
HAL Id: hal-00512750
https://hal.science/hal-00512750

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A bounded dynamic programming approach to schedule
operations in a cross docking platform

Gülgün Alpan, Rim Larbi, Bernard Penz

To cite this version:
Gülgün Alpan, Rim Larbi, Bernard Penz. A bounded dynamic programming approach to schedule
operations in a cross docking platform. Computers & Industrial Engineering, 2011, 60 (3), pp.385-396.
�10.1016/j.cie.2010.08.012�. �hal-00512750�

https://hal.science/hal-00512750
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A bounded dynamic programming approach to schedule operations

in a cross docking platform

Gülgün Alpan ⇑, Rim Larbi, Bernard Penz
Laboratoire G-SCOP, Grenoble INP-UJF-CNRS, 46 avenue Félix Viallet, 38031 Grenoble, France

Cross docking is a logistic technique employed to reduce the inventory holding, order picking, transpor-

tation costs as well as the delivery time. Products arriving to the cross dock are unloaded from inbound

trailers, possibly reconsolidated with other products arriving from different destinations and loaded into

outbound trailers within less than 24 h. In this study, we consider a multiple receiving and shipping door

cross dock environment. The objective is to find optimal (for reasonably small cross docks) or near opti-

mal (for larger cross docking facilities) scheduling policies which minimizes the total costs related to the

transshipment operations at the facility.

1. Introduction

A platform of cross docking is a consolidation point of inbound

products and offers short cycle times. Materials arriving to the

cross dock from suppliers are unloaded from the inbound trailer,

sorted according to their destinations, possibly consolidated with

other products to the same destination and reloaded into an out-

bound trailer within less than 24 h. Therefore, this technique is

mainly used in the transportation industries or in the distribution

of the perishable products.

In the literature on cross docking, we can find studies dealing

with problems either on the strategical or the operational level.

The solutions for strategical problems often require an investment

and the decisions taken are not frequently modifiable. For instance

cross dock network design (see Chen, Guo, Lim, & Rodrigues, 2006;

Donaldson, Jonhson, Ratliff, & Zhang, 1998; Ratliff, Vate, & Zhang,

1998) or the layout of cross docking platforms (see Bartholdi &

Gue, 2002; Bartholdi & Gue, 2004; Gue, 1999) make part of this

category of problems.

The problems which are handled in the operational level are

mainly on the real-time control of the cross docking platforms

and hence the decisions are modified on a real-time basis. In this

category of problems, we can cite the dock assignment problems,

the objective of which is the assignment of inbound and outbound

trucks on the docks in order to optimize a criterion (see Tsui &

Chang, 1990; Tsui & Chang, 1992 for the minimization of the

weighted distance between inbound and outbound trucks; see

(Bartholdi & Gue, 2001) for the minimization of the congestion

within the cross docking platform.) Scheduling of transshipment

operations inside the cross docking platforms are also in this group

of problems (see Alpan, Bauchau, Larbi, & Penz, 2008; Baptiste &

Maknoon, 2007; Baptiste, Penz, & Larbi, 2007; Boysen, 2009; Boy-

sen, Fliedner, & Scholl, 2008; Chen & Lee, 2009; Chen & Song, 2009;

Larbi, Alpan, Baptiste, & Penz, 2007; Larbi, Alpan, & Penz, 2009;

McWilliams, Stanfield, & Geiger, 2005; Sadykov, 2009; Song &

Chen, 2007; Yu & Egbelu, 2008). These recent studies seek to find

the best schedule of trucks so that either the time or the cost re-

lated performance measures of the cross dock is optimized. Among

these studies, (Baptiste & Maknoon, 2007; Baptiste et al., 2007;

Boysen et al., 2008; Chen & Lee, 2009; Larbi et al., 2007; Sadykov,

2009; Yu & Egbelu, 2008) consider the case where there is a single

receiving and a single shipping dock. These studies give interesting

insights on the solution structure for scheduling problems at the

cross docking facilities, however no practical application is possi-

ble. In practice a cross docking facility has several receiving and

shipping docks. The largest facilities can have several hundreds

of docks. Therefore, for implementation purposes, it is important

to study the multi door cross docking settings.

To the best of our knowledge, the scheduling problems in multi

door cross docks are studied in Alpan et al. (2008), Boysen (2009),

Chen and Song (2009), Larbi et al. (2009), McWilliams et al. (2005),

Song and Chen (2007). Chen and Song (2009) presents the cross

docking scheduling problem as a two-stage flow shop problemwith

parallel machines. Each stage corresponds to either inbound or out-

bound side of a cross dock, themachines and the set of jobs are anal-

ogous to inbound or outbound docks and the trucks to unload or

load, respectively. Indeed, this analogywas first established by Chen

and Lee (2009) where each stage of the problem contained only a

⇑ Corresponding author. Tel.: +33 476574333.

E-mail addresses: gulgun.alpan@grenoble-inp.fr (G. Alpan), rim.larbi@grenoble-inp.

fr (R. Larbi), Bernard.Penz@grenoble-inp.fr (B. Penz).

1

single machine (i.e. single inbound and outbound dock). They show

that theproblem isNP-hard in the strong sense. An extendedversion

is proposed by Chen and Song (2009). In this later study, at least one

of the stages is allowed to have more than one machine. In these

studies, the objective is to find the best schedule of inbound and out-

bound trucks so that the makespan of operations is minimized. The

same authors have studied a similar, yet simplified version of the

same scheduling problem in Song and Chen (2007).

The industrial context may impose specific constraints on the

cross docking operations. McWilliams et al. (2005) and Boysen

(2009) hence consider some specific industrial settings.McWilliams

et al. (2005) present the parcel hub scheduling problem common in

parcel delivery industries such as the postal services. The objective

of this study is very similar to the scheduling problems inmulti door

cross docking facilities, i.e. finding the best schedule of inbound

trucks so that themakespan of the parcel transfer operations ismin-

imized. However, the environmental setting has some specificities.

One of the characteristics of a parcel hub compared to a classical

cross docking platform is the type of materials handling system uti-

lized. In a parcel hub, the flow of thematerials is supported by a net-

work of fixed conveyor belts. Temporary storage of pallets are not

considered. The main focus is on the congestion of the fixed con-

veyor belts by the untimely unloading of the incoming parcels.

Therefore, we consider the parcel hub scheduling as a special case

of cross docking. Another special case is studied in Boysen (2009)

for a food industry cross docking facility. In this case, the inventory

holding is strictly forbidden. The author presents a dynamic pro-

gramming approach as well as heuristics based on simulated

annealing to schedule the inbound and outbound trucks. Three

time-relatedobjective functions are considered:minimizationof to-

tal processing time, total flow time and the total tardiness.

The current article is an extendedversion of a previous studypre-

sented at the 38th International Conference on Computers and

Industrial Engineering (Alpan et al., 2008). The cross docking envi-

ronment under study is a multi receiving and shipping dock setting.

