence TS is a test sequence
such as the source state of the kth elementary test step is
equal to the target state of the (k − 1)th step.

TS = [(s0, v0
I , δ(s

0, v0
I), λ(δ(s0, v0

I))), · · · ,
(sn, vn

I , δ(s
n, vn

I), λ(δ(sn, vn
I)))] |

∀k > 1, sk = δ(sk−1, vk−1
I) (12)

PPPPPPPPPPPPPPPPP

(s, vO):

(States,Outputs valuations)

vI : Inputs

valuations

c
·o
·r
·v

o
r
{}

c
·o
·r
·v

o
r
{v
}

c
·o
·r
·v

o
r
{r
}

c
·o
·r
·v

o
r
{r

,v
}

c
·o
·r
·v

o
r
{o
}

c
·o
·r
·v

o
r
{o

,v
}

c
·o
·r
·v

o
r
{o

,r
}

c
·o
·r
·v

o
r
{o

,r
,v
}

c
·o
·r
·v

o
r
{c
}

c
·o
·r
·v

o
r
{c

,v
}

c
·o
·r
·v

o
r
{c

,r
}

c
·o
·r
·v

o
r
{c

,r
,v
}

c
·o
·r
·v

o
r
{c

,o
}

c
·o
·r
·v

o
r
{c

,o
,v
}

c
·o
·r
·v

o
r
{c

,o
,r
}

c
·o
·r
·v

o
r
{c

,o
,r

,v
}

(s1, CG ·OG) s2 s3 s3 s3 s2 ms1 ms1 ms1 ms1 ms1 s3 s3 ms1 ms1 ms1 ms1

(s2, CG ·OG) ms2 s3 s3 s3 ms2 s1 s1 s1 s1 s1 s3 s3 s1 s1 s1 s1

(s3, CG ·OG) ms3 ms3 ms3 ms3 s2 s1 s1 s1 ms3 ms3 ms3 ms3 s1 s1 s1 s1

Table 1. Example of behavior given in an extensional form

3.2 Properties of test sequences

A test sequence TS may be:

• initializable, i.e. the source state of the first test step
is the initial state:

s0 = sInit (13)

• exhaustive, i.e. there is at least one test step for each
element of the transition function:

∀(s, vI) ∈ (S × I), (s, vI , δ(s, vI), λ(δ(s, vI))) ∈ TS (14)

• based on a SIC inputs sequence.

To express formally this latter property, the SIC relation
between two inputs valuations must be first defined. The
definition below is based on the representation of an
inputs valuation by the subset of I that contains the only
variables which are True for this valuation. Thus, two
inputs valuations vI and v′I satisfy a SIC relation if and
only if 3 :

dim((vI\v′I) ∪ (v′I\vI)) = 1 (15)

For example, the inputs valuations which are represented
by the minterms c·o·r ·v and c·o·r ·v satisfy a SIC relation
since dim(({r, v}\{c, r, v}) ∪ ({c, r, v}\{r, v})) = dim(∅ ∪
{c}) = 1

In the remainder of this paper, this symmetrical relation
is noted: vI RGray v

′
I . It can be noted that n SIC relations

can be stated for each inputs valuation vI of a SLC with
n logic inputs.

Hence, a test sequence TS is based on a SIC inputs
sequence and termed SIC test sequence if and only if:

∀k > 1, vk
I RGray v

k−1
I (16)

3.3 Illustration on the example

In table 1, each cell may be associated to a test step
whose source state, inputs valuation and target state are
respectively given by the corresponding line, column and
content of the cell. An initializable and exhaustive test
sequence must start from a cell of the first line (initial
state: s1) and cover all cells of the table. A consistent test
3 dim(A) is the dimension of set A.
v′

I\vI is the subset of I composed with elements of vI which are not
in v′

I .

sequence corresponds to only horizontal and vertical cells
changes according to the following rules:

• From the cells that contain a circled state name (the
source and target states of the associated test step are
identical), only horizontal changes are possible. The
inputs valuations of two successive test steps can be
different, but the source state of the second step must
be identical to the target state of the first one.

