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Abstract

Automatic image interpretation is often achieved by first performing a segmentation of the image (i.e., gathering neigh-
bouring pixels into homogeneous regions) and then applying a supervised region-based classification. In such a process,
the quality of the segmentation step is of great importance in the final classified result. Nevertheless, whereas the
classification step takes advantage from some prior knowledge such as learning sample pixels, the segmentation step
rarely does. In this paper, we propose to involve such samples through machine learning procedures to improve the
segmentation process. More precisely, we consider the watershed transform segmentation algorithm, and rely on both a
fuzzy supervised classification procedure and a genetic algorithm in order to respectively build the elevation map used in
the watershed paradigm and tune segmentation parameters. We also propose new criteria for segmentation evaluation
based on learning samples. We have evaluated our method on remotely sensed images. The results assert the relevance
of machine learning as a way to introduce knowledge within the watershed segmentation process.
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1. Introduction

The goal of image understanding is to identify mean-
ingful objects (from a user point of view) within an image.
This process usually relies on two distinct steps: segmen-
tation and classification. The segmentation clusters pixels
into regions (i.e., it assigns to each pixel a region label)
whereas classification clusters regions into classes (i.e., it
assigns to each region a class label). A region is a set of
connected pixels from which rich features can be extracted
(e.g., shape, textural indexes, etc.). These features, which
cannot be extracted at pixel level, are expected to im-
prove the classification accuracy. Nowadays, this kind of
approach is widely used, in particular in the remote sens-
ing field [4].

To build an accurate classification, the segmentation
should return a set of regions with a one-to-one mapping
to the semantic objects (from a user perspective) present
within the image. However, this is hardly possible due
to image complexity. Indeed, since a segmentation algo-
rithm is usually designed to cluster connected pixels ac-
cording to a homogeneity criterion, achieving a good seg-
mentation needs to involve such a relevant homogeneity
criterion. Common criteria (e.g., graylevel or spectral ho-
mogeneity, but also textural indexes) may not be relevant
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when processing complex images, such as very high resolu-
tion remotely sensed images where semantic objects have
no spectral homogeneity (e.g., a house may be quite het-
erogeneous, due to the presence of windows on the roof, or
a different illumination on each side of the roof). The lack
of relevant segmentation criteria leads to two main prob-
lems encountered during the segmentation process. On the
one hand, undersegmentation may occur when a given re-
gion spans over objects of different classes. Whatever the
subsequent classifier is, some parts of the region will nec-
essarily be misclassified. Thus, undersegmentation leads
to segmentation errors that cannot be recovered in the
classification step. On the other hand, oversegmentation
may occur when a semantic object is covered by many re-
gions. In this case, extracted attributes, especially shape
and topological properties, are far less representative of
the object class. The classification, using such noisy at-
tribute values will produce a lower quality result. Design-
ing a segmentation method able to avoid both under and
oversegmentation is then very challenging.

To cope with this problem, and to achieve a one-to-
one correspondence between the segmented regions and
the semantic objects defined by user knowledge, homo-
geneity criteria involved in the segmentation process need
to be related to the user’s knowledge. In the context of
image understanding, this knowledge is often brought by
the user through learning samples given as an input to the
(supervised) classification step. It seems very interesting
to also exploit these samples in the segmentation step and
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to elaborate more semantic homogeneity criteria. By anal-
ogy with supervised classification, segmentation methods
guided by learning samples are called here supervised seg-
mentation algorithms.

In this paper, we propose a new supervised segmen-
tation method relying on learning samples (also called
ground truth) in two different ways. Firstly, ground truth
information is used to learn how to project the source im-
age in a more relevant data space, where the homogeneity
assumption between connected pixels is true and where
a well-known segmentation method (i.e., the watershed
transform) can be applied. Secondly, ground truth is used
to learn an adequate set of segmentation parameters using
a genetic algorithm. Genetic algorithms were chosen here
to optimize the segmentation parameters, because they are
very efficient methods commonly used for objective func-
tions optimization [11]. Moreover, they have already been
used in the context of segmentation parameters optimiza-
tion, as mentioned in Sec. 2.2. Similarly to some recent
studies [20], our contributions show that designing ma-
chine learning-based image processing algorithms is a very
promising way to rely on user knowledge.

We start by recalling the main principles of watershed
segmentation and briefly reviewing how this method has
been supervised. We then describe several ways to perform
supervised segmentation: space transformation (Sec. 3),
segmentation parameters optimization (Sec. 4) and finally
an hybrid method combining the two approaches (Sec. 5).
In Sec. 4, we also deal with the problem of segmentation
evaluation and introduce several new criteria which will
be used as fitness function within the genetic algorithm.
Then, we provide both an analytical evaluation of the al-
gorithms and an experimental and quantitative evaluation
in remote sensing. Finally, conclusions and some research
directions are drawn.

2. Watershed segmentation and its supervision

In this section, we recall the main principles of the wa-
tershed transform, a widely used morphological approach
for image segmentation. We also present related work, i.e.,
attempts to introduce user knowledge in the watershed-
based image segmentation.