In this paper, similar to the abovepresented literature,wewould like

to determine the best schedule of outbound trucks which should be

present at the shipping doors at any given time, given a known se-

quence of inbound truck arrivals. Our problem differs from the pre-

vious work in two aspects: (i) In all of the previous work, the

objective function is a time-related one, such as the minimization

of makespan, or total tardiness. This is rather classical in scheduling

and is an indirectway of considering operational costs. In this paper,

wewill directly focusonoperational costs related to temporary stor-

age of merchandize inside the cross dock and the costs related to

pre-emption of loading operations at the docks. (ii) The second dif-

ference comes from the problem structure. Herewe allow, pre-emp-

tion of loading operations which is not allowed in previous work.

Furthermore, we explicitly model the temporary storage, which is

either forbidden or not modeled explicitly in the existing literature

on multi dock cross-dock scheduling problems. We note that in

practice, temporary storage or pre-emption are solutions to increase

the flexibility of cross docking operations.

The rest of the article is organized as follows. In Section 2 we

will give a detailed description of the problem with the basic

assumptions and the related input data to the problem. In Section

3, we will briefly present the dynamic program used for the reso-

lution as well as some properties taken into consideration during

the resolution phase (Alpan et al., 2008). This section will also in-

clude the performance limits of the DP model illustrated by

numerical results. Section 4 is dedicated to the presentation of

some bounds on the DP model in order to reduce its complexity.

Performance of the resultant bounded dynamic programs are illus-

trated by numerical experiments in Section 5. And finally conclud-

ing remarks are given in Section 6.

2. Problem description

In this section we will introduce the basic operations that are

realized in the cross docking platform under study. Basic notations

used and the assumptions considered will also be given.

We consider a cross docking platform with IP 1 receiving and

O > 1 shipping doors. The products which transit the facility are

sent to one of the D different destinations. Each outbound truck

serves a single destination, d, d = {1, . . . ,D}. Each inbound truck

arriving to the platform may contain products for several destina-

tions. If an outbound truck in destination to d is present at a ship-

ping door, the products in destination to d are directly loaded from

the inbound truck into the outbound truck. Otherwise, (i) the

incoming products are either temporarily stored and a holding

cost, h, is paid per unit product (ii) or one of the trucks occupying

a shipping door is moved to a parking zone, liberating thus the

door for loading another trailer (for example the one to destination

d). In this latter case, a truck replacement cost, r, is paid. Naturally,

the outbound trucks which are full and are leaving the platform are

excluded from this penalty.

The major assumptions of the study are enumerated below.

A1: The products are identically conditioned in unit size pallets.

Hence, all transshipment operations on every pallet are done

in an identical unit time, s. That is, a pallet can be unloaded,

then either be directly loaded into an outbound truck or

transfered to the storage area in s time units. Similarly, a

pallet which is temporarily stored will take s time units to

load into an outbound truck. Without loss of generality, we

assume s = 1.

A2: The arrival sequence of inbound trucks, as well as their con-

tents and the position of the merchandize in the truck are

known. Without loss of generality, we assume that all

departing inbound trucks are immediately replaced by a

new one. We note that this assumption can be relaxed tech-

nically, by inserting empty inbound trucks in the arrival

sequence to fill the time gap between inbound trucks.

A3: The inbound trucks are assigned to receiving doors based on

a FIFO policy.

A4: There is sufficient workforce to load/unload all docked trail-

ers at the same time. Hence, a trailer assigned to a dock does

not wait for the availability of a material handler.

A5: The pallets in the inbound trucks have priority on the pallets

already stored in the cross dock. This assumption is a logical

consequence of the cost structure and assumption A1. Since

the holding cost h is per unit stored and the time of the stor-

age is ignored, a pallet staying in the cross dock for the

whole day will cost the same as the pallet stored for a few

minutes. Furthermore, any pallet transferred directly from

an inbound to an outbound truck will take only s time units

compared to 2s time units for the stored items.

A6: The outbound truck fleet is well dimensioned with inter-

changeable standard trucks so that no time is lost waiting

for the arrival of an outbound truck.

A7: All products arriving to the cross dock during the day should

leave the cross dock the same day.

We note that by assumption A1, we discretize time into inter-

vals of length 1. Each time interval will be denoted by t,

t = 1,2, . . . ,T. By assumptions A1 and A4 we allow I arriving pallets

to be handled at the same time at the inbound docks at a given

time interval t. Furthermore, if several pallets to destination d are

available at distinct receiving docks and an outbound truck to des-

tination d is also available at the shipping dock at time interval t,

these pallets can directly be loaded on the outbound truck at the

2

same time. However, if pallets to destination d are also available in

the storage at the same time interval t, we will give priority to di-

rect loading (by assumption A5); the already stored pallets will be

loaded another time.

With assumptions A1, A2 and A3, we can construct a fixed arri-

val sequence of pallets, denoted by S. For each receiving dock, we

represent the sequence of pallets unloaded at this dock by their

destination. By assumption A1, each arriving pallet takes s units

to handle. Hence, the arrival sequence S is represented as a matrix

of size I � T, where T is the time at which the last pallet in the fi-

nal inbound truck is accessed. The tth column of S gives the set of

all pallets to be unloaded at time interval t, t = {1, . . . ,T} at all

receiving docks I. As a consequence, we know which pallet is

available as an input to the cross dock at any time interval. We

note that, by construction, there is a one-to-one correspondance

between the time intervals and the sequence number of arriving

pallets in S

The known parameters which will be used throughout the arti-

cle is summarized in Table 1.

Given a known arrival sequence of pallets at the receiving docks

at any time interval t, t = {1, . . . ,T}, the objective of this study is to

find the optimum sequence of the set of outbound trucks that

should be present at the shipping doors at any time interval t,

t = {1, . . . ,T} such that the sum of the total inventory holding and

the truck replacement costs are minimized. The objective function,

here, is a trade-off between the cost of storage and truck replace-

ment (or pre-emption of loading). If we suppress one of these costs,

the problem becomes easier. If r = 0, we can allow as many pre-

emptions as needed to place the good outbound trucks at each

time interval in order to avoid storage. Conversely, if h = 0, we

can store pallets and charge them later when the outbound truck

is present without paying penalties.

The problemdescribed above aswell as some of the assumptions

are very close to ‘‘production cross docks” where the cross docking

operations are placed at downstream of the production lines. In this

context, the arrival sequence of products is fixed and predetermined

by theproductionplanwhich takes into account theproduction con-

straints such as the resource or component availabilities from sup-

pliers. The products coming out of the lines are handled by a FIFO

policy. Since the incoming sequence is imposed by the production

plan, we focus only on the outbound scheduling. Finally, if a long se-

quence of products to a given destination is coming out of the pro-

duction lines and no trucks are available for this destination at the

loading docks, the supervisor can decide to make a replacement to

minimize the storage level inside the facility (i.e. truck replacement

inour case). Theabovementioned industrial context is given inMak-

noon and Baptiste (2009) and Larbi et al. (2007). In these studies, the

authors present the cross docking operations in a company produc-

ing household appliances.