• From the cells that contain a non-circled state name
(the source and target states of the associated test
step are different), only one vertical change is possi-
ble. This change leads to the cell that belongs to the
line of the target state of the first test step.

It is easy to see that only the first case must be considered
to determine whether the test sequence is a SIC test
sequence, i.e. the inputs valuations vI and v′I of all couples
of successive test steps satisfy vI RGray v′I . However, it
is not always possible to build an exhaustive SIC test
sequence from a behavioral model. For the example, the
cell (s2, c·o·r ·v) cannot be reached from cells (s2, c·o·r ·v)
or (s2, c · o · r · v) with only a SIC inputs sequence.

Then, SIC-testability of the behavioral model, ability of
this model to be used to construct a SIC, initializable
and exhaustive test sequence, must be checked before test
sequence construction. This is the objective of the next
section.

4. CHECKING SIC-TESTABILITY OF A SLC

This section aims to show that the SIC-testability of a SLC
can be checked by a fixed-point calculation on elementary
test steps. Before presenting this contribution, some details
on conformance test execution must be reminded. An
elementary test step is executed as follows:

• First, the test-bench sends to the controller under test
the inputs valuation.

• Then, the test-bench waits that the controller com-
putes its outputs; this waiting time is function of the
technological features of the controller (filtering time,
scanning cycle duration, . . .) and will not be more
discussed in this paper.

• Once the controller’s outputs computed and stable,
the test-bench compares the real outputs valuation
to the expected one. The next step can then start.

PPPPPPPPPPPPPPPPP

(s, vO):

(States,Outputs valuations)

vI : Inputs

valuations

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

c
·o
·r
·v

(s1, CG ·OG)
1
s2

1
s3

1
s3

1
s3

1
s2

0 ms1
0 ms1

0 ms1
0 ms1

0 ms1
1
s3

1
s3

0 ms1
0 ms1

0 ms1
0 ms1

(s2, CG ·OG)
1 ms2

2
s3

2
s3 s3

1 ms2
2
s1

2
s1 s1

2
s1 s1 s3 s3

2
s1 s1 s1 s1

(s3, CG ·OG)
2 ms3

1 ms3
1 ms3

1 ms3
3
s2

2
s1

2
s1

2
s1

2 ms3
2 ms3

1 ms3
1 ms3

3
s1

3
s1

2
s1

2
s1

Table 2. Illustration of the steps of the fixed point calculation of the SIC region

It matters to underline that, during the waiting time
of the elementary test step (ss, vI , st, vO), the test step
(st, vI , st, vO), which specifies that vI does not modify the
active state when this state is st, is also automatically
executed.

4.1 Principle

The proposed method is based on the following two
observations:

• An elementary test step (ss, vI , st, vO) for a behavior
B is SIC-testable if it can be included into an initial-
izable SIC test sequence for this behavior. Owing to
the test execution features, the elementary test step
(st, vI , st, vO) is also SIC-testable.
• If the elementary step (st, vI , st, vO) is SIC-testable,

it is always possible to add to the test sequence an
elementary step (st, v

′
I , δ(st, v

′
I), λ(st, v

′
I)) where v′I

satisfies: v′I RGray vI .

On these bases, the set of elementary test steps which are
SIC-testable can be obtain by the following fixed point
calculation:
RSIC(n+ 1) = RSIC(n) ∪{

(sk, v
k+1
I , δ(sk, v

k+1
I), λ(δ(sk, v

k+1
I)))

}
∪{

(δ(sk, v
k+1
I), vk+1

I , δ(sk, v
k+1
I), λ(δ(sk, v

k+1
I))

}
|

∃(sk, v
k
I) ∈ RSIC(n) |

{
δ(sk, v

k
I) = sk

vk+1
I RGray v

k
I

(17)

At the end of this iterative calculation, the controller is
SIC-testable if the final set contains all test steps that can
be defined from its behavior description. Otherwise, this
final set defines the SIC-testable part.

