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Université de Toulouse, 21 Allée de Brienne, F-31000 Toulouse, France

2 Department of Mathematics, Hill Center,

Rutgers University, 110 Frelinghuysen Road Piscataway NJ 08854-8019 USA
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Abstract

We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a

one parameter family of steady-state solutions ̺λ, λ > 0, with thick tails whose second moment is not bounded.

We show that these steady state solutions are stable, and find basins of attraction for them using an entropy

functional Hλ coming from the critical fast diffusion equation in R
2. We construct solutions of Patlak-Keller-

Segel equation satisfying an entropy-entropy dissipation inequality for Hλ. While the entropy dissipation for

Hλ is strictly positive, it turns out to be a difference of two terms, neither of which need to be small when the

dissipation is small. We introduce a strategy of controlled concentration to deal with this issue, and then use the

regularity obtained from the entropy-entropy dissipation inequality to prove the existence of basins of attraction

for each stationary state composed by certain initial data converging towards ̺λ. In the present paper, we do

not provide any estimate of the rate of convergence, but we discuss how this would result from a stability result

for a certain sharp Gagliardo-Nirenberg-Sobolev inequality.

Mathematics subject classification numbers: 15A45, 49M20

1 Introduction

1.1 The PKS system and its critical mass

The Patlak-Keller-Segel system [31, 22] is one of the simplest models of chemotaxis, describing the evolution of the

population density of a cell colony which is diffusing across a two dimensional surface. In addition to the diffusion,

as the cells move across the surface, they continually emit a chemical attractant, which itself diffuses across the

surface. The cells tend to move towards higher concentrations of the attractant, and this induces a drift term

tending to concentrate the population, and countering the spreading effects of the diffusion. A model organism for

this type of behavior is the dictyostelium discoideum which segregates cyclic adenosine monophosphate, another

important example of chemotactic movement are endothelial cells who react to VEGF to form blood vessels.
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The model is mathematically interesting on account of this competition between the concentrating effects of the

drift induced by the chemical attractant and the spreading effects of the diffusion, and there is a critical value to the

total mass of the initial data, so that for masses above this value, the concentration wins, and the density collapses

in a finite time. However, for masses below this critical mass, diffusion dominates, and the colony smoothly diffuses

off to infinity. At the critical mass, there is a continuous family of stationary solutions, and this paper is concerned

with determining their stability properties, and since they all turn out to be stable, basins of attraction for each of

them. We begin by introducing the model and the critical mass associated with it. We refer to [19, 32] for recent

reviews on chemotaxis models.

If ρ denotes the population density, and c the concentration of the chemical attractant, the system of equations

is 



∂ρ

∂t
(t, x) = div [∇ρ(t, x) − ρ(t, x)∇c(t, x)] t > 0 , x ∈ R

2 ,

c(t, x) = − 1

2 π

∫

R2

log |x− y|ρ(t, y) dy , t > 0 , x ∈ R
2 ,

ρ(0, x) = ρ0(x) ≥ 0 x ∈ R
2 ,

(1.1)

with an appropriate choices of units, so that all dimensional constants are unity.

In most of this paper, we consider initial data ρ0 that belongs to L1(R2, log(e+ |x|2)dx), and such that ρ0 log ρ0
is integrable. The relevance of these conditions shall be explained shortly, but at the very least, they insure that

c(0, x) is well defined. It will sometimes be convenient to write the second equation in (1.1) in the compact form

c(t, x) = G ∗ ρ(t, x) where G(x) = −1/(2 π) log |x| is the Green’s function for −∆ in R
2. That is, −∆c = ρ.

Also throughout the paper, the term density shall always refer to a non-negative integrable function on R
2, and

we shall use the term mass to refer to the total integral of a density ρ. Because of the divergence form structure of

the system, solutions formally satisfy the conservation of mass
∫

R2

ρ(t, x) dx =

∫

R2

ρ0(x) dx :=M

for all t ≥ 0; i.e., the mass M is conserved in time.

The PKS system can be rewritten advantageously as follows: Introduce the free energy functional FPKS

FPKS[ρ] =

∫

R2

ρ(x) log ρ(x) dx+
1

4π

∫∫

R2×R2

ρ(x) log |x− y|ρ(y) dx dy .

The first integral is well defined if ρ log ρ is integrable, and the positive part of ρ(x) log |x − y|ρ(y) is integrable

when ρ belongs to L1(R2, log(e+ |x|2) dx), so that the second integral is at least well-defined under this condition.

Now suppose that the density ρ belongs to L1(R2, log(e+ |x|2) dx), and moreover, ρ log ρ is integrable. Then a

simple formal calculation shows that for all u ∈ C∞
c (R2) with zero mean,

lim
ǫ→0

1

ǫ
(FPKS[ρ+ ǫu]−FPKS[ρ]) =

∫

R2

δFPKS[ρ]

δρ
(x)u(x) dx

where
δFPKS[ρ]

δρ
(x) := log ρ(x) +

1

2π

∫

R2

log |x− y|ρ(y) dy = log ρ(x) −G ∗ ρ(x) .

It is then easy to see that the evolution equation in (1.1) can be rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δFPKS[ρ(t)]

δρ
(x)

])
. (1.2)

It follows that at least along well-behaved classical solutions (for which we may integrate by parts),

d

dt
FPKS[ρ(t)] = −

∫

R2

ρ(t, x)

∣∣∣∣∇
δFPKS[ρ(t)]

δρ
(x)

∣∣∣∣
2

dx . (1.3)

In particular, along such solutions, t 7→ FPKS[ρ(t)] is monotone non–increasing. The key to exploiting this mono-

tonicity, as discovered in [17], is the sharp logarithmic Hardy–Littlewood–Sobolev (Log HLS) inequality [2, 9]:
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1.1 LEMMA (Logarithmic Hardy-Littlewood-Sobolev inequality). Let f be a non-negative measurable function

in R
2 such that f log f and f log(e+ |x|2) belong to L1(R2). Let M :=

∫
R2 f dx. Then

∫

R2

f(x) log f(x) dx+
2

M

∫∫

R2×R2

f(x) log |x− y|f(y) dx dy ≥ − C(M) , (1.4)

with C(M) :=M (1 + log π− log(M)). There is equality if and only if f(x) = ̺λ(x− x0) for some λ > 0 and some

x0 ∈ R
2, where

̺λ(x) :=
M

π

λ

(λ+ |x|2)2

Following [17], one may apply sharp log HLS inequality (1.4) to deduce that

FPKS[ρ] =
M

8π

(∫

R2

ρ(x) log ρ(x) dx+
2

M

∫∫

R2×R2

ρ(x) log |x− y|ρ(y) dx dy

)

+

(
1− M

8π

)∫

R2

ρ(x) log ρ(x) dx

≥ −M
8π

C(M) +

(
1− M

8π

)∫

R2

ρ(x) log ρ(x) dx . (1.5)

It follows from this and the monotonicity of FPKS[ρ(t)] that for solutions ρ of the PKS system for which M < 8π,

E [ρ(t)] :=
∫

R2

ρ(t, x) log ρ(t, x) dx ≤ 8πF [ρ0]−M C(M)

8π −M
.