3. An optimal solution based on dynamic programming

In this section we will present a dynamic programming (DP)

based model to solve the problem described above. We consider

that DP O since the case with O > D is trivial (see Alpan et al.,

2008) and OP I to ensure that traffic intensity inside the cross

dock does not generate infinite stock. Note that, when the cross

docks are designed, a common practice is to allocate about

OP 2I (see, Bartholdi & Gue, 2004 & Napolitano, 2000) to control

the traffic intensity inside the facility.

3.1. The mathematical model

Let Xt be the set of states at each time interval t, t = {1, . . . ,T}. We

define a state �xt ¼ ðt; Zt; Y tÞ; �xt 2 Xt , as a vector, where t is the time

interval of the input sequence S, Zt is the set of outbound trucks (or

destinations) present at the shipping door during the time interval

t and Y t is a vector of dimension D which keeps track of the quan-

tity of pallets temporarily stored for each destination, d = {1, . . . ,D}.

The cost incurred at time interval t + 1 given that the system

was in state �xt at time interval t and we have decided to assign

the set of outbound trucks Zt+1 at the shipping docks at time t + 1

is denoted by CZtþ1
ð�xtÞ and is calculated by Eq. (1).

CZtþ1
ð�xtÞ ¼

X

D

i¼1

max 0; ytþ1
i � yti

� �� �

� hþ
X

O

j¼1

1ztþ1
j

RZt
� r ð1Þ

where 1 is an indicator function which takes the value of 1 if

ztþ1
j R Zt and 0 otherwise.

For each pallet in destination to d in the sequence S at time

interval t + 1, we may decide to assign or not an outbound truck

to this destination at the shipping docks. If such a truck is already

available at the docks at time t, we may keep it at time t + 1 as well

and transfer the pallets from receiving to shipping docks with 0

cost. If on the other hand, no such truck is already available at

the shipping docks, we have two possibilities; either we store the

pallet (i.e. ytþ1
d ¼ ytd þ 1 and incur h), or remove one of the current

outbound trucks to affect the corresponding destination, d, to a

shipping door (i.e. 1ztþ1
d

RZt
¼ 1 and incur r).

As seen in Eq. (1), CZtþ1
ð�xtÞ sums up the total cost of storage for the

pallets which are temporarily stored and the total cost of outbound

trucks which are replaced during the time interval t + 1, given that

the system was in state �xt at time t and the set of outbound trucks

Zt+1 are assigned at the shipping docks at time t + 1.

Let Pð�xtþ1Þ be the set of all states �xt , �xt � Xt , which are the pre-

decessors of state �xtþ1. Using Eq. (1), the DP model to find the glo-

bal cost upto time interval t + 1 is given in Eq. (2).

ftþ1ð�xtþ1Þ ¼ min
8�xt2Pð�xtþ1Þ

fCZtþ1
ð�xtÞ þ ftð�xtÞg ð2Þ

with f0ð �x0Þ ¼ 0.

The recursive function in Eq. (2) generates a graph where the

number of nodes increases exponentially. Hence any rule which

helps removing nodes without affecting the optimality of the solu-

tion can considerably increase the performance of the method. In

the next section, we will present some rules and properties which

are used to reduce the size of the graph generated by Eq. (2).

3.2. Properties to reduce the size of the DP model

Property 1. A node n1 of the graph generated by Eq. (2) is dominated

by another node n2 if and only if the following conditions are satisfied.

1. n1 and n2 have the same time stamp, t.

2. n1 and n2 have the same set of outbound trucks present at the ship-

ping doors.

3. For each destination d, the quantity of the temporarily stored pal-

lets for n1 is greater than or equal to the quantity of the temporarily

stored pallets for n2.

4. Cost generated by n1 is strictly greater than that of n2.

Table 1

Input parameters.

Notation Description

I Number of receiving doors

O Number of shipping doors

D Number of destinations

h Holding cost

r Truck replacement cost

S An input sequence of size T

C Capacity of the outbound trucks

s Unit time of each transshipment operation

3

Proof. A node ni in the generated graph represents a state of the

system, i.e. �xt ¼ ðt; Zt ;Y tÞ. The first two conditions in the property

guarantee that the nodes are identical in terms of time interval t

and Zt and hence comparable. The third condition confirms that

the possible temporary storage options in n1 are included in n2.

And since, the cost in n1 is strictly greater than that of n2, we con-

clude that n1 is dominated by n2 and will never appear in an opti-

mal solution. h

Property 2. Let n1 and n2 be two nodes in the generated graph which

have the same time stamp t. The nodes which succeed n1 are exactly

the same as those succeeding n2 if and only if the vectors Y t in n1
and n2 are identical.

Proof. Since n1 and n2 have the same time interval t, they are com-

parable. We recall that, a given node ni in the generated graph at

level t represents the state �xt ¼ ðt; Zt ;Y tÞ. The succeeding nodes of

a given ni are generated as follows:

1. Time is augmented by 1.

2. For a given ni at time interval t + 1, all possible combinations of

outbound trucks available at the shipping doors, i.e. Zt+1 are

generated as a combination of O trucks out of D destinations

(i.e. C(D,O)).

3. The vector Y tþ1 is then obtained using the set of available trucks

at the shipping doors Zt+1 and the state of the stock levels at

time t, i.e. Y t .

By construction, the first and the second parameters of
�xtþ1 ¼ ðt; Ztþ1;Y tþ1Þ will be identical for all succeeding nodes of

n1 and n2. Since Y tþ1 is calculated using the set Zt+1 and Y t , the only

way to have identical �xtþ1 is then possible if and only if Y t are

identical for n1 and n2. h

Property 3. Let t be a time instant in the input sequence S of length T

and d be a destination for which an outbound truck is present at the

shipping door at time t. If a pallet to destination d is present at t + 1

as well, the truck to destination d is kept at the shipping doors during

t + 1.

Proof. If we choose to keep the outbound truck, the product in

destination to d at time interval t can be loaded without paying

any penalty. If on the other hand, we choose to remove this truck

from the shipping door, the product is stored and at least h (and

eventually also r if a truck to destination d has to be called up to

pick up the merchandize) is paid. Hence it is optimal to keep the

truck at the shipping door. h

We note that the above proof applies for infinite T and C (i.e.

capacity of the truck). Optimality is not guaranteed when C is finite

since there will be other decisions to consider in terms of the

remaining capacity of the trucks. But these are mainly borderline

effects. In Alpan et al. (2008), a series of experiments have proved

that the relative deviation from optimal in case of the bounded

truck capacity is negligible. Below, we summarize the reduction

rules which are used in the rest of the paper:

1. All dominated nodes are eliminated based on Property 1.

2. All identical successors (i.e. double nodes) are identified in

advance based on Property 2 and are eliminated.

3. All nodes violating Property 3 are also eliminated.

An example is given in Appendix A to illustrate the iterations of

the DP model as well as the application of properties given above.

3.3. Numerical Results on the performance of the DP model

In this section, we will give some numerical results. The model

given in the previous section is tested to observe the impact of

the input parameters on the solution obtained. Since the dynamic

program gives an optimal solution, the only performance measure

taken into consideration here is the execution time of the

program. The parameters considered are the length of the input

sequence S, the number of destinations D, the number of receiv-

ing doors O and the ratio of cost parameters r/h. We will assume

the capacity of each truck to be C = 20 throughout the

experiments.