2.1. Watershed segmentation

The watershed transform has been chosen as the base
segmentation algorithm in our approach, which may how-
ever be applied with any segmentation algorithm (and es-
pecially those needing parameter settings, see Sec. 4). It
is a well-known segmentation method which considers the
image to be processed as a topographic surface. In the im-
mersion paradigm from [27], this surface is flooded from
its minima, thus generating different growing catchment
basins. Dams are built to avoid merging water from two
different catchment basins. The segmentation result is de-
fined by the locations of the dams (i.e., the watershed lines)

when the whole image has been flooded, as illustrated in
Fig. 1.

In this approach, the topographic surface is most of-
ten built from an image gradient, since object edges (i.e.,
watershed lines) are most probably located at pixels with
high gradient values. Different techniques can be involved
to compute the image gradient. Since it does not affect
our study, we consider here as an illustrative example, the
morphological gradient [25] computed marginally (i.e., in-
dependently) for each image band and combined through
an Euclidean norm. Vectorial morphological approaches
may of course be involved [2].

Figure 1: Illustration of the watershed segmentation principle. For
each pixel, the elevation relies here on the intensity within the image.

In its original, marker-free version, the watershed seg-
mentation is proven to easily generate an oversegmentation
(i.e., a segmentation where the number of regions created is
far larger than the number of actual regions in the image).
A smoothing filter is often applied on the input image to
overcome this problem. Here we have decided to process
marginally all image bands with a median filter (of size
3 × 3 pixels, which is adequate for our task) in order to
preserve image edges.

To further reduce oversegmentation, we may use other,
more advanced methods. In this paper we consider three
well-established techniques but our proposal is not limited
to those approaches.

First, the gradient thresholding method [15] is used.
On the grayscale gradient image considered as the topo-
graphic surface, each pixel with a value below a given
threshold (written hmin) is set to zero. This step removes
small heterogeneity effects. On Fig. 2, this step is repre-
sented by the hmin line: all values under this line are set
to null, and thus, two watersheds are removed.

The concept of dynamics [23] is also involved. Catch-
ment basins with a dynamic (written d) under a given
threshold are filled. On Fig. 2 this step is represented by
the catchment basin which starts from A. If its dynamic d
is below the considered threshold, this catchment basin is
filled and the left watershed is removed.

The last method involved here is region merging [15].
For each region produced by the watershed transform, the
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Figure 2: Illustration of watershed-related oversegmentation reduc-
tion methods considered in this paper.

average spectral signature is computed from its pixels and
considered as a feature vector. If the Euclidean distance
between vectors of two neighboring regions is below a given
threshold (written M), these two regions are merged.

2.2. Supervised segmentation

Another way to improve the quality of the segmenta-
tion is to leverage the knowledge or examples available on
the image. This family of methods is called supervised
segmentation methods.

The most frequent use of examples (or ground truth in
the field of remote sensing) is to perform an optimization
to find the best segmentation parameters [3, 24, 26, 21, 8].
This kind of methods involves a common segmentation al-
gorithm which can be tuned by a set of parameters. The
genetic algorithm finds a set of parameters which opti-
mize a fitness function. Different fitness functions were
proposed using different segmentation criteria based on
ground truth. We will focus on this strategy in Sec. 4.

A completely different approach was proposed by [22],
where knowledge is introduced using markers in the water-
shed algorithm. Many methods have been proposed for the
choice of markers using knowledge. In these methods, the
user may locate the markers, which are used only as the
initial positions of the catchment basins, i.e., the regions
to be segmented. Recently, [18] proposed another marker-
based watershed method where the segmentation process
also relies on the contents of the markers. Marker pix-
els are involved in a supervised pixel classification process
whose result is merged with the gradient of the input im-
age to build the topographic surface. This approach share
some properties with the strategy proposed in Sec. 3, but
requires the user to set relevant markers for all the ob-
jects to be segmented (which cannot be achieved in many
contexts, e.g., remote sensing).

It is also possible (but less common) to apply the wa-
tershed on a modified input image. As our approach could
be classified in this category of methods, we review here
the major contributions hereafter.

[13] use manually segmented images to extract, for each
object, a priori membership probabilities to belong to the
different classes of interest. Then, they are combined using
Bayes rules. Other kinds of knowledge on the data can be
included in the process, for example spatial relations on
the objects of interest. This approach is comparable to a
supervised classification and has the same problem of un-
dersegmentation. Nevertheless, it produces better results
if the user can approximately determine the position of the
objects in the scene.

In a similar way, Levner and Zhang [19] propose a
method working with probability maps. They use a first
classification, based on an eroded ground truth to find
some seeds. Another classification is applied using orig-
inal ground truth and the resulting inverted probability
map is used as an elevation. This approach is currently
only applied on binary classification. Also, this method
assumes the detection of all seeds. If a seed is missed then
the underlying object is not segmented.

An other method proposed by Grau et al. [12] uses a
probability map for each class of interest. In this approach,
markers are generated using an atlas. Each marker has
an associated class. A region growing approach is used
to simulate flooding. The elevation between two pixels
relies on the original marker class as it uses the difference
on probability of these pixels in the probability map for
the marker class (i.e., it is a markovian process). This
approach needs the knowledge of markers locations.