Therefore, for M < 8π, the entropy E [ρ(t)] stays bounded, uniformly in time. This precludes the collapse of mass

into a point mass for such initial data. In [17, 5], this formal analysis is made rigorous, and the global existence of

solutions below the critical value 8π and a number of their properties as well are established.

Previous work in this direction, by Jäger and Luckhaus [20], had shown that for initial data of sufficiently small

mass, the entropy E [ρ(t)] stayed bounded uniformly in t. Their analysis used the Gagliardo–Nirenberg-Sobolev

inequality for functions f in R
2 that bounds ‖f‖4 in terms of ‖∇f‖2 and ‖f‖2, and not the Log HLS inequality,

but their global existence result requires the mass to lie below a threshold that is strictly less than 8π.

That 8π is the actual critical value at which diffusive and concentrating effects are balanced, and not only a

better lower bound, can be seen by computing moments: When the initial data has a finite second moment, and

M > 8π such collapse, or “blow-up” does indeed occur in a finite time. To see this, we first note a weak formulation

of our the PKS evolution equation that will useful to us later on. Let ψ be any test function. Then

d

dt

∫

R2

ψ(x)ρ(t, x) dx =

∫

R2

∆ψ(x)ρ(t, x) dx

− 1

4π

∫

R2×R2

ρ(t, x)
(∇ψ(x)−∇ψ(y)) · (x− y)

|x− y|2 ρ(y, t) dx dy . (1.6)

In addition to the usual integration by parts, we have symmatrized the second term on the right in x and y.

Fixing any a ∈ R
2 and taking ψ(x) = a · x, we see from (1.6) that

d

dt

∫

R2

xρ(t, x) dx = 0; i.e., the center of mass

is conserved. Due to the translational invariance, we henceforth assume zero center of mass. More interestingly,

taking ψ(x) = |x|2, so that (∇ψ(x) −∇ψ(y)) · (x− y) = 2, we find

d

dt

∫

R2

|x|2ρ(t, x) dx = 4M − 1

2π
M2 = 4M

(
1− M

8π

)
.

Thus, if M > 8π, right hand side is strictly negative, and this shows that the second momentum of ρ(t) reaches

zero in a finite time if initially bounded, or else some sort of singularity develops that would invalidate the formal

calculation we have just made.
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Thus, the mass value M = 8π is the critical mass for the PKS system: For M < 8π, one has global solutions

for which diffusion dominates so that all of the mass tends to infinity as the time tends to infinity, see [5], while for

M > 8π, solutions develop singularities, see [20].

Our focus in this paper is on the case M = 8π. Notice that for M = 8π, FPKS is exactly the functional that is

on the left hand side in (1.4). Since the densities ̺λ are minimizers of FPKS for M = 8π, it follows that

δFPKS[̺λ]

δρ
(x) = 0 ,

and then from (1.2) that each ̺λ – and each of their translates – is a stationary solution of (1.2); i.e., of (1.1).

Of course, this can also be checked directly. Our main goal in this paper is to determine the stability of these

solutions, and to determine basins of attraction for them. In achieving this goal, we develop several novel functional

inequalities, and a strategy of concentration control that may be useful elsewhere, and may be the main contribution

of the paper.

Each of the ̺λ has an infinite second moment, and so shall all of the functions in the basins of attraction that

we find for them. This must be the case according to previous work [4] on the case M = 8 π for initial data with a

finite second moment. The paper [4] proves the global existence of weak solutions with finite second moment that

satisfy the free energy dissipation inequality

FPKS[ρ(T )] +

∫ T

0

[∫

R2

ρ(t, x)

∣∣∣∣∇
δFPKS[ρ(t)]

δρ
(x)

∣∣∣∣
2

dx

]
dt ≤ FPKS[ρ(0)] ,

which is what one would guess should hold from (1.3). Moreover, [4] proves that every such solution blows up at

infinite time. That is, the t→ ∞ limit of any such solution is a Dirac mass 8 π at the center of mass of the initial

data. Furthermore, a point mass of mass M is a stationary measure-valued solution in the sense introduced in [18]

if and only if M ≥ 8π.

From this point of view, the solutions in the critical mass case with finite initial second moment are choosing

in their large time asymptotics the only possible stationary state with a finite second moment.

Let us finally comment that the family of stationary solutions ̺λ play a role too in the conjectured profile of

blow-up for any point singularity of the solutions for masses M > 8π. Velazquez has proved [34, 35] that the inner

part of the matched-asymptotics expansion for the blow-up profile is given by these stationary solutions for the

critical mass value.

1.2 The second Lyapunov functional

The essential tool in our construction and analysis of solutions of the critical mass PKS system is an interesting

and somewhat surprising interplay between the PKS system and another evolution equation which also has the ̺λ
as stationary solutions – the Fokker-Planck version of the fast diffusion equation in R

2 with exponent 1/2:






∂u

∂t
(t, x) = ∆

√
u(t, x) + 2

√
π

λM
div(xu(t, x)) t > 0 , x ∈ R

2 ,

u(0, x) = u0(x) ≥ 0 x ∈ R
2 ,

(1.7)

corresponding to the fast diffusion equation
∂u

∂t
= ∆

√
u by a self-similar change of variable, see [33]. In the interest

of brevity we refer to (1.7) as the fast–diffusion equation.