The results presented in this section are the mean results of 10

different instances when the execution time is reasonable and the

mean of three different instances if the execution time is very long.

In the input sequence S, the majority of the destinations are as-

sumed to be well represented. The destinations with a few pallets

are assumed to be rare. We note that, such a structure for the dis-

tribution of destinations is rather common in practice. Since the

products arriving a cross dock should leave it in 24 h, the products

for rare destinations are not cross docked in practice (Napolitano,

2000). Nevertheless, the interested reader can refer to Alpan

et al. (2008) where other structures of input sequence S have been

tested. The distribution of destinations will be represented by the

probability of appearances. For instance, for D = 4, distribution

(1,29,34,36) means that destination 1 will appear in the sequence

with a probability 0.01 while destination 2 will appear with a prob-

ability 0.29 and so on. The input sequence is generated as follows:

Given destinations distribution, for each inbound dock, the desti-

nation of an arriving pallet will randomly be assigned using the gi-

ven distribution function. The instance generator is down-loadable

from http://www.g-scop.fr/�gaujalg. Destination distributions

used are given in Table 2.

The model is programmed using JAVA and the tests are run on a

1.6 GHz and 512Mo RAM Personal Computer.

3.3.1. Tests on the length of the input sequence

We make the hypothesis that an acceptable execution time will

be at most 15 min. Hence we varied T such that the execution time

stays within the 15 min range. The other input parameters are I = 4,

O = 7 and D = 8. Fig. 1 displays the evolution of the execution time

of the program versus the length T of the input sequence S. Each

point on the curve corresponds to the mean of 10 different test

runs. As seen in Fig. 1, the critical time of 15 min is exceeded when

T is almost 570. We also observe that the execution time augments

exponentially as T is increased.

This phenomenon is explained as follows: for a given instance t

in the sequence, if a pallet to be unloaded does not have its corre-

sponding outbound truck at the shipping door, we should decide

either to store the pallet temporarily or to affect the corresponding

truck at the shipping door. To find the best decision, we often have

to go in depth in the sequence to check the possible arrivals for the

same destination. Therefore, the longer the sequence is the search

space in the sequence is longer and the number of nodes to be

Table 2

Distribution of destinations.

D Distribution of destinations (in %)

4 (1,29,34,36)

5 (1,15,25,28,31)

6 (1,14,19,21,22,23)

7 (2,7,10,17,20,21,23)

8 (2,7,12,14,15,16,17,17)

9 (2,4,11,12,12,13,14,16,16)

4

generated is considerably higher. For instance for T = 570 where

the 15 min limit is attained, the total number of nodes generated

is around 360,000 whereas for T = 280, this number is divided by 3.

3.3.2. Tests on the number of destinations

The test runs are done for I = 1, O = 2, T = 50 and 4 6 D 6 9. The

curves in Figs. 2 and 3 give the execution time and the number of

generated nodes versus the number of destinations, respectively.

As illustrated in Fig. 2, the execution time is reasonable until

D = 8 and for D > 8 we have an exponential behavior for the execu-

tion time. This is explained by the curve in Fig. 3 where we observe

an important augmentation in the number of nodes generated.

3.3.3. Tests on the number of receiving doors

The results given in Figs. 4 and 5 are obtained for input param-

eters O = 9, D = 10, T = 100 and the number of receiving doors vary-

ing between 1 and 7. The program is tested for I = 8 as well but did

not give any solution after a very long execution period. We believe

that this occurs because the number of receiving doors I is very

close to the number of shipping doors O and hence the system is

close to saturation. The input traffic of pallets is barely absorbed

by the outgoing trucks and hence finding an optimal solution gets

difficult as I approaches O.

3.3.4. Tests on the number of shipping doors

We tested the effects of the number of the shipping doors on the

execution time for I = 1, D = 9 and T = 50. Table 3 gives the results

obtained.

For 3, 4, 5 and 6 shipping doors the execution time is exploded.

The major reason is that, for each node in the graph, the number of

succeeding nodes (denoted NXT-S in the tables) varies between 84

and 126. Hence the required number of calculations is augmented.

We also observe that O = 2 and O = 7, the number of succeeding

nodes are equivalent however the solution for O = 7 is obtained

much faster than the solution for O = 2. The reason is that, it is

much easier to affect nine destinations to seven shipping doors

than to affect them to two shipping doors. These results show that

the closer the number of shipping doors to the number of destina-

tions, an optimal solution can be found faster. A cross docking plat-

form is hence efficient if jD � Oj is low.

3.3.5. Tests on the ratio of cost parameters r/h

Finally, we tested the effects of the ratio of cost parameters r/h.

The fixed parameters are I = 1, O = 2, D = 4 and T = 50. The results

obtained are presented in Fig. 6.

Fig. 1. Evolution of the execution time by the length of the sequences.

Fig. 2. Evolution of the execution time with respect to the number of destinations.

Fig. 3. Number of the nodes generated with respect to the number of destinations.

Fig. 4. Execution time as a function of number of receiving doors.

Fig. 5. Number of nodes generated as a function of number of receiving doors.

5

We observe that the execution time increases upto a point

when the ratio r/h increases and than remains almost constant.

This is most probably due to the fact that, as r gets much higher

than h, we would prefer storing incoming products than replacing

a truck. Increasing the number of units stored in the facility means

that new nodes will be generated in the graph to keep track of

these new levels of stock units. On the other hand, the computa-

tional complexity related to the replacement of the truck (i.e.

C(D,O)) stays the same for all r since D and O are fixed. Therefore,

when a certain limit of storage is attained (i.e. all possible combi-

nations of storages are created), the execution time will reach to

stability even if r is further increased.

Table 4 gives a summary of the limiting results obtained

throughout the test runs. We observe that the optimal solution

procedure presented above can handle a cross docking facility with

about ten docks and nine destinations. In the next section, we will

explore how bounding the DP model in terms of number of nodes

generated at each stage can impact the performance of the model.

4. Bounding strategies on dynamic programming model

As we have seen via the numerical experiments presented in

the previous section, the DP model fails to handle scheduling prob-

lems in the case of large cross docking systems (i.e.high number of

destinations, products, input and output docks). This is basically

due to the exponential increase in the number of nodes generated

as the value of input parameters to the problem increases. In this

section, we will present two strategies to limit the number of

nodes generated at each stage of the DP model. If these bounds

are efficient to remove unnecessary nodes (i.e. the ones which

are not on the optimal path) then we can hope to increase the com-

putational performance of the model while limiting the deviation

from the optimal.

4.1. Bounds on the storage allowed at each time period, t

As we have seen in Section 3 a state �xt in the original DP is rep-

resented by three components, namely the time interval t, set of

outbound destinations Zt and the amount of products already

stored, Y t . Among these three components, especially Zt and Y t ,

contribute to the complexity of the problem. Here, we will put a

special emphasis on the storage since we believe that bounding

the number of units which can be stored in the cross docking facil-

ity will not only have a positive effect on the performance of the DP

model, but it may also improve the internal performance of the

facility. For instance, smaller stocks in the facility will diminish

the level of congestion inside the facility and hence augment the

speed of the product flow inside the cross dock, which in turn will

increase the productivity of the facility.