Other forms of knowledge introduction in segmentation
have been proposed. Hamarneh and Li [14] perform a wa-
tershed segmentation with the classical oversegmentation
problem. They use a modified k-means algorithm in order
to cluster segments by intensity and position. Using ap-
pearance knowledge they select the appropriate cluster and
iteratively align a shape histogram over the result to re-
move irrelevant remaining segments. This approach relies
heavily on the assumption that objects have homogeneous
intensity values, assumption which cannot be made in our
context.

Chen et al. [7] extract a shape and intensity model of
the object of interest from a set of reference segmentations.
After the learning step, they use an active contour model in
order to segment the objects in respect with the shape and
intensity model previously defined. This method works
only for single object detection and approximative location
needs to be known.

From this brief review of related work, we can notice
that involving knowledge into the segmentation process is
a relevant idea which leads to several approaches proposed
recently. In order to highlight our contribution and the
goals of this paper, we point out the main features which
differs our work from other existing approaches:

� ability to deal with many classes;

� knowledge about the position of objects is not needed;
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� ability to deal with spectrally inseparable classes i.e.,
where marker creation using classification is not pos-
sible.

3. Supervised segmentation by space transforma-
tion

Segmentation algorithms aim to produce an image par-
tition (i.e., a segmentation) which ensures several funda-
mental properties. Thus, all regions of the segmentation
have to fulfil a predefined segmentation criterion. In other
words, extracted objects are expected to be homogeneous,
i.e., they are built by gathering adjacent pixels with sim-
ilar values (spectral similarity is most often considered,
but other criteria may be used, e.g., texture). However,
when dealing with very high resolution remotely sensed im-
ages, this assumption does not hold any more. Indeed, too
many details appear in such images (e.g., cars are visible
on the roads, shadows of the buildings appear, etc.). Thus,
we propose here another approach, called probashed, that
modifies the data space in which the segmentation is ap-
plied.

The main idea is to use the examples given by the
user to define a new homogeneity between the pixels. For
this, we project the pixels in a new data space in which
the sample regions are composed of homogeneous pixels.
Then, classical segmentation algorithms can be applied
and should give better results (according to the samples
given by the user).

To produce the new data space based on the examples,
we apply a supervised classification method on the data.
Applying a hard classification technique would produce a
binary membership map, which is of limited usage when
given as an input to a segmentation algorithm. As we
are considering to apply a watershed segmentation on the
membership map, we rather need a more descriptive data
representation. Thus, we perform a fuzzy classification of
the data, in order to obtain a grayscale membership map
which can then be processed by the watershed transform.

A graphical representation of the supervised segmenta-
tion process is presented in Fig. 3. The proposed method
breaks down into two parts:

� fuzzy classification: based on the samples given by
the user;

� watershed segmentation: the segmentation is applied
on the membership map given by the fuzzy classifi-
cation (not on the original image).

Let us describe more precisely the space transformation
strategy. We write Si the input space:

Si : E → Ri

x 7→ Si(x) with Si(x) the spectral
signature of the pixel x

(1)
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(d) optimized probashed : hybrid approach (Sec. 5)

Figure 3: The different segmentation processes presented in this pa-
per

As we are facing complex images, we cannot assume
that a perfect decision function (i.e., a function able to as-
sign the correct class for every pixel from Si) exists. Since
only approximation functions exist, we consider the space
of membership values and write it Sm:

Sm : E → [0; 1]Ω(C)

x 7→ Sm(x) with Sm(x) the membership
vector of the pixel x

(2)
with Ω(C) the number of classes. In this membership
space, each class of objects contained in the image and
provided by the user is assumed to be a dimension of the
space. Thus the value in each dimension denotes the mem-
bership of the pixel to the corresponding class of objects.

In order to build the membership space Sm from the
input space Si, we propose to rely on data mining tools
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and to perform a learning process based on the available
ground truth.

As an illustrative example, we use here a N nearest
neighbours classifier [1] to achieve the fuzzy classification
and compute the membership values. For each input pixel
p, the N nearest labelled pixels in the Si space are selected.
Each neighbouring pixel pn will increase the membership
degree of the class it has been labelled with, weighted by
the inverse of the distance d(p, pn) in the feature space,
with d : Ri × Ri → R+ a given distance measure, e.g.,
the Euclidean distance. The memberships mp,k are then
obtained by:

mp,k =

(
N∑

n=1

K∑
l=1

wn,l

)−1 N∑
n=1

wn,k (3)

where wn,k =

{
d(p, pn)−1 if pn is labeled with class k
0 otherwise

In this section, we have presented the probashed su-
pervised segmentation method which consists in applying
a watershed segmentation on transformed dataspace. This
transformation is computed using a fuzzy classification on
the data and by creating fuzzy probability membership
maps from the model. Consequently, the watershed is ap-
plied on the membership maps instead of the raw data,
which allows the method to better grasp the complexity
of the image and leverage the available knowledge. An
evaluation and an application of this method is given in
Sec. 6.