This equation can also be written in a form analogous to (1.2): for λ > 0, define the functional Hλ on the

non-negative functions in L1(R2) by

Hλ[u] :=

∫

R2

(√
u(x)−

√
̺λ(x)

)2
̺λ

−1/2(x) dx
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This functional is the relative entropy of the fast diffusion equation with respect to the stationary solution ̺λ. The

unique minimizer of Hλ is ̺λ, and a simple formal computation yields

δHλ[u]

δu
=

1√
̺λ

− 1√
u
, (1.8)

from which one sees that (1.7) can be rewritten as

∂u

∂t
(t, x) = div

(
u(t, x)∇δHλ[u(t)]

δu
(x)

)
, (1.9)

It follows that for classical solutions u of (1.7) for which one can integrate by parts,

d

dt
Hλ[u(t)] = −

∫

R2

u(t, x)

∣∣∣∣∇
δHλ[u(t)]

δu

∣∣∣∣
2

dx = −
∫

R2

∣∣∣∣
1

2
∇ log u(t, x) + 2

√
π

λM
x
√
u(t, x)

∣∣∣∣
2

dx .

As one sees from (1.8) and (1.9), the densities ̺λ are stationary solutions of the fast diffusion equation (1.7), as

well as the PKS system (1.1). This is much more than a coincidence, and there are very close connections between

the two evolution equations.

Unlike the functional FPKS, the functional Hλ is convex. Making simple computations, one finds that

Hλ[u] :=
√
πMλ+

∫

R2

[√
π

Mλ
|x|2u(x)− 2

√
u(x) +

√
̺λ(x)

]
dx . (1.10)

Let us define the functionals

G1[u] :=

∫

R2

|x|2u(x) dx and G2[u] := −
∫

R2

√
u(x) dx .

Since G1[u] is affine on its domain of definition, and since G2[u] is convex on its domain of definition, one might

formally conclude the convexity of Hλ on its domain of definition. In fact, there is a second notion of convexity,

namely displacement convexity, that will play a basic role in our analysis. We shall explain the relevant aspects

of displacement convexity in Section 3 of this paper, but for now we note that the functional G1[u] is strictly

displacement convex on its domain of definition, and the functional G2[u] is displacement convex on its domain

of definition, and hence one might formally conclude the strict displacement convexity of Hλ on its domain of

definition.

Unfortunately, these arguments are only formal: Note that
√
̺λ(x) is not integrable, and thus if Hλ[u] is to

be well defined,
√
u(x) cannot be integrable either. Furthermore, since |x|2̺λ(x) is not integrable, it is clear that

|x|2u(x) also will not be integrable on the whole domain of definition of Hλ. Thus, cancelations are crucial to the

definition of Hλ, and the integral in (1.10) cannot be split into a sum of three integrals to be analyzed separately.

As far as the convexity (in the usual sense) of Hλ is concerned, it is easy to give a rigorous proof: Indeed, Hλ[u]

can be written as

Hλ[u] :=

∫

R2

[Φ(u(x)) − Φ(̺λ(x))− Φ′(̺λ)(u(x) − ̺λ(x))] dx (1.11)

with Φ(s) = −2
√
s, which is a convex function. However, displacement convexity is essential to our strategy, and

even after we have properly introduced the notion of displacement convexity, we shall have to work much harder

to prove that Hλ is in fact strictly displacement convex on its domain of definition.

The convexity properties of Hλ are relevant to the analysis of the PKS system due to the perhaps surprising

fact that Hλ is monotone decreasing also along solutions of the critical mass PKS system (1.1), and not only along

solutions of the fast diffusion equation (1.7). This gives us a second Lyapunov function for the critical mass PKS

system.
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To see why this should be so, we make a formal calculation that we shall revisit in full rigor later on: Let ρ be

a sufficiently nice solution of the PKS system. Then

d

dt
Hλ[ρ(t)] =

∫

R2

δHλ[ρ]

δρ
div

(
ρ(t, x)∇

[
δFPKS[ρ]

δρ

])
dx = −

∫

R2

ρ∇
[
δHλ[ρ]

δρ

]
· ∇
[
δFPKS[ρ]

δρ

]
dx

= −
∫

R2

ρ∇
[

1√
̺λ

− 1√
ρ

]
· ∇ [log ρ−G ∗ ρ] dx

= −
∫

R2

[
2

√
π

λM
xρ+∇√

ρ

]
· ∇ [log ρ−G ∗ ρ] dx (1.12)

Integrating by parts once more on the term involving the Green’s function,

∫

R2

∇√
ρ · ∇ [log ρ−G ∗ ρ] dx =

1

2

∫

R2

|∇ρ|2
ρ3/2

+

∫

R2

√
ρ∆G ∗ ρ =

1

2

∫

R2

|∇ρ|2
ρ3/2

−
∫

R2

ρ3/2 dx .

Also,
∫
R2 xρ · ∇ log ρ dx = −2M and, making the same symmetrization that led to (1.6),

∫

R2

ρ(x)x · ∇G ∗ ρ(x) dx =
1

4π

∫

R2×R2

ρ(t, x) (x − y) · x− y

|x− y|2 ρ(t, y) dx dy =
M2

4π
. (1.13)

Using the last three calculations in (1.12), we find

d

dt
Hλ[ρ(t)] = −1

2

∫

R2

|∇ρ|2
ρ3/2

dx+

∫

R2

ρ3/2 dx+ 4

√
M π

λ

(
1− M

8π

)
.

Notice that the constant term vanishes in critical mass case M = 8π. Thus, in the critical mass case, formal

calculation yields that for all T > 0,

Hλ[ρ(T )] +

∫ T

0

[
1

2

∫

R2

|∇ρ|2
ρ3/2

(t, x) dx−
∫

R2

ρ3/2(t, x) dx

]
dt ≤ Hλ[ρ0] . (1.14)

In fact, the formal computation yields equality instead of merely inequality in (1.14), but it is this inequality that

is useful to us, and this is what we shall actually prove for the solutions that we construct here.

The key to exploiting (1.14) is a particular case of the Gagliardo-Nirenberg-Sobolev (GNS) inequalities for which

the sharp form was found by Del Pino and Dolbeault [16].

1.2 LEMMA (Gagliardo-Nirenberg-Sobolev inequality). For all functions f in R
2 with a square integrable distri-

butional gradient ∇f ,
π

∫

R2

|f |6 dx ≤
∫

R2

|∇f |2 dx
∫

R2

|f |4 dx ,

and there is equality if and only if f is a multiple of a translate of ̺λ
1/4 for some λ > 0.