As a real logic controller can always be put in its initial
state before being tested, it was chosen to start the fixed-
point calculation with the following set:

RSIC(0) =
{

(sInit, v
0
I , sInit, λ(sInit)) |

v0
I ∈ VI , δ(sInit, v

0
I) = sInit

} (18)

4.2 Illustration on the example

Table 2 presents the results of this calculation for the
example. The number k of the iteration during which the
test step was found SIC-testable is at the top-left corner
of each cell. For example, the step associated to the cell
(s1, c · o · r · v) is obtained at iteration 0 (initialization),
because this step corresponds to a self-loop on s1. The

step associated to the cell (s1, c ·o ·r ·v) is obtained in step
1, as c · o · r · v RGray c · o · r · v, and so on. Calculation
stops at the third iteration, excluding the initialization.
The final set contains only 40 test steps; the steps that
do not belong to this set are represented by colored cells.
Hence, the behavior of this controller is NOT SIC-testable;
its SIC-testable part is given by the cells which are not
colored.

4.3 Implementation for graphical descriptions of behavior

As already mentioned, the tabular representation is not
suitable to specify non-trivial controllers. Hence, the fixed-
point calculation has been transformed to deal with
graphical descriptions of the behavior. The core idea of
this transformation is to manipulate the inputs valua-
tions through Boolean expressions and not explicitly. Al-
gorithm 1 has been then developed to automate SIC-
testability analysis.

This algorithm relies mainly on an operation noted
ExpansionGray that is based on symbolic calculus and
permits to expand a given set V A

I of inputs valuations vI

with the inputs valuations v′I which satisfy v′I RGray vI .
The expanded set is noted V B

I :

V B
I = V A

I ∪ {v′I | ∃vI ∈ V A
I : v′I RGray vI}, (19)

Let us consider ExpA the Boolean expression which repre-
sents the set V A

I . The set V B
I is described by the following

Boolean expression:

ExpB = ExpansionGray(ExpA)
=
∑
i∈I

(
ExpA|i←F alse

+ ExpA|i←T rue

)
(20)

The example below illustrates this operation.

V A
I = {c · o · r · v , c · o · r · v , c · o · r · v}
ExpA = c · o · r + c · o · v
ExpB = (o · r + o · v) + (c · r + c · v) + (c · o) + (c · o)

= c · o+ c · r + c · v + o · r + o · v
V B

I = {c · o · r · v , c · o · r · v , c · o · r · v , c · o · r · v ,
c · o · r · v , c · o · r · v , c · o · r · v , c · o · r · v ,
c · o · r · v , c · o · r · v}

(21)

Algorithm 1 Calculation of the SIC-testable part of a
behavior
Inputs: B: (S, sInit, δ, λ)
Outputs: SIC-testable part of a behavior B

/* Initialization step: */
for all si in S do
TSIC(si) := ExpAlwaysFalse /* SIC-testable inputs
valuations of sI */
Acc(si) := ExpAlwaysFalse /* Inputs valuations of sI

accessible with a SIC sequence */
end for
TSIC(sInit) := E11 /* As sInit = s1 */
Acc(sInit) := E11 /* As sInit = s1 */
/* Iterative construction: */
Improvements := True
while Improvements do

Improvements := False
for all si in S do
NewSIC(si) := ExpansionGray(Acc(si)) · TSIC(si)
if NewSIC(si) 6= ExpAlwaysFalse then

Improvements := True
TSIC(si) := TSIC(si) +NewSIC(si)
for all evolution from si to sj do
new := NewSIC(si) · Eij

if new 6= ExpAlwaysFalse then
Acc(sj) := Acc(sj) + new

end if
end for

end if
end for

end while
/* Display step: */
for si in S do
TestablePart := TSIC(si)
print “SIC-Testable part of ”,si,“: ”,TestablePart

end for

5. CONSTRUCTION OF THE SIC TEST SEQUENCE

This construction is based on a graph whose nodes rep-
resent all couples (s, vI) that can be defined on the SIC-
testable part. The arcs (directed edges) between the nodes
are defined as follows:

• only one arc starts from a node that corresponds to a
couple (s, vI) such as δ(s, vI) 6= s; the target node of
this arc is the node that corresponds to (δ(s, vI), vI);
• n arcs start from a node that corresponds to a couple

(s, vI) such as δ(s, vI) = s; the target nodes of these
arcs correspond to couples (s, v′I) such as v′I satisfies
v′I RGray vI .