4. Supervised segmentation by parameters opti-
mization

In the previous section, learning examples provided by
the user have been used to compute a new similarity crite-
rion between pixels. The segmentation algorithm is then
applied on a modified input image where spectral values
have been replaced by class memberships. Another way to
improve the segmentation is to rely on the learning sam-
ples to automatically find the best parameters required
for the algorithm. This can be achieved using an opti-
mization framework, and we propose to use here a genetic
algorithm.

A genetic algorithm (GA) is an optimization method
[10], based on a function to maximize, called the fitness
function. The definition of this fitness function is a critical
point of these methods. Indeed, the fitness has to evaluate
the solutions proposed by the GA, in order to drive it to
the best solutions.

In this section, we first describe the parameters opti-
mization algorithm, and then present and compare differ-
ent kinds of segmentation evaluation criteria that could be
used as fitness functions.

4.1. Parameters optimization algorithm

Let us emphasize that this watershed segmentation method
(and its parameters) is just a simple example to illustrate
our contribution which consists in a general evolutionary
framework for optimizing segmentation parameters. An-
other segmentation algorithm could have been used in-
stead.

As it has been underlined previously, the base segmen-
tation algorithm requires four parameters to be set. We
explain here how the genetic algorithm proceeds to tune
these parameters.

Given an evaluation function f(G) where G (the geno-
type in the genetic framework) is taken in a space G, the
GA searches the optimal value of G, i.e., arg max

G∈G
f(G).

GA are known to be effective even if f(G) contains many
local minima. This optimization can be considered as a
learning process, if and only if it is performed on a learning
set but can be generalized to other (unlearned) datasets.

The genotype G is defined as an array containing the
parameters that have to be automatically tuned in the
watershed segmentation process, i.e., G = [ω1, . . . , ωb+1, t],
with all parameters normalized into [0; 1].

A GA requires an initial population defined as a set
of genotypes, to perform the evolutionary process. In this
process, the population evolves to obtain better and better
genotypes, i.e., solutions of the optimization problem un-
der consideration. In order to build the initial population,
each genotype is randomly chosen in the space G.

Once the initial population has been defined, the al-
gorithm relies on the following steps, which represent the
transition between two generations:

1. assessment of genotypes in the population: geno-
types are sorted by their relevance;

2. selection of genotypes for crossover weighted by their
rank;

3. crossover: two genotypes (G1 and G2) breed by com-
bining their parameters (or genes in the genetic frame-
work) to give a child E. The resulting child is E with
E[i] = Gpi

[i] + αi × |G1[i] − G2[i]| where αi and pi
are randomly selected in [−1; 1] and {1, 2} respec-
tively. We apply an elitist procedure and keep the
best solution of the current generation in the next
generation;

4. mutation: each parameter may be replaced by a ran-
dom value with a probability Pm. Thus, we avoid the
GA to be trapped in a local minimum. As indicated
previously, the best genotype of a generation is kept
unchanged.

In our study, we use the following parameters for the
GA: a population size of 15 genotypes, a mutation proba-
bility Pm of 1%, and an evolution number N = 30 genera-
tions (experiments shown that no significant improvement
is obtained with more generations). The results are pre-
sented in Sec. 6.
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Any segmentation evaluation function can be used as
fitness function (f(G)). Different segmentation evaluation
are presented in the following section.

4.2. Segmentation evaluation

In the literature, many criteria for segmentation qual-
ity evaluation have been proposed. The reader can refer to
[28, 29] for some surveys of this topic. In this paper, we do
not consider all existing criteria, but rather focus on crite-
ria based on discrepancy, i.e., comparing a resulting seg-
mentation with some reference regions. This is particularly
relevant since we are interested here in evaluation of GA
methods in the context of optimal segmentation param-
eters learning. Criteria which are not based on learning
samples are useless when investigating machine learning
capabilities of the GA solutions.

Let us define reference samples as a set of connected
components R = {Ri}i∈[1;Ω(R)] where each connected com-
ponent Ri is labelled with a class Ck = c(Ri) from the set
C = {Ck}k∈[1;Ω(C)], with Ω the cardinality operator and
c the class assignment function. For instance, we could
define C = {house, road, vegetation} in the remote sensing
context. If no class are meaningful, we assign a new class to
each reference sample, thus c(Ri) = Ci and Ω(R) = Ω(C).
We also note RCk the set of reference samples, sharing the
same class label, i.e., RCk = {Ri : c(Ri) = Ck}.

We can define three types of discrepancy criteria: clas-
sification errors criteria, matching criteria and generaliza-
tion criteria. In our study, we illustrate these categories by
a few representative criteria which will now be described.

4.2.1. Classification errors criteria

These criteria are based on the classification error prin-
ciple. An image segmentation can be seen as an image
classification process, and then, the percentage of misclas-
sified pixels can be used. Since labels are assigned to both
produced and reference regions, the number of pixels with
different labels between the segmentation and the refer-
ence image can be computed.