To apply this, note that at least for strictly positive densities ρ,

∫

R2

|∇ρ1/4(x)|2 dx =
1

16

∫

R2

|∇ρ|2
ρ3/2

(x) dx .

Therefore, we define:

1.3 DEFINITION (Entropy dissipation functional). For any density ρ of total mass 8π such that ρ3/2 is integrable,

we define the entropy dissipation functional D[ρ] by

D[ρ] = 8

∫

R2

|∇ρ1/4(x)|2 dx−
∫

R2

ρ3/2(x) dx

where ∇ρ1/4 is the distributional gradient of ρ1/4, which is of course locally integrable.
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1.4 LEMMA (Dissipation of Hλ). For all densities ρ of mass M = 8π with ρ3/2 integrable,

D[ρ] ≥ 0 ,

and moreover, there is equality if and only ρ is a translate of ̺λ for some λ > 0.

Proof: Let f = ρ1/4 and note that
∫
R2 f

4(x) dx = 8π. Multiplying D[ρ] through by π, the claim follows directly

from Lemma 1.2.

1.3 The main results on the PKS equation

The formal result (1.14) may now be written as

Hλ[ρ(T )] +

∫ T

0

D[ρ(t)] dt ≤ Hλ[ρ0] .

Since Hλ[ρ(T )] ≥ 0, this suggests at the very least that

lim
T→∞

1

T

∫ T

0

D[ρ(t)] dt ≤ lim
T→∞

1

T
Hλ[ρ0] = 0 ,

and then Lemma 1.4 suggests that for all large t, ρ(t) must be close to ̺µ for some µ > 0. However, an easy

calculation, see Remark 3.5, using the fact that
∫
R2 |x|2̺λ(x) dx = ∞, shows that Hλ(̺µ) = ∞ for µ 6= λ.

Therefore, since Hλ[ρ(t)] is non-increasing, one expects that µ = λ. In short, the formal calculations made so far

suggest that for solutions ρ of the PKS system with initial data ρ0 satisfying Hλ[ρ0] <∞, limt→∞ ρ(x, t) = ̺λ(x).

As we shall see, this is essentially correct, though we will need to assume not only that Hλ[ρ0] < ∞, but that

Hλ[ρ0] is not too large to ensure the entropy dissipation inequality (1.14). We now make one more definition, and

then state our main results on the PKS equation:

1.5 DEFINITION (Properly dissipative weak solutions of the PKS equation). Let Let ρ0 be any density on R
2

with mass 8π, such that for some λ > 0, Hλ[ρ0] <∞. Let ρ : [0,∞) → L1(R2) satisfy:

(1.5.1) For each t ≥ 0, ρ(t) is a continuous curve of densities of mass 8π in the sense that for each bounded and

globally Lipschitz function ψ on R
2:

t 7→
∫

R2

ψ(x) ρ(t, x) dx

is continuous with ρ(0) = ρ0.

(1.5.2) For each T > S ≥ 0, and each smooth and compactly supported function ψ on R
2,

∫

R2

ψ(x)ρ(T, x) dx =

∫

R2

ψ(x)ρ(S, x) dx+

∫ T

S

∫

R2

∆ψ(x)ρ(t, x) dx dt

− 1

4π

∫ T

S

∫

R2×R2

ρ(t, x)
(∇ψ(x)−∇ψ(y)) · (x− y)

|x− y|2 ρ(t, y) dx dy dt .

(1.5.3) For each t > 0,

∫

R2

ρ3/2(t, x) dx <∞ so that D[ρ(t)] is well defined.

(1.5.4) For each T > 0,

Hλ[ρ(T )] +

∫ T

0

D[ρ(t)] dt ≤ Hλ[ρ0] , (1.15)

so that the ρ satisfies the entropy–entropy dissipation inequality expected of solution of the PKS equation.

Then ρ is a properly dissipative weak solution of the PKS equation (1.1) with initial data ρ0.
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1.6 THEOREM (Existence and regularity of properly dissipative weak solutions). Let ρ0 be any density on R
2

with mass 8π, such that ρ0 log ρ0 is integrable, and for some λ > 0,

Hλ[ρ0] <

√
λ

128
√
2π

. (1.16)

Then there exists a properly dissipative solution of the PKS equation (1.1) with initial data ρ0.

Moreover, the solutions we construct have additional regularity properties, including:

(1.6.1) For any S > 0 and any p with 1 < p < ∞, there is a constant C depending only on S, p, λ and Hλ[ρ0] such

that for all t ≥ S, ‖ρ(t)‖p ≤ C.

(1.6.2) The distributional gradient of ρ1/4 is square integrable over [0,∞)× R
2, and in fact,

∫ ∞

0

∫

R2

|∇ρ1/4(t, x)|2 dx dt ≤ Hλ(ρ0) .

(1.6.3) FPKS[ρ(t) is well defined for each t, and is monotone decreasing: FPKS[ρ(t)] ≤ FPKS[ρ(s)] for all 0 ≤ s < t,

1.7 THEOREM (Basins of attraction). Let ρ0 be any density on R
2 with mass 8π, such that for some λ > 0,

(1.16) is satisfied. Let ρ be any properly dissipative weak solution of the PKS equation (1.1) with initial data ρ0
satisfying the additional regularity properties (1.6.1), (1.6.1) and (1.6.3) of Theorem 1.6. Then

lim
t→∞

FPKS[ρ(t)] = FPKS[̺λ] and lim
t→∞

‖ρ(t)− ̺λ‖1 = 0 .

Let Bλ denote the set of densities ρ0 of mass 8π for which ρ0 log ρ0 is integrable and (1.16) is satisfied. According

to Theorem 1.7, Bλ is a basin of attraction for ̺λ under the PKS evolution in the sense that any properly dissipative

weak solution with initial data in Bλ, and the regularity produced here, converges strongly to ̺λ in L1(R2).

1.4 Controlled concentration inequalities

The proof of the additional regularity in Theorem 1.6, and then Theorem 1.7, might at first appear to be possible

by a standard application of entropy-entropy dissipation methods, given the entropy-entropy dissipation inequality

(1.15). However, this is not the case. The essential point is that D[ρ] is not a convex function of ρ, and even worse,

it is a difference of two functionals of ρ that can each be arbitrarily large even when D[ρ] is very close to zero.