The test sequence is then obtained by searching a pre-
Hamiltonian path, i.e. a path that visits each node at least
once. A SIC-test sequence for the SIC-testable part of the
example is given table 3. The top and bottom lines are
only given to relate this sequence to figure 4 and table 1.
This test sequence contains 35 test steps and permits to
test the 40 couples (s, vI) of the SIC-testable part of the
specification since some test steps permit to test both
couples (s, vI) and (δ(s, vI), vI). For example, test step 2
permits to test both (s1, c · o · r · v) and (s2, c · o · r · v), and
so on for all test steps whose source and target states are
different. For this example, the calculation of the SIC part

uses symbolic computation and lasts less than 50 ms. The
test sequence given table 3 is obtained in approximately
4 s, this computation lasts longer because it relies on
a NP-hard optimization problem: the traveling salesman
problem.

ss: s1 s1 s2 s3 s3 s2 s2 s3 s1 s1 s3 s1 s1 s3 s3 s1 s1

c: 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
o: 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0
r: 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1
v: 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
st: s1 s2 s3 s3 s2 s2 s3 s1 s1 s3 s1 s1 s3 s3 s1 s1 s3

s3 s1 s3 s3 s1 s3 s3 s1 s2 s1 s2 s1 s3 s1 s2 s1 s2 s2

1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
s1 s3 s3 s1 s3 s3 s1 s2 s1 s2 s1 s3 s1 s2 s1 s2 s2 s1

Table 3. Test sequence for the SIC-testable
part of the example

6. CONCLUSION

The main contributions of this work are the formal def-
inition of SIC-testability and a formal method to ob-
tain the SIC-testable part of a sequential logic controller.
These results have been applied to build test sequences
for conformance test of industrial PLCs (Programmable
Logic Controllers) which are used for the control of critical
systems.

Further work is aiming at assessing how the knowledge
of the SIC and non-SIC-testable parts of a specification
model impacts trustworthiness of test results, according
to the test objective.

REFERENCES

da Silva Simão, A., Petrenko, A., and Yevtushenko, N.
(2009). Generating reduced tests for FSMs with extra
states. LNCS, 5826, 129–145.

Lee, D. and Yannakakis, M. (1996). Principles and meth-
ods of testing finite state machines - a survey. In
Proceedings of the IEEE, volume 84, 1090–1123.

Provost, J., Roussel, J.M., and Faure, J.M. (2009). Test
sequence construction from SFC specification. In
Proceedings of 2nd IFAC Workshop on Dependable
Control of Discrete Systems (DCDS’09). URL
http://hal.archives-ouvertes.fr/hal-00394454.

Tretmans, J. (2008). Model based testing with labelled
transition systems. LNCS, 4949, 1–38.

Virazel, A., David, R., Girard, P., Landrault, C., and
Pravossoudovitch, S. (2001). Delay fault testing: Choos-
ing between random sic and random mic test sequences.
Journal of Electronic Testing: Theory and Applications,
17(3-4), 233–241.

von Bochmann, G. and Jourdan, G.V. (2009). Testing
k-safe Petri nets. In TestCom/FATES - Testing of
Software and Communication Systems, volume 5826 of
LNCS, 33–48.

Yi, W., Xing-hua, F., and Dai-qiang, W. (2008). An
implementation of random single input change tech-
nique for low-power test. In Proceeding of the
2nd International Conference on Anti-counterfeiting,
Security and Identification, 352–355.