The criterion used here is derived from the E crite-
rion from [6]. In the original paper, each reference region
has a unique label. In our case, we assign to each ref-
erence region a class label. This way, reference regions
sharing the same semantic, have the same label. To each
segmented region is then assigned the label of the most
overlapping reference region (i.e., the region sharing the
greatest number of pixels). We define here the TMA cri-
terion (Theoretical Maximum Accuracy), which uses class
labels instead of a label for each region. If a segmented
region spans over two reference regions of the same class,
the TMA criterion does not track an error, whereas the
E criterion does, as each reference region has a different
label. For each class, error is measured and weighted by
the inverse number of reference pixels in order to give the
same importance to each class. Then, a per-pixel confu-
sion matrix K is computed. For each evaluation pixel of a

class Ci, assigned to a label Cj by the matching, the value
of the cell Kij is incremented by (Ω(Ci))

−1 where Ω(Ci)
is the number of reference pixels for class Ci. Thus, the
evaluation function TMA is the classifier precision (the
overall accuracy):

TMA =
1

Ω(C)

Ω(C)∑
i=1

Kii (4)

The TMA criterion gives the best available accuracy of
a subsequent classification step of the resulting segments.

4.2.2. Matching criteria

Matching criteria measure spatial differences between
segmented and reference regions. They rely on a match-
ing function m(Ri, Sj) which computes a matching score
between a reference region Ri and a segmented region Sj ,
where S = {Sj}j∈[1;Ω(S)] is the set of segmented regions.
Let us additionally define RSj the set of reference regions
overlapping Sj , and inversely SRi

the set of segmented
regions overlapping Ri. To apply these criteria on a com-
plete segmentation, the average matching value µm of the
best matching score for each reference region is computed:

µm =
1

Ω(R)

Ω(R)∑
i=1

best1≤j≤Ω(S)(m(Ri, Sj)) (5)

where the best function is the optimum function, i.e., min-
imum or maximum function depending on the matching
criterion.

The first criterion used here is taken from [8] and de-
fined by:

F (Ri, Sj) =
Ω(Ri \ (Ri ∩ Sj)) + Ω(Sj \ (Ri ∩ Sj))

Ω(Ri)
(6)

where \ represents the set difference operator, i.e., A\B =
{x : x ∈ A, x 6∈ B}.

We observe that the F criterion favours oversegmenta-
tion over undersegmentation and should be minimized to
obtain the best segmentation.

The second criterion is taken from [17]. It is quite
similar to F but does not have the bias to avoid overseg-
mentation. It considers reference and segmented regions
in the same way and should be maximized.

J(Ri, Sj) =

√
Ω(Ri ∩ Sj)

2

Ω(Ri)× Ω(Sj)
(7)

In this formulation, if a segmented region Sj spans over
two reference regions Ri and Ri′ of the same class Ck,
both matching scores J(Ri, Sj) and J(Ri′ , Sj) will be low.
Nevertheless, as Ri and Ri′ belongs to RCk , they could
be merged, thus resulting in a high matching score J(Ri ∪
Ri′ , Sj).
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This principle leads to a new criterion JC which relies
on class labels. For a given couple (Ri, Sj), we consider the
subset of Rc(Ri) = {Ri′ : c(Ri′) = c(Ri)} (i.e., the union
of all reference regions Ri′ sharing the label assigned to

Ri) overlapping Sj , or R
c(Ri

Sj
= Rc(Ri) ∩ Sj . The modified

criterion is then:

JC(Ri, Sj) =

√
Ω
(
Rc(Ri) ∩ Sj

)2
Ω(Ri)× Ω(Sj)

(8)

A similar evaluation criterion is the Jaccard index [16]
which should also be maximized. It is defined as the ratio
between the cardinalities of the intersection and the union
of the two sets:

J ′(Ri, Sj) =
Ω(Ri ∩ Sj)

Ω(Ri ∪ Sj)
(9)

Here, we also extend this criterion to handle class la-
bels:

JC ′(Ri, Sj) =
Ω(Rc(Ri) ∩ Sj)

Ω(Ri ∪ Sj
(10)

We can also mention the ultimate measurement ac-
curacy criterion [30], which measures the difference be-
tween features extracted from Ri and Sj . Since it strongly
depends on the regional features extracted, and thus, is
hardly compatible with a generic solution for parameter
tuning, we do not consider this criterion in our study.

4.2.3. Generalization criteria

Generalization criteria measure the coarseness of the
segmentation.

TheGen criterion [6] measures oversegmentation through
a simple ratio between the number of segmented and ref-
erence regions, i.e., Gen = Ω(S)/Ω(R).

Here we consider only segmented regions spanning over
a reference one, in order to deal with an incomplete refer-
ence segmentation. Moreover, we take into account class
information and compute the average oversegmentation for
all classes. Thus the proposed criterion OV is defined as:

OV =
1

Ω(C)

Ω(C)∑
k=1

Ω(SRCk )

Ω(RCk)
(11)

where SRCk denotes the set of segmented regions over-
lapping at least one of the reference region assigned to the
class Ck while RCk is the set of reference regions assigned
to the class Ck.