Indeed, for M = 8π and each λ > 0, D[̺λ] = 0 while

lim
λ→0

‖̺λ‖3/2 = ∞ , lim
λ→0

‖∇̺λ1/4‖2 = ∞ , and lim
λ→0

̺λ = 8πδ0 .

the point mass of 8π at 0. It follows that the level sets of D cannot be weakly compact in L1(R2).

Note that in this example of non-compactness, we have a family of functions in which there are members that

concentrate at least half of their total mass on arbitrarily small sets. We shall show here that this is essentially

the only way compactness can fail for a family of densities of mass 8π on which D is uniformly bounded. Let us

emphasize the role of the uniform bound on D in this: A set of densities of fixed mass M will fail to be weakly

compact in L1 if it contains members that concentrate even a very small amount of mass on an arbitrarily small

set. When we have a uniform bound on D, we need only be concerned with a much worse behavior: functions that

concentrate half (or any other substantial fraction) of their total mass on an small set – in fact, not even arbitrarily

small.

It is at this point that we begin to make actual use of the second Lyapunov functional Hλ: If Hλ is uniformly

bounded on a family of densities of mass 8π, then no member of this family may concentrate too much of its mass

on a too small set:
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1.8 LEMMA (Concentration control by Hλ). For any density ρ with mass M and any β > 0. Define Aβ = {x :

ρ(x) ≥ β}. Then ∫

Aβ

ρ dx ≤ C1

β
+ C2

√
Hλ[ρ] ,

with C1 :=M2/(λπ) and C2 := 2M3/4(λπ)−1/4.

As a consequence, for any measurable set E ⊂ R
2,

∫

E

ρ dx ≤ β|E|+ C1

β
+ C2

√
Hλ[ρ],

and choosing β = 1/
√
|E|, we obtain an upper bound on the mass of ρ at E in terms of |E| and Hλ[ρ]. We stress

that this lemma does not provide any uniform integrability; one can still concentrate a small amount of mass on a

very, very small set.

We shall prove this lemma in Section 2. There we also prove that since Hλ controls concentration, a uniform

bound on both Hλ and D does indeed provide compactness, justifying our claim about the only way compactness

can fail when D is uniformly bounded. We shall prove:

1.9 THEOREM (Concentration control for D). Let ρ be a any density in L3/2(R2) with mass 8π. For any

γ1 ∈ (0, 4 π), if

Hλ[ρ] < Cλ :=

( √
λ

128
√
2π

)
γ21 , (1.17)

then there exist a finite positive constant CCCD, depending only on λ and γ1

γ1

∫

R2

|∇ρ1/4|2 dx ≤ πD[ρ] + CCCD .

The constant CCCD is given in (2.13). Theorem 1.9 gives us the “vertical control” needed for a compactness

result. The horizontal control is proved directly by Hλ The following lemma is also proved in Section 2:

1.10 LEMMA (Localization). For all densities ρ with mass M and all λ > 0,

∫

R2

√
λ+ |x|2 ρ(x) dx ≤ 2

√
λM + 2M3/4(λ/π)1/4

√
Hλ[ρ] .

Lemma 1.10 shows in particular that when Hλ[ρ] < ∞, then ρ log(e + |x|2) ∈ L1(R2), so that the Newtonian

potential of ρ is well defined. (A somewhat stronger localization result is proved in Section 3.)

The “compactness via controlled concentration” provided by Hλ and its dissipation D through Theorem 1.9

and Lemmas 1.8 and 1.10 is the core of our proof of Theorem 1.7. However this is not the only use we shall make

of compactness via controlled concentration: It is absolutely essential to our construction of properly dissipative

weak solutions.

Indeed, in many problems in which one seeks to prove an entropy-entropy-dissipation inequality such as (1.15),

both the entropy functional H and its dissipation D would be weakly lower semicontinuous, often due to some

convexity property. Then, if {ρn}n is a sequence of nice or approximate solutions of the evolution equation

converging weakly to a weak solution ρ, one would have

H[ρ(T )] ≤ lim
n→∞

H[ρn(T )] and

∫ T

0

D[ρ(t)] dt ≤ lim
n→∞

∫ T

0

D[ρn(t)] dt ,

which is very helpful if one is trying to prove something like (1.15).

While in our case Hλ is convex and lower semicontinuous, D is the difference of two non-comparable convex

functions and has no lower semicontinuity. Therefore, we need new tools to prove (1.15), and as we shall see, it is

once again the compactness via controlled concentration that does the trick.
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In fact, we need one more “compactness via controlled concentration” result to prove Theorem 1.6, this time

for FPKS. For a density of mass 8π, an upper bound on FPKS[ρ] provides no upper bound on the entropy E [ρ] :=∫
R2 ρ log ρ(x) dx. Indeed, FPKS[ρ] takes its minimum value for ρ = ̺λ for each λ > 0, while limλ→0 E [̺λ] = ∞.

However, an upper bound on both Hλ[ρ] and FPKS[ρ] does provide an upper bound on E [ρ]. The following Theorem

is also proved in Section 2:

1.11 THEOREM (Concentration control for FPKS). Let ρ be any density with mass M ≥ 8π, with ρ log ρ

integrable and bounded in L1(R2, log(e + |x|2) dx). Given 0 < ε0 < 8π, there exists 0 < γ2 ≤ 1 depending only on

M and ε0, such that if

Hλ[ρ] <
(8 π − ε0)

2

4C2
2

(1.18)

with C2 given in Lemma 1.8, then there exists a finite positive constant CCCF, depending only on M , λ and ε0,

such that

γ2

∫

R2

ρ log+ ρ dx ≤ FPKS[ρ] + CCCF .

1.5 Further developments

One can build on the regularity results obtained here to prove additional regularity. Indeed, if ρ is one of the

solutions we have constructed here, it is easy to prove that for any a > 0, ∇c(x, t) is bounded and continuous on

(a,∞)×R
2, only using the continuity properties on ρ in t, the uniform control on first moments, and the fact that

ρ(t) is uniformly bounded in both L1 and L3 for all t > a. Thus “freezing” b := ∇c, ρ is seen to be a weak solution

of the linear parabolic equation
∂ρ

∂t
= ∆ρ− div(bρ) ,

with b bounded and continuous. Parabolic regularity theory may now be applied. A further development that

requires new tools is to bound the rate of convergence to the equilibrium ̺λ in our convergence theorem.