Therefore, in this section we will first present an upper bound

on the level of inventory that can be accumulated in the cross

docking facility, denoted Smax (see Eq. (3)). In Eq. (3), T, I, O are de-

fined as before.

Smax ¼
TðO� IÞI

O
ð3Þ

Eq. (3) is calculated similar to a classical EOQ model with finite pro-

duction rate (see for instance, Silver, Pyke, & Peterson, 1998). Since

we are looking for an upper bound, we make the assumption that at

the beginning wrong decisions are made concerning the destina-

tions to be assigned on the outbound docks, thus increasing inven-

tory level with a rate of I upto Smax. Then, the inventory is

progressively absorbed with a rate of O � I since all products are

to be removed at the end of the period T and the workforce capacity

is infinite (see assumption A4). The algorithm below summarizes

how we bound the original DP to reduce the number of nodes gen-

erated in the underlying graph.

Algorithm 1. : DP bounded on the level of stock

Let a be the percentage of Smax which will be allowed at the

cross docking facility. Repeat the following steps for each

node generated by the original DP.
1: At a given stage t, generate all nodes (or equivalently states �xt 2 Xt as

in the original DP).

2: If
Pd¼D

d¼1 yd > a� Smax where yd represents each cella of the vector Y t ,

then remove this node from the graph.

4.2. Bounds on the number of states generated at each time period, t

In this section, we will propose to bound the DP model by

imposing a limit on the number of nodes generated at each stage

based on the cost incurred at each node. To this end, we first calcu-

lated a theoretical upper bound on the number of nodes generated

at each step, denoted UB(nodes) (see Eq. (4))

UBðnodesÞ ¼ CðD;OÞ �
X

Smax

i¼0

Cðiþ D� 1; iÞ ð4Þ

In Eq. (4), the first term on the right hand side corresponds to all

possible configurations of destinations which can be present at

the outbound docks. Similarly, the term C(i + D � 1, i) corresponds

to all possible configurations of stocks which can be accumulated

for each destination d for a given level of stock i. We note that the

term C(i + D � 1, i) is originally proposed in Bruel and Balbo (1980)

Table 3

Effects of the number of shipping doors on the execution time

(in seconds).

O NXT-S Time (s)

2 36 5363.772

3 84 >10,000

4 126 >10,000

5 126 >10,000

6 84 >10,000

7 36 8.485

8 9 0.481

0

0,5

1

1,5

2

2,5

3

3,5

3 6 10 20

Ratio of cost parameters r/h

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Fig. 6. Evolution of the execution time with respect to the ratio of cost parameters.

Table 4

A summary of limiting input parameters for reasonable execution times.

I O D T Time (s)

1 2 3 5000 1383.106

3 7 8 1000 1983.282

4 7 8 600 1034.437

2 4 6 50 4679.657

1 2 9 50 5363.772

6

to calculate the number of possible states of a closed queuing net-

work composed of D single server queues and i customers. This is

analogous to finding the number of states where the stock for each

destination varies from 0 to iwith the constraint that the sum of the

stock for all destinations is equal to i. Finally, since the level of stock

i may itself vary (i.e. i = {0, . . . ,Smax}), we sum over all possible stor-

age levels. Algorithm 2 summarizes the bounding procedure based

on this upper bound.

Algorithm 2. : DP bounded on the number of nodes

Let b be the percentage of nodes which will be kept at each

stage. Repeat the following steps for each stage t of the

original DP, t = {0, . . . ,T}.
1: For a new stage t + 1, generate all the nodes which stem from stage t

as in the original DP.

2: For each new node in stage t + 1 calculate the global cost as in Eq. (2).

3: At stage t + 1, keep only b percent of the nodes having the least global

cost.

5. Numerical results on the performance of bounds

In this section we will present the results of some numerical

experiments carried out to evaluate the performance of bounding

procedures. Different experiments are generated by varying the

number of inbound doors I, number of outbound doors O and the

number of destinations D. The experiments are performed on small

size problems in order to test the quality of the solutions in com-

parison to the optimal solution given by the DP model. For each

experiment, 10 instances are generated and the results are given

as an average of the results obtained for each instance. We consid-

ered the unit storage cost h = 1 and the truck replacement cost

r = 10.

The algorithms are programmed in Java and the tests are per-

formed using a Pentium 4 (1.6 GHz, 512 RAM) computer as is the

case for the DP model.

The results are given in the following tables. The first column

gives the name of themethod used. The second column gives the to-

tal number of nodes generated using the method. The third column

represents the execution times (in seconds) and finally the last col-

umn gives the percent difference of total cost obtained by the

bounding procedure and the optimal or absence of some destina-

tions at the outbound dock. Ha¼0;1
stock , Ha¼0;2

stock , Ha¼0;3
stock , Ha¼0;4

stock gives the

experimental results for Algorithm 1 where the storage capacity is

respectively limited to 10%, 20%, 30% and 40% of Smax given in Eq.

(3). Hb¼0;7þ0;5i
nodes with i 2 {0,1,2,3,4,5,6} corresponds to results for

Algorithm2where the number of nodes is boundedby b = 0.7 + 0.5i.

5.1. Experiments for variable D

In this section, we will present the results when I, O and T are

fixed at 1, 2 and 50, respectively, and the number of destinations,

D is varied. (see Tables 5–7).

We first observe that, the results of Hstock is more sensitive to

the changes in the parameter a than Hb

nodes is for parameter b for

the ranges chosen in these experiments: The number of nodes re-

moved do not change a lot when b varies between 0.7 and 0.95. On

the other hand the performance of Hstock is very much affected by

the value of a.
For bounding procedure Hstock, when the storage space is highly

restricted (i.e. the case where a = 0.1), the percent difference of

Hstock with the optimal solution is in the order of 30% with very

low execution times (only a few seconds). The improvement in

execution times is especially appreciated for higher number of

destinations. For instance, the execution time of Ha¼0:1
stock is 25 times

lower than that of the optimal solution when D = 4. It is in the or-

der of 854 times for D = 5 and increases to 2343 times for D = 6

while the quality of the solution stays within the limit of 30%.

We also observe that as the storage capacity augments the solu-

tion gets closer to the optimal solution, however the execution

times augment significantly as well. For the case where a = 0.4

the solution space is almost the same as the DP model, but the exe-

cution times are even worse, since the Algorithm 1 requires some

execution time in addition to the generation of the graph underly-

ing the DP model.