Another criterion belonging to this category is the av-
erage region size (noted p/r), i.e., Ω(I)/Ω(S) where Ω(I)
and Ω(S) represent respectively the number of pixels in
the image and the number of regions produced by the seg-
mentation. It is rather simplistic and does not involve any
sample. Nevertheless, it allows to compare two segmenta-
tions to determine the coarsest one.

4.2.4. Hybrid criteria

Among the previous criteria, some criteria measure
mainly oversegmentation (e.g., OV and p/r) while oth-
ers measure mainly undersegmentation (e.g., TMA). So
it is relevant to combine these criteria to build some ag-
gregated criteria. Combination is one solution for resolv-
ing multi-objective optimization. Another solution is to
use the Pareto front [9]. The Pareto front returns a set
of results representing different trade-offs between all the
considered criteria. Thus, handling a set of results needs
more user interaction, which is out of the scope of this
paper.

We propose here two multi-objective criteria, combin-
ing TMA and OV .

The first one TMA/OV , avoids mainly undersegmen-
tation (using TMA) and secondarily oversegmentation (us-
ingOV ). It is simply defined by weightingOV with a small
coefficient (ε):

TMA/OV = TMA+ ε
1

OV
(12)

The second criterion is TMA⊕OV (α). It also primar-
ily relies on undersegmentation (using TMA), but limits
its effect with the α parameter:

TMA⊕OV (α) = min(TMA,α) + ε
1

OV
(13)

Of course the α parameter is dependent of the appli-
cation. It represents the amount of errors (measured by
the TMA criterion) tolerated by the user or system. For
instance, if the TMA quality should be at least 95%, the
user sets α = 0.95.

5. Hybrid approach

In this section, we describe a hybrid method, integrat-
ing the two previous ideas presented above. In an offline
phase, the method learns how to segment an image using
a learning set (composed of images and masks correspond-
ing to objects of interest). The learning process occurs in
two steps: a space transformation step and a core segmen-
tation step. Once the learning is finished, a segmentation
algorithm (i.e., the space transformation step and the core
segmentation step) is produced and can be used to seg-
ment images. No learning set is needed in this application
phase. The proposed method does not need input param-
eters in neither phases. A flow chart is shown on Fig. 3.

The learning set is composed of learning images and
corresponding learning masks. A learning mask is a se-
mantic interpretation of a learning image made by a hu-
man. For each object, the corresponding pixels in the im-
age are labelled with a class Ck where k ∈ [1 . . .K] and K
is the number of classes. Some pixels could be left unla-
belled, denoting the inability to label them.
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5.1. Segmentation supervision by genetic algorithm

Here we propose a genetic algorithm in order to han-
dle the parameters from the segmentation step. As already
stated in Sec. 4 The watershed algorithm needs three pa-
rameters to be set: hmin to reduce oversegmentation, d
for the dynamics and M as the threshold for the region
merging. In the space transform segmentation algorithm,
another parameter is added, which is the same as the M
threshold, but applied with the mean of membership maps
and a threshold Mm. Thus, we have four parameters to
optimize.

5.2. Evaluation function

As already discussed in Sec. 4.2, a critical point of
the genetic algorithm optimization method is the way the
quality of the potential solutions (i.e., genotypes) is esti-
mated. Here, as we are interested in evaluation of segmen-
tation results, we focus on empirical discrepancy evalua-
tion methods following the work from Carleer et al. [6].
Nevertheless, our criteria are adapted to both mixed and
user-meaningless pixels which do not appear in such a
manual reference segmentation. They are compatible with
partially segmented images defined as (incomplete) sets of
labelled pixels. We use the term region for a labelled ref-
erence region given by the user and the term segment for
a region produced by a segmentation.

From the evaluation criteria introduced in Sec. 4.2, we
can define the evaluation function. We can choose to op-
timize one of the two criteria or a combination of them.
Here, we chose to optimize a criterion which represents
oversegmentation and undersegmentation using:

F(g) =
1

OV (g)
×max(0, TMA(g)− 0.98) (14)

In the proposed function, F(g) increases as OV (g) is
reaching 1 (no oversegmentation) and decreases when TMA(g)
decreases. The function is null if TMA(g) is under 98%,
i.e., the maximum accuracy is 98% well classified pixels.
This threshold was set to give more importance to avoid
undersegmentation. It could be modified by the user de-
pending on the image noise and complexity. 98% seems a
good compromise. If TMA(g) falls below this threshold
the resulting segmentation will be useless.

6. Evaluation

The evaluation of the proposed algorithm follows the
evaluation scheme proposed by Zhang [28], using both an
analytical evaluation and an empirical discrepancy evalu-
ation. Let us observe that the empirical goodness evalua-
tion is not performed, since it is not relevant here: indeed
it usually assumes that segments are spectrally homoge-
neous.

6.1. Analytical evaluation

The first part of the evaluation is an analytical review
of the proposed algorithm. Such a review is helpful to
know if the algorithm is suitable to an image or not. The
proposed algorithm requires some knowledge from the user
to be able to segment an image:

� Class knowledge: the user needs to know the classes
of objects which are sought in the image.