An interesting problem whose solution would lead to rate information is to characterize the stability of the

GNS inequality that we have used. That is, we know that D[ρ] = 0 if and only if ρ is a translate of ̺λ for some

λ > 0, since, as we have seen, this is simply a restatement of a sharp GNS inequality of Del Pino and Dolbeault.

A stability result for this inequality would be a result stating that, for any ǫ > 0, if D[ρ] is sufficiently small, then

the distance, in some metric, from ρ to some translate of some ̺λ, λ > 0, is no more than ǫ. It would also be useful

to quantify the qualitative stability result for the Log-HLS inequality that we prove and use in Section 5. Work in

this direction is underway.

1.6 Other equations with a second Lyapunov functional

The second Lyapunov functional Hλ is more useful to us than the primary Lyapunov functional FPKS, which

actually drives the evolution, because of its convexity properties, especially its displacement convexity, as explained

in Section 3.

There is a “cannonical way” to produce gradient flow evolution equations that have a convex second Lyapunov

functional that has been investigated in [25]. Indeed, both the PKS equation and the fast diffusion equation are

gradient flow systems where the gradient is computed using the 2-Wasserstein metric, as we recall in Section 3. To

keep things simple here, let us explain the mechanism studied in [25] in the finite dimensional Euclidean case.

Let V be a smooth convex function on R
n. Let W be the smooth function on R

n defined by W (x) = |∇V (x)|2.
Now consider the evolution equation

d

dt
x(t) = −∇W (x(t)). Then of course, for any solution x,

d

dt
W (x(t)) = −|∇W (x(t))|2 ≤ 0 ,
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and so W is monotone decreasing along the evolution. It is the primary Lyapunov function for this flow. Next,

note that since ∇W = 2[HessV ]∇V ,

d

dt
V (x(t)) = − [∇V · ∇W ] (x(t)) = −2 {∇V · [HessV ]∇V } (x(t)) ≤ 0 ,

since the Hessian of V is positive. Thus, V is a second Lyapunov function for the gradient flow driven by W .

An example in [25] concerns a porous medium equation on the line, which is gradient flow in the 2-Wasserstein

metric for a certain entropy functional. With this entropy functional playing the role of V , the gradient flow

equation for the functional corresponding to W is a certain fourth order equation of thin-film type.

The fact that the entropy for the porous medium equations is a second Lyapunov functional for this fourth

order thin film equation had been discovered earlier in [14] and exploited as the key to understanding the long

time behavior of the latter equation. Again in this case, the second Lyapunov function is strictly and uniformly

displacement convex, while the primary Lyapunov functional is not displacement convex at all.

In the case studied here, the second Lyapunov functional does not arise through the mechanism studied in [25],

or any other evident natural mechanism, and we have no “explanation” of why one should expect Hλ to decrease

along the PKS flow. However, as explained in [25], once one knows this, it is a consequence, formally at least, that

FPKS decreases along the fast diffusion flow. This has interesting consequences that are investigated in [7].

The motivation for doing the computation to check the monotonicity is twofold: First, both evolution equations

have the same steady states, which is certainly necessary, but not at all sufficient, for the computation to work out.

Second, there are many sharp inequalities that have negative powers of 1 + |x|2 as their cases of equality, so there

are tools available to try to prove the positivity of the dissipation.

1.7 A brief outline of the rest of the paper

The rest of the paper is organized as follows. In Section 2 we prove the controlled concentration results that have

been stated in the Introduction.

Section 3 begins with a brief summary of some results concerning the 2-Wasserstein metric and gradient flows

with respect to it. In particular, we recall a discrete variational scheme due to Jordan, Kinderlehrer and Otto [21]

for constructing solutions of a class of equations including both the PKS equation and the critical fast diffusion

equation. We also recall McCann’s [27] notion of displacement convexity, and explain how this should, at least

formally, lead to the entropy-entropy dissipation inequality that we seek. Making the formal calculation rigorous

will then be reduced to rigorously proving certain consequences of displacement convexity for Hλ, and this will be

facilitated by the “robustness” of displacement convexity.

The latter half of Section 3 is more novel. As we have noted earlier, Hλ is formally a sum of displacement

convex terms, however, for the densities that concern us, each of the terms is divergent. Thus, we are forced to

introduce a regularization of Hλ. While there are many tools available to regularize functions that are convex in

the usual sense (e.g. infimal convolution), there is no general approach to regularizing functionals while preserving,

or at least not severely damaging, their formal displacement convexity properties. The regularization developed in

the second half of Section 3 is one of the cornerstones of the paper.

In Section 4, we lay the ground work for the proof of Theorem 1.6 on the existence of properly dissipative

weak solutions. These will be constructed using a variant of the Jordan, Kinderlehrer and Otto [21] scheme,

which constructs the evolutions by solving a sequence of variational problems, as in di Giorigi’s “minimizing steps”

method.

In this method, the Euler-Lagrange equation for the variational problem solved at each step often provides

essential a-priori regularity on the minimizing density ρ. Once again, at this point in our problem, we encounter

difficulties due to potential cancelation of infinities. To resolve these, we are forced to regularize FPKS. The discrete

scheme provides a very convenient framework in which to impose and control the regularization: We use a different

degree of regularization at each discrete time step. Because of the regularization, we will at least know that at each

time step, ∇√
ρ is square integrable, but we shall have no useful quantitative bound on ‖∇√

ρ‖2. Still, this gives us
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enough regularity to make some crucial integrations by parts, and then eventually through the use of Theorem 1.9,

we shall obtain a useful quantitative bound on ‖∇ρ1/4‖2.
In Section 5, we pass to the continuous time limit, and provide the proofs of Theorems 1.6 and 1.7.

2 Proof of the concentration controlled inequalities

2.1 Concentration control by Hλ

We know from Lemma 1.1 that if some density ρ with mass 8π satisfies FPKS[ρ] = FPKS[̺λ], then, up to translation,

ρ = ̺µ for some µ > 0. But if we merely know that FPKS[ρ]−FPKS[̺λ] is small, we do not have any useful bound

telling us that ρ is close to ̺µ for some µ > 0.

The situation in this regard is much better concerning Hλ because of its convexity, as noted in the Introduction.