For the second bounding procedure Hb

nodes, the difference of the

solution with the optimal is inferior to 5%. We can observe that

bounding the number of nodes to b = 0.7 reduces the execution

Table 5

Results for I, O, D, T = (1, 2, 4, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 39,946 4.2963

Ha¼0:1
stock

4576.1 0.071 18.63

Ha¼0:2
stock

20,878 1.03 2.5

Ha¼0:3
stock

37564.3 3.69 0

Ha¼0:4
stock

39,926 4.26 0

Hb¼0:7
nodes

27692.8 2.2 3.87

Hb¼0:75
nodes

30070.1 2.54 1.93

Hb¼0:8
nodes

31174.9 2.77 1.93

Hb¼0:85
nodes

32598.4 3.07 0.78

Hb¼0:9
nodes

33599.2 3.22 0.6

Hb¼0:95
nodes

34963.3 3.55 0.6

Table 6

Results for I, O, D, T = (1, 2, 5, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 342611.7 445.52

Ha¼0:1
stock

14443.6 0.52 28.29

Ha¼0:2
stock

109057.7 27.56 9.49

Ha¼0:3
stock

282524.8 264.22 3.83

Ha¼0:4
stock

334468.4 398.96 3.69

Hb¼0:7
nodes

214468.5 182.48 3.58

Hb¼0:75
nodes

229,831 185.13 3.92

Hb¼0:8
nodes

232981.9 196.93 3.13

Hb¼0:85
nodes

243599.3 211.67 2.81

Hb¼0:9
nodes

248379.2 225.76 1.57

Hb¼0:95
nodes

252048.1 234.10 0.7

Table 7

Results for I, O, D, T = (1, 2, 6, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 1093904.8 4998.24

Ha¼0:1
stock

32591.2 2.13 30.5

Ha¼0:2
stock

352422.2 346.16 4.72

Ha¼0:3
stock

950888.2 3548.95 1.55

Ha¼0:4
stock

1085131.2 4909.53 0.36

Hb¼0:7
nodes

896934.6 3531.78 4.83

Hb¼0:75
nodes

901099.4 3630.62 4.83

Hb¼0:8
nodes

908,263 3705.39 1.19

Hb¼0:85
nodes

927,230 3758.75 1.19

Hb¼0:9
nodes

938,175 3817.03 1.19

Hb¼0:95
nodes

942,595 3861.32 1.19

7

time to 70% of the execution time of DP. When b augments,

the solution is closer to the optimal but the execution time

augments.

However it seems like Hstock is better than Hb

nodes for the cases

where the number of destinations is high. In Table 7, we observe

that Hstock for a = 0.2, the quality of the solution is similar to

Hb¼0:7
nodes , however, the execution time is 10 times better than

that of Hb¼0:7
nodes . In general, Hstock seems to perform better than

Hb

nodes for 0.2 6 a 6 0.3 if we admit a maximum of 5% deviation

from optimal.

5.2. Experiments for variable O

In this section we have tested the two bounding procedures and

the DP when I, D and T are fixed at 1, 6 and 50, respectively, and the

number of outbound doors, O is varied. The results are given in Ta-

bles 7–9.

We can observe that for the two bounding procedures the dif-

ference to optimal solution decreases when the difference between

the number of outbound doors O and the number of destinations D

decreases. Similar to the previous tests, the quality of the solutions

augments as a and b are increased, but the execution times get

worse. We note that, the input data is already very easy for the

DP model in the case of Table 9. Hence, it is preferable to use di-

rectly the DP model which is sure to give the optimum solution.

However, the interest of bounding procedures are especially appre-

ciated for difficult instances such as the one given in Table 8. Here

we observe that the execution time can be divided by 2 if we ac-

cept a solution 0.73% worse than the optimal one (case of Hb¼0:73
nodes)

and by 12 if we accept a solution 2.7% worse than the optimal

one (case of Ha¼0:2
stock).

5.3. Experiments for variable I

In this section we have tested the two bounding procedures and

the DP when O, D and T are fixed at 4, 6 and 50, respectively, and

the number of inbound doors, I is varied. The results are given in

Tables 9–11.

For these series of tests, we make the same observations as be-

fore: the solutions are closer to the optimal when a and b increase

but the execution times suffer. Similarly, for similar performance

in terms of cost, Hstock seems to perform better than Hnodes (see

for a = 0.2 and b = 0.7 in Table 10).

Table 8

Results for I, O, D, T = (1, 3, 6, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 721097.5 1482.8

Ha¼0:1
stock

32077.2 1.4 31.91

Ha¼0:2
stock

258826.7 119.6 2.7

Ha¼0:3
stock

634467.7 1070.9 0

Ha¼0:4
stock

709198.7 1400.9 0

Hb¼0:7
nodes

503,070 692.4 0.73

Hb¼0:75
nodes

507146.5 711 0.73

Hb¼0:8
nodes

514943.7 722.2 0.73

Hb¼0:85
nodes

515951.2 708.8 0.73

Hb¼0:9
nodes

519652.2 743 0

Hb¼0:95
nodes

530,659 778 0

Table 9

Results for I, O, D, T = (1, 4, 6, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 74830.2 8.97

Ha¼0:1
stock

12225.7 0.24 46.33

Ha¼0:2
stock

53035.2 3.83 0

Ha¼0:3
stock

74,473 8.81 0

Ha¼0:4
stock

74830.2 8.82 0

Hb¼0:7
nodes

60603.2 5.63 0

Hb¼0:75
nodes

60803.5 5.54 0

Hb¼0:8
nodes

60915.2 5.62 0

Hb¼0:85
nodes

60938.2 5.68 0

Hb¼0:9
nodes

61378.7 5.68 0

Hb¼0:95
nodes

62285.7 6.07 0

Table 10

Results for I, O, D, T = (2, 4, 6, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 465526.8 1200

Ha¼0:1
stock

14334.3 0.72 30.54

Ha¼0:2
stock

122052.1 47.11 4.46

Ha¼0:3
stock

377,324 707.98 1.25

Ha¼0:4
stock

449885.1 1073.8 1.54

Hb¼0:7
nodes

418374.1 910.92 4.76

Hb¼0:75
nodes

418654.8 917.76 2.38

Hb¼0:8
nodes

428819.3 970.2 0

Hb¼0:85
nodes

434,570 1006.9 0

Hb¼0:9
nodes

448918.8 1089.2 0

Hb¼0:95
nodes

449916.6 1106 0

Table 11

Results for I, O, D, T = (3, 4, 6, 50).

Nb nodes gen. Exec. times (s) % diff. to optimal

DP 780573.5 1929.5

Ha¼0:1
stock

17608.5 0.75 35.94

Ha¼0:2
stock

189,263 65.32 15.01

Ha¼0:3
stock

587,252 962.1 0

Ha¼0:4
stock

742,913 1700.82 0

Hb¼0:7
nodes

663,215 1318.23 0

Hb¼0:75
nodes

665,497 1315.04 0

Hb¼0:8
nodes

702,851 1500.45 0

Hb¼0:85
nodes

735,555 1669.89 0

Hb¼0:9
nodes

749,383 1779.79 0

Hb¼0:95
nodes

763,153 1779.8 0

Fig. A.7. First iteration of the DP model.

8

6. Conclusion

In this article, we proposed a bounded dynamic programming

approach to schedule the internal operations in a cross docking

facility. The contributions are two-fold. First of all, using dynamic

programming technique, we propose an optimal truck schedule

to minimize the cost of operations in a multiple-dock cross docking

facility. Secondly, we have seen through experimental results that

Fig. A.8. Second iteration of the DP model.