� Samples for each class: some samples of each class
are needed for the learning step. The fuzzy classifi-
cation step can work with isolated samples, but the
genetic optimization step requires labeling of image
parts.

There are also some limits which should be noted in
the proposed algorithm:

� Connected objects of the same class: if two objects
of the same class are spatially connected and have
similar memberships to classes, they will be merged
together (i.e., undersegmentation). The same prob-
lem arises in usual segmentation methods when two
objects have similar spectral values.

� Objects having heterogeneous spectral values and
membership values: in such a case, the algorithm
produces an oversegmentation.

Nevertheless, these limits are weaker than those of clas-
sical segmentation algorithms. If an object has hetero-
geneous spectral and membership values, it will be over-
segmented by classical segmentation methods. The case
where two spatially connected objects have similar mem-
bership values and dissimilar spectral values and each ob-
ject has homogeneous spectral values seems less frequent
than objects with heterogeneous spectral values. It is a
tradeoff that should be analyzed depending on the appli-
cation.

Computational complexity. The computational complex-
ity of this algorithm depends on 4 parameters: n the num-
ber of pixels in the image, Ω(C) the number of labelled
examples, p the population size and N the number of gen-
erations of the genetic algorithm. At each step of the GA,
the costly part of the algorithm is the evaluation of the
genotypes (i.e., the computation of the fuzzy classification
followed by the watershed algorithm and the calculation of
the evaluation criteria). The fuzzy classification algorithm
has a O(nΩ(C)) complexity. But, as it is only executed
once at the beginning of the algorithm, we decided to ig-
nore it in the following. The watershed segmentation algo-
rithm is linear according to n. The evaluation of the fitness
function depends on the chosen criterion. In the case of
TMA, it is linear according to Ω(C). Thus, the complex-
ity of the evaluation of one genotype is in O(n + Ω(C))
which can be approximated by O(n) if we consider that
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(a) Original Quickbird image (b) Labeled samples given by the expert

Figure 4: Remotely sensed image of a part of Strasbourg (France)

the segmentation is totally recomputed at each evaluation
(worth case) and that Ω(C) << n (which seems realistic in
most of the cases). Finally, the complexity of the method
is in O(N × p× n).

6.2. Application to a real urban image

In the last decade automatic interpretation of remotely
sensed images became an increasingly active domain since
sensors are now able to produce images with a very high
spatial resolution (VHSR) (i.e., 1 meter resolution). This
increasing precision disturbs the classical per-pixel classifi-
cation procedures and knowledge based systems have been
more attentively investigated during the last few years, to
improve VHSR image interpretation. Indeed, the so called
object-oriented [5, 4] approach provides a new paradigm of
reasoning by focusing on the objects present within an im-
age, and not only on the pixels. The images are segmented
and the segments are classified using spectral and spatial
attributes (e.g shape index, texture, etc.).

This case study is a typical example of VHSR image
interpretation in remote sensing, where a segmentation is
first performed before applying a supervised region-based
classification.

The input data is a pan-sharpened Quickbird1 image
of the city of Strasbourg (France) with 4 spectral bands
representing a zone of 15,4km×13,3km, with a spatial res-
olution of 0.7 meter per pixel. In four areas of the studied
zone, some regions (representing 13% of the extract) have
been labeled by the expert in three classes: road, vegeta-
tion and house (Fig. 4(b)).

1image provided by the LIVE laboratory from University of Stras-
bourg

Choice of the fitness function. The aim of the first set
of experiments carried out on this data was to evaluate
the influence of the choice of the fitness function. Indeed,
we presented in Sec. 4.2 many criteria that could be used
as fitness function to optimize the parameters of the seg-
mentation methods. The question is which criteria shall
we optimize to obtain the best result ? We performed a
genetic optimization on two segmentation algorithms pro-
posed before: classical watershed and probashed (which
corresponds to the space transformation method given in
Sec. 3). For the watershed algorithm, three parameters
have to be tuned as stated in Sec. 4: hmin, d, and M . For
the probashed algorithm, four parameters are used (Sec. 5)
: hmin, d, M and Mm.

In our experiments, we consider the following parame-
ters for the genetic algorithm: a population size of 15 geno-
types, a mutation probability Pm of 1% and an evolution
number equals to 30 generations. Experiments show that
stability and convergence is achieved at this step. Fig. 5
shows the trend of the fitness functions with respect to the
number of generations. It shows that the convergence is
relatively fast and that 30 generations are enough as no
significant improvement arises after 20 generations.

We present in Tabs. 1 and 2 the results obtained by op-
timizing the parameters of the segmentation method. The
first column shows the criterion that has been used as fit-
ness function. Then, each column corresponds to the value
obtained by the final result for each evaluation criterion.

It is important to notice that three criteria have to be
maximized (0 < TMA < 100, 0 < JC < 1, 0 < JC ′ < 1),
while two have to be minimized (0 < F < 1 and 0 < OV ).