The following Csiszàr-Kullback-Liebler-Pinsker type inequality for Hλ has already been used by Ledermann and

Markowich [23] in their work on the critical fast diffusion (1.7); see [11] for general results in this direction. However,

one can give a very simple proof that does not make any direct appeal to the convexity of Hλ:

2.1 LEMMA (Csiszàr-Kullback-Liebler-Pinsker type inequality for Hλ). For all densities ρ with mass M and all

λ > 0, ∫

R2

|ρ(x) − ̺λ(x)|
√
λ+ |x|2 dx ≤ CCKLP

√
Hλ[ρ] ,

with CCKLP := 2 (λ/π)
1/4

M3/4.

Proof: By the Cauchy-Schwarz inequality

( π

λM

)1/4 ∫

R2

|ρ− ̺λ|
√
λ+ |x|2 dx =

∫

R2

|ρ− ̺λ|
̺λ1/4

dx =

∫

R2

∣∣√ρ−√
̺λ
∣∣

̺λ1/4
|√ρ+√

̺λ| dx

≤
√
Hλ[u]

√∫

R2

|√ρ+√
̺λ|2 dx ≤ 2

√
M
√
Hλ[u] .

Lemma 1.10, bounding the first moment of ρ in terms of Hλ[ρ], is now easily proved.

Proof of Lemma 1.10: We estimate:
∫

R2

√
λ+ |x|2 ρ(x) dx ≤

∫

R2

√
λ+ |x|2 ̺λ(x) dx+

∫

R2

√
λ+ |x|2 |ρ(x)− ̺λ(x)| dx ,

and the result directly follows from Lemma 2.1 and a direct computation.

We next prove Lemma 1.8, which says that when ρ is a density of mass 8π and Hλ[ρ] is sufficiently small, then

ρ cannot have too much of its mass concentrated on too small a set.

Proof of Lemma 1.8: Recall that Aβ := {x : ρ(x) ≥ β}. By Chebychev’s inequality, |Aβ |, the Lebesgue measure

of Aβ , satisfies |Aβ | ≤M/β. Then, since ‖̺λ‖∞ =M/(λπ),

∫

Aβ

ρ dx ≤
∫

Aβ

̺λ dx+

∫

Aβ

|ρ− ̺λ| dx ≤ M

β

M

λπ
+ ‖ρ− ̺λ‖1 ≤

M2

βλπ
+
CCKLP√

λ

√
Hλ[ρ],

where in the last inequality we have used Lemma 2.1.
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2.2 Concentration control for FPKS

To prepare the way for the proof of Theorem 1.11, it is useful to give an elementary demonstration of a crude form

of the log HLS inequality, without sharp constants, but which would nonetheless provide bounds on E [ρ] for all

M < 8π.

2.2 LEMMA (Bounds on the entropy). Let f be a non-negative measurable function in R
2 such that f log f and

f log(e + |x|2) is bounded in L1(R2). Then, for any α ≤ 1/(8π), there exists a constant C0 > 0 only depending on

M , α and λ such that

α

∫

R2

ρ log ρ dx− 1

2
(G)+ ∗ ρ ≥ −C0 − 4αM log

(
1

M

∫

R2

√
λ+ |x|2 ρ dx

)
.

Proof: Recall the following Young type inequality: For all s, t > 0, st ≤ s log s + et−1. Then, for any α > 0, we

have st = α [s (t/α)] ≤ αs log s+ αet/α−1. We shall apply this to

1

2
(G)+ ∗ ρ(x) = 1

4π

∫

R2

(log |x− y|)−ρ(y) dy =

∫

|x−y|<1

1

4π
(− log |x− y|) ρ(y)

̺λ(y)
̺λ(y) dy ,

under the integral sign with weight ̺λ, and with

s =
ρ(y)

̺λ(y)
and t = − 1

4π
log |x− y| .

Since ̺λ is bounded above by M/(λπ), this yields

1

2
(G)+ ∗ ρ(x) ≤ α

∫

|y−x|<1

(
ρ

̺λ

)
log

(
ρ

̺λ

)
̺λ dy + α

(
M

λπe

∫

|z|≤1

1

|z|1/(4πα) dz
)
. (2.1)

The second integral on the right converges as long as α > 1/8π, in which case, doing the integral explicitly, we find

αM

λπ e

∫

|z|≤1

1

|z|1/(4πα) dz =
M

λe

8πα2

8πα− 1
for 8πα > 1 . (2.2)

To relate the first integral to E [ρ], use the fact that s 7→ s log s is bounded below by −1/e to conclude that
∫

|y−x|<1

(
ρ

̺λ

)
log

(
ρ

̺λ

)
̺λ dy ≤

∫

R2

(
ρ

̺λ

)
log

(
ρ

̺λ

)
̺λ dy +

M

e

≤
∫

R2

ρ log ρ dy −
∫

R2

ρ log ̺λ dy +
M

e

By Jensen’s inequality for the concave function log in L1((ρ/M) dx),
∫

R2

ρ log ̺λ dx =M log

(
λM

π

)
− 4

∫

R2

log
(√

λ+ |x|2
)
ρ dx

≥M log

(
λM

π

)
− 4M log

(
1

M

∫

R2

√
λ+ |x|2ρ dx

)
. (2.3)

Using (2.2) and (2.3) in (2.1), we obtain

1

2
(G)+ ∗ ρ(x) ≤α

∫

R2

ρ log ρ dy +
M

λe

8πα2

8πα− 1

+ αM

[
1

e
− log

(
λM

π

)
+ 4 log

(
1

M

∫

R2

√
λ+ |x|2 ρ dx

)]
.

The result follows with

C0 := αM

[
1

λe

8πα

8πα− 1
+

1

e
− log

(
λM

π

)]

+

.
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2.3 Remark (Non-sharp version of the log-HLS inequality). As a consequence, the previous lemma provides us

with a crude logarithmic HLS inequality, but one that would suffice for application to the sub-critical mass case.

Since obviously

−
∫

R2

ρG ∗ ρ ≥ −
∫

R2

ρ (G)+ ∗ ρ,

we conclude

M α

∫

R2

ρ log ρ dx− 1

2

∫

R2

(G) ∗ ρ ≥ −
[
C0 + 4αM log

(
1

M

∫

R2

√
λ+ |x|2 ρ dx

)]

so that

FPKS[ρ] ≥ (1−Mα)

∫

R2

ρ log ρ dx− αM

[
C0 + 4αM log

(
1

M

∫

R2

√
λ+ |x|2ρ(x) dx

)]
.