Fig. A.9. Third iteration of the DP model.

9

by generating intelligent bounds, we can solve scheduling prob-

lems much faster than a classical DP model without much degrad-

ing the solution. This opens up new possibilities for scheduling of

internal operations in larger cross docking facilities.

The numerical results on bounds have shown that the parame-

ters of bounding procedures affects considerably the final solution.

For instance, in the case of Hstock, the procedure seems to be well

performing when 0.2 6 a 6 0.3. On the other hand for Hb

nodes,

bP 0.7 seems to be not very restrictive for certain cases. Unfortu-

nately, it is difficult to provide a general procedure or closed-for-

mula which give the best or most reasonable parameter values.

Indeed, a and b are very much dependent on the input data. We be-

lieve that these parameters can be included in a long term decision

process. Usually, the global flow of materials (e.g. number of pallets

per hour or day) which can be handled and/or usually handled are

known. Based on historical data, the supervisor can use our meth-

od, to observe a window of best performing a and b values specific

for their platform. These parameters can then be used on a real-

time basis.

New bounding procedures can also be tested. As we have ex-

plained in Section 4.1, set of outbound destinations Zt contributes

to the complexity of the problem as well. We may impose, for in-

stance, f destinations to be already present in the set Zt depending

on the density of products in a portion of the input sequence. Such

a procedure, will put a bound on the number of nodes generated

since the possible combinations for Zt will be C(D � f,O � f), instead

of C(D,O). Similarly, hybrid bounds may be tested such as

Hstock þ Hb

nodes.

Finally, in this study, we have considered that input sequence is

fixed. It will be interesting to allow a flexible input sequence. That

is, the supervisor has the possibility to reschedule the inbound

trucks. To this end, the techniques developed in this paper can

be combined with some metaheuristics which modify the input se-

quence. We believe that, this may considerably reduce the solution

space generated by the DP model.

Appendix A

In this appendix, we give an example to illustrate the DP model

presented in Section 3. We consider a cross docking facility with

I = 1, O = 2, D = 3, r = 2, h = 1.5 and an input sequence of

S = (1,2,2,3,1). This means that, at time t = 1, a pallet for destina-

tion 1 will be unloaded at the unique receiving dock. At time

t = 2 a pallet for destination 2 will be unloaded, and so on. This se-

quence will be displayed on top of the generated graph to illustrate

which destination is present at the receiving dock at a given stage.

The objective is to find which trucks should be present at the

two shipping docks during the periods 1–5 such that the total

inventory holding and truck replacement costs are minimized. In

the following figures, each state �xt ¼ ðt; Zt ;Y tÞ in a given stage t is

represented by a double compartment rectangle. The left compart-

ment gives the set of trucks assigned at a shipping dock at time t,

i.e. Zt, and the right compartment gives the vector of destinations

in which we keep track of the storage level for each destination.

As seen in Fig. A.7, initially no trucks (destinations) are assigned

on the two shipping docks and the storage area is empty and a total

cost of f0 = 0 is incurred initially. Then we start the DP recursion.

We first calculate all possible combinations of truck (destination)

assignments: Z1 = {1,2} or Z1 = {1,3} or Z1 = {2,3}. For Z1 = {1,2} or

Z1 = {1,3}, no pallets are stored, since the arriving pallet to destina-

tion 1 can directly be loaded on the truck to destination 1 which is

assigned to one of the available docks. Consequently, the storage

Fig. A.10. Fourth iteration of the DP model.

10

levels are all 0 for all destinations and no cost is incurred. If the

assignment Z1 = {2,3} is made, on the other hand, the unloaded

pallet to destination 1 will be temporarily stored (i.e.

Y1 ¼ ð1;0;0Þ) and a cost of h is incurred. Since each state in stage

1 has a single predecessor with a cost of f0 = 0, the total cost for

each state at this stage will be equal to the costs evaluated on

the arcs.

Fig. A.8 illustrates the second iteration of the DP model. First,

we generate all possible succeeding states for every state in stage

1. Let’s take state �x1 ¼ ðZ1;Y1Þ ¼ ðf1;3g; ð0;0; 0ÞÞ. From this state,

we can generate three succeeding states with the same possible

combinations of truck (destination) assignments that we have ob-

served in Fig. A.7: Z2 = {1,2}, Z2 = {1,3}, Z2 = {2,3}. Similar to first

iteration, we update the storage levels for each destination given

these assignments. For Z2 = {1,2} and Z2 = {2,3}, Y2 ¼ ð0;0;0Þ. This

means that no pallets are stored. The pallet to destination 2 arriv-

ing at t = 2 can directly be loaded on the truck to destination 2

which is available at the shipping docks. On the other hand, for

Z2 = {1,3} this arriving pallet will be stored temporarily since no

trucks to destination 2 is available at the shipping docks at time

t = 2. The arc from �x1 ¼ ðf1;3g; ð0;0; 0ÞÞ to �x2 ¼ ðf1;2g; ð0;0;0ÞÞ

respectively, �x2 ¼ ðf2;3g; ð0;0;0ÞÞ costs r since truck to destination

3 (resp. 1) is replaced by a truck to destination 2. The arc from
�x1 ¼ ðf1;3g; ð0;0;0ÞÞ to �x2 ¼ ðf1;3g; ð0;1;0ÞÞ is evaluated by h,

since a holding cost is paid for the stored pallet. Same procedure

is followed for all �x1 to find the succeeding states and the costs

on the arcs to these succeeding states. By Property 2, state
�x1 ¼ ðf1;2g; ð0;0;0ÞÞ will have the same potential succeeding

states as �x1 ¼ ðf1;3g; ð0;0;0ÞÞ. Finally by Property 3, the arcs from
�x1 ¼ ðf1;2g; ð0;0;0ÞÞ to �x2 ¼ ð1;3; ð0;1;0ÞÞ (similarly, from
�x1 ¼ ðf2;3g; ð1;0;0ÞÞ to �x2 ¼ ðf1;3g; ð0;1; 0ÞÞ) will not be gener-

ated. This is illustrated by dashed lines in Fig. A.8. Finally, the total

cost from the beginning upto a given state in stage 2 is calculated

using Eq. (2). Before proceeding to the next stage, we verify if a

state can be eliminated by Property 1. State �x2 ¼ ðf2;3g; ð1;0;0ÞÞ

is a potential candidate compared to �x2 ¼ ðf2;3g; ð0;0;0ÞÞ since it

accumulates a higher number of pallets in the storage. However,

we cannot eliminate it since the cost incurred at this stage is lower

than f2({2,3}, (0,0,0)).

The third iteration is illustrated by Fig. A.9. Here we note that

the dashed arcs will not be generated by Property 3. That is, we

are keeping the truck to destination 2. As a result, the states
�x3 ¼ ðf1;3g; ð0;0;0ÞÞ and �x3 ¼ ðf1;3g; ð0;0;0ÞÞ are removed from

the graph.