The first remark concerns the three last lines of the
two tables. It is obvious that optimizing one criterion will
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Figure 5: Evolution of the fitness functions according to the number of generations

Fitness functions
Evaluation criteria

TMA OV 100× F 100× JC 100× JC ′
TMA/OV 98.03 48.01 77.4 52.9 44.2
TMA⊕OV 99.12 95.10 81.5 43.4 36.4
F 98.56 61.28 75.7 53.4 44.8
JC 96.74 34.83 78.6 56.7 48.4
JC ′ 96.91 41.12 78.8 55.5 48.8

Table 1: Watershed parameters optimization (for readability reasons, we multiply F , JC and JC′ indexes by 100).

produce the best result for this criterion. This is verified
on these results for the three criteria F , JC and JC ′.

Concerning the hybrid criteria, TMA ⊕ OV seems to
be a better compromise as TMA/OV because it optimizes
well the TMA criterion, without having bad results with
the other ones.

Comparison of the different approaches proposed. The sec-
ond experiment tries to compare the different approaches
proposed in this paper. To have a more thorough study,
we also included two results given by two commercial re-
mote sensing segmentation software: eCognitionTM from
Definiens2 and ENVI FX from ITT Visual Information
Solutions 3. These results were manually computed by a
geographer expert. We also computed a supervised per-
pixel classification using a 5 nearest neighbours classifier
for comparison purpose. The results are presented for a
raw per-pixel classification and a per-pixel classification
after the application of a median filter (3× 3 window).

2http://earth.definiens.com/
3http://www.ittvis.com/

Again, we present in Tab. 3 the evaluations calculated
from the different criteria on the results given by the dif-
ferent proposed methods. For the optimized methods, we
only give the result with F as fitness function for a better
readability. We choose F because it has good results with
quite all the evaluation criteria.

Concerning the TMA criterion, no significant improve-
ment is shown compared to the classical or optimized ver-
sion of the watershed. But compared to the two com-
mercial softwares, the probashed algorithm gives better
results. For OV , F and JC, the two probashed algo-
rithms present better results as the other methods. The
space transformation brings a significant contribution to
the quality of the solution. Finally, results for the JC ′

criterion are comparable with those given by the commer-
cial softwares and better than those given by the water-
shed. In conclusion, the probashed algorithms seem to
perform better results according to the different quality
criteria proposed here.

As it is difficult to grasp the influence of a small change
on a criterion, we show in Fig. 6 the segmentations pro-
duced by the different methods. Thus, it is possible to
have a visual appreciation of the quality of the results. It
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Fitness functions
Evaluation criteria

TMA OV 100× F 100× JC 100× JC ′
TMA/OV 98.05 4.51 88.2 66.1 52.7
TMA⊕OV 99.50 28.79 68.8 64.6 57.5
F 99.40 23.59 68.4 65.3 57.6
JC 98.27 7.58 81.2 68.9 57.2
JC ′ 99.17 12.88 72.8 67.6 59.2

Table 2: Probashed parameters optimization (for readability reasons, we multiply F , JC and JC′ indexes by 100).

Seg. methods
Evaluation criteria

TMA OV 100× F 100× JC 100× JC ′
Watershed 99.18 99.04 17.1 41.5 30.0
Optimized watershed 98.57 61.29 24.3 53.4 44.8
Probashed 99.52 24.33 31.7 65.5 48.3
Optimized probashed 99.41 23.59 31.7 65.3 57.6
eCognition 91.42 35.26 12.9 48.3 51.2
ENVI FX 84.95 2.75 1.3 47.3 59.8
Pixel+Median 97.41 2.77 5.7 5.82 56.4
Pixel 97.48 6.69 5.3 5.85 55.5

Table 3: Comparison of the different approaches proposed with two commercial segmentation softwares and a supervised per-pixel classification
(for readability reasons, we multiply F , JC and JC′ indexes by 100).

is clear that the watershed, even in its optimized version,
produces results that could not be used directly in the clas-
sification step. For example, the vegetation zones in the
blocks are really oversegmented as well as the houses. It is
then very difficult to use geometrical attributes in the clas-
sification, as the shape of the regions does not necessarily
correspond to the expected one.

When comparing the probashed method and its opti-
mized version, the values for the evaluation criteria are
comparable or better for the optimized version. But the
main differences are visible on the segmentation results
(Fig. 6). It is obvious that the river (East of the image) is
better delimited as the houses in the blocks.

7. Conclusion

In this article, we presented and compared different
criteria to optimize segmentation parameters, when exam-
ples are available. We also exposed another way to take
advantage of ground truth, in changing the data space
before applying the segmentation algorithm. The space
transformation is performed by a fuzzy classification based
on the examples given by the expert. It has been shown
that using this knowledge to guide the segmentation en-
ables to produce better results, even better than manually
produced segmentations by an expert.

In future work, we would like to focus on the study
of the integration of other kinds of knowledge (not only
examples) in the segmentation process. For example, a hi-
erarchy of concepts describing the objects of interest could
help to better identify which regions are well segmented.
We also plan to use several segmentation algorithms and
make them collaborate to find a better segmentation.
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