Fig. A.10 illustrates the fourth stage operations. Here, we re-

mark that state �x4 ¼ ðf2;3g; ð0;1;0ÞÞ is dominated by
�x4 ¼ ðf2;3g; ð0;0;0ÞÞ: it has more pallets in storage and the total

cost is higher. By Property 1, it can be removed from the graph.

Same argument is valid for states �x4 ¼ ðf1;3g; ð0;2;0ÞÞ and
�x4 ¼ ðf1;3g; ð0;0;0ÞÞ. The former is dominated by the latter and

is removed by Property 1.

The final iteration is given in Fig. A.11. We note that, only the

states for which the storage level is equal to 0 for all destinations

are considered at the fifth and final iteration of the DP model (by

assumption A7). We observe that �x4 ¼ ðf2;3g; ð1;0;0ÞÞ has no suc-

ceeding nodes. We cannot connect this state to states
�x5 ¼ ðf1;3g; ð0;0;0ÞÞ and �x5 ¼ ðf1;2g; ð0;0;0ÞÞ since the arriving

pallet to destination 1 has priority on the already stored one

(assumption A5). We cannot transfer pallet 1 from storage to the

truck at the same time as the pallet 1 from inbound to outbound

truck. Hence this node will be removed from the graph.

Finally, the overall graph generated by the DP model is illus-

trated in Fig. A.12. Backtracking the path with the minimum cost

gives the optimal solution (highlighted by bold arrows in

Fig. A.12). As we can observe at the bottom of the figure, the

best schedule of trucks is assigning destination 1 to one of the

Fig. A.11. Fifth iteration of the DP model.

Fig. A.12. The generated graph and the optimal sequence of outbound trucks.

11

shipping docks throughout the whole scheduling period. The sec-

ond dock can then be used by a truck to destination 2 during the

periods 1, 2 and 3. Then, this truck is replaced by a truck to des-

tination 3 at time t = 4. The total cost of this schedule is equal to

r = 2.

References

Alpan, G., Bauchau, S., Larbi, R., & Penz, B. (2008), Optimal operations scheduling in a
crossdock with multi strip and multi stack doors. In 38th International
conference on computers and industrial engineering – CIE38 (Vol. 2, pp. 1168–
1176). Beijing, China.

Baptiste, P., & Maknoon, M. Y. (2007), Cross-docking: Scheduling of incoming and
outgoing semi-trailers. In International conference on production research –
ICPR’07. Valparaiso, Chile.

Baptiste, P., Penz, B., & Larbi, R. (2007), Polynomial time solution methods for some
cross-docking problems. In International conference on industrial engineering and
systems management – IESM’07. Beijing, China.

Bartholdi, J. J., & Gue, K. R. (2001), Staging freight in a crossdock. In International
conference on industrial engineering and production management – IEPM’01.
Québec City, Canada.

Bartholdi, J. J., & Gue, K. R. (2002). Reducing labor costs in an LTL crossdocking
terminal. Operations Research, 48(6), 823–832.

Bartholdi, J. J., & Gue, K. R. (2004). The best shape for a crossdock. Transportation
Science, 38(2), 235–244.

Boysen, N. (2009). Truck scheduling at zero-inventory cross docking terminals.
Computers and Operations Research, 37(1), 32–41.

Boysen, N., Fliedner, M., & Scholl, A. (2008). Scheduling inbound and outbound
trucks at cross docking terminals. OR Spectrum, 32(1), 135–161.

Bruel, S., & Balbo, G. (1980). Computational algorithms for closed queueing networks.
North Holland.

Chen, P., Guo, Y., Lim, A., & Rodrigues, B. (2006). , Multiple crossdocks with
inventory and time windows. Computers and Operations Research, 33, 43–46.

Chen, F., & Lee, C.-Y. (2009). , Minimizing themakespan in two-machine cross-docking
flow shop problem. European Journal of Operational Research, 193(1), 59–72.

Chen, F., & Song, K. (2009). Minimizing makespan in two-stage hybrid cross docking
scheduling problem. Computers and Operations Research, 36, 2066–2073.

Donaldson, H., Jonhson, E. L., Ratliff, H. D., & Zhang, M. (1998), Schedule-driven
cross-docking network. Technical report, Georgia Institute of Technology.

Gue, K. R. (1999). The effects of trailer scheduling on the layout of freight terminals.
Transportation Science, 33(4), 419–428.

Larbi, R., Alpan, G., Baptiste, P., & Penz, B. (2007), Scheduling of transshipment
operations in a single strip and stack doors crossdock. In International conference
on production research – ICPR’07. Valparaiso, Chile.

Larbi, R., Alpan, G., & Penz, B. (2009), Scheduling transshipment operations in a
multiple inbound and outbound door crossdock. In 39th International conference
on computers and industrial engineering – CIE39. Troyes, France.

Maknoon, M. Y., & Baptiste, P. (2009). Cross-docking: increasing platform efficiency
by sequencing incoming and outgoing semi-trailers. International Journal of
Logistics Research and Applications, 12(4), 249–261.

McWilliams, D., Stanfield, P., & Geiger, C. (2005). Parcel-hub scheduling problem: A
simulation based solution approach. Computers and Industrial Engineering, 49,
393–412.

Napolitano, M. (2000). Making the move to cross docking: A practical guide to
planning, designing, and implementing a cross dock operation. WERC Publisher.

Ratliff, H. D., Vate, J. V., & Zhang, M. (1998), Network design for load-driven cross-
docking systems. Technical report, Georgia Institute of Technology.

Sadykov, R. (2009), A polynomial algorithm for a simple scheduling problem at
cross docking terminals. Technical report, INRIA – 00412519.

Silver, E., Pyke, D., & Peterson, R. (1998). Inventory management and production
planning and scheduling. Wiley.

Song, K., & Chen, F. (2007), Scheduling cross docking logistics optimization problem
with multiple inbound vehicles and one outbound vehicle. In International
conference on automation and logistics. Jinan, China.

Tsui, L. Y., & Chang, C.-H. (1990). A microcomputer based decision support tool for
assigning dock doors in freight yards. Computers and Industrial Engineering, 19,
309–312.

Tsui, L. Y., & Chang, C.-H. (1992). Optimal solution to a dock door assignment
problem. Computers and Industrial Engineering, 23, 283–286.

Yu, W., & Egbelu, P. J. (2008). Scheduling of inbound and outbound trucks in cross
docking systems with temporary storage. European Journal of Operational
Research, 184(1), 377–396.

12

	A bounded dynamic programming approach to schedule operations in a cross docking platform
	Introduction
	Problem description
	An optimal solution based on dynamic programming
	The mathematical model
	Properties to reduce the size of the DP model
	Numerical Results on the performance of the DP model
	Tests on the length of the input sequence
	Tests on the number of destinations
	Tests on the number of receiving doors
	Tests on the number of shipping doors
	Tests on the ratio of cost parameters r/h

	Bounding strategies on dynamic programming model
	Bounds on the storage allowed at each time period, t
	Bounds on the number of states generated at each time period, t

	Numerical results on the performance of bounds
	Experiments for variable D
	Experiments for variable O
	Experiments for variable I

	Conclusion
	Appendix A
	References