As long as M < 8π, we can choose α so that both Mα < 1 and 8πα > 1, in which case this elementary argument

gives us an a priori upper bound on E [ρ] in term of FPKS[ρ] and the first moment of ρ.

The next lemma is a quite standard control of the negative contribution of the entropy in terms of the control

at infinity of some moment of the distribution known as Carleman-type estimate.

2.4 LEMMA (Control on the negative part of the entropy). For any density ρ ∈ L1
+(R

2), if the moment∫
R2 m(|x|) ρ(x) dx is bounded with e−m(|x|) ∈ L1(R2) and m : R+

0 −→ R
+
0 non-decreasing function, then

∫

R2

ρ(x) log− ρ(x) dx ≤
∫

R2

m(|x|)ρ(x) dx+
1

e

∫

R2

e−m(|x|) dx .

Proof: Let ρ̄ := ρχ{ρ≤1} and M̄ =
∫
R2 ρ̄(x) dx ≤

∫
R2 ρ(x) dx =M . Then

∫

R2

ρ̄(x) (log ρ̄(x) +m(|x|)) dx =

∫

R2

[U(x) logU(x)]µ dx− M̄ logZ

where U := ρ̄/µ, µ(x) = e−m(|x|)/Z with Z =
∫
R2 e

−m(|x|) dx. The Jensen inequality yields

∫

R2

[U(x) logU(x)]µ dx ≥
(∫

R2

U(x)µ dx

)
log

(∫

R2

U(x)µ dx

)
= M̄ log M̄

and

−
∫

R2

ρ(x) log− ρ(x) dx =

∫

R2

ρ̄(x) log ρ̄(x) dx ≥ M̄ log M̄ − M̄ logZ −
∫

R2

m(|x|) ρ̄(x) dx

≥ −Z
e
−
∫

Rd

m(|x|) ρ(x) dx .

We now turn to the critical mass case, and the proof of Theorem 1.11. As already noticed in (1.5), whenM < 8π

not all the entropy
∫
ρ log ρ is “eaten” in the free energy FPKS[ρ] when we use the Log HLS inequality Lemma 1.1.

Hence we obtain a control of the entropy. But in the critical case M = 8π, the free energy FPKS[ρ] is equal to the

functional which appears in the Log HLS inequality so that there is no remainder term to obtain compactness. In

[4, Lemma 3.1], the spreading of mass is enough to show that we can still have a remainder part of the entropy.

The idea was to cut the function ρ is different parts: some parts of positive mass that we have to precisely control,

and one main part of mass less than 8π where the Log HLS inequality leave a remainder term in
∫
ρ log ρ. In the

present lemma, the spreading of mass is quantified by the functional Hλ[ρ] and Lemma 1.8.

Proof of Theorem 1.11: The idea is to split the function ρ is two parts: Given β > 0, define ρβ(x) = min{ρ(x), β}.
We will apply the Log HLS inequality to ρ− ρβ of mass less than 8π and control the rest by the functional Hλ[ρ]

and Lemma 1.8.
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Let Mβ :=
∫
R2 ρβ dx. We apply the above proof of Lemma 2.2 to ρ− ρβ of mass M −Mβ , to obtain

−
∫

R2

ρG ∗ ρ(x) dx ≥ −
∫

R2

ρ (G)+ ∗ ρ(x) dx = −
∫

R2

ρβ (G)+ ∗ ρ(x) dx−
∫

R2

(ρ− ρβ) (G)+ ∗ ρ(x) dx .

By the point-wise bound on ρβ , we obtain

1

2

∫

R2

ρβ (G)+ ∗ ρ(x) dx ≤ β
1

4π

∫∫

R2×R2

(log |x− y|)−ρ(y) dx dy =
βM

8
.

By the bound on the entropy, see Lemma 2.2, we deduce that, for any α > 1/8π,

1

2

∫

R2

(ρ− ρβ) (G)+ ∗ ρ(x) dx ≤α(M −Mβ)

∫

R2

ρ log ρ dy

+ (M −Mβ)

[
C0 + 4αM log

(
1

M

∫

R2

√
λ+ |x|2ρ(x) dx

)]
.

This provides, for any α > 1/8π, the lower bound

FPKS[ρ] ≥ [1− (M −Mβ)α]

∫

R2

ρ log ρ dx− (M −Mβ)C0

− 4αM (M −Mβ) log

(
1

M

∫

R2

√
λ+ |x|2ρ(x) dx

)
.

Corollary 1.10 and assumption (1.18) imply that
∫

R2

√
λ+ |x|2ρ(x) dx ≤ 2

√
λM + CCKLP

√
Hλ[ρ] ≤

√
λ

(
2M +

8π − ε0
2

)
. (2.4)

Hence, for any α > 1/8π,

FPKS[ρ] ≥ [1− (M −Mβ)α]

∫

R2

ρ log ρ dx− (M −Mβ)

[
C0 + 4αM log

(√
λ

(
2 +

8π − ε0
2M

))]
.

To control the negative part of the entropy, we use Lemma 2.4 with m(|x|) =
√
λ+ |x|2 and (2.4):

− [1− (M −Mβ)α]

∫

R2

ρ log− ρ dx ≥ −
∫

R2

ρ log− ρ ≥ −
∫

R2

m(|x|)ρ(x) dx− 1

e

∫

R2

e−m(|x|) dx

≥ −
√
λ

(
2M +

8π − ε0
2

)
− 1

e

∫

R2

e−m(|x|) dx .

This gives the final control on the positive part of the entropy, for any α > 1/8π:

FPKS[ρ] ≥ [1− (M −Mβ)α]

∫

R2

ρ log+ ρ dx− βM

8
−
√
λ

(
2M +

8π − ε0
2

)
− 1

e

∫

R2

e−m(|x|) dx

− (M −Mβ)

[
C0 + 4αM log

(√
λ

(
2 +

8π − ε0
2M

))]
. (2.5)

By Lemma 1.8 for any given β > 2C1/(8 π − ε0) we can ensure

M −Mβ ≤ C1

β
+ C2

√
Hλ[ρ] ≤

C1

β
+

8π − ε0
2

< 8 π − ε0 .

By setting β1 := 4C1/(8 π − ε0), we can choose γ2 := 1 − α(M −Mβ1
) ≥ 1/4 and α = (8π − ε0)

−1. The desired

inequality follows immediately from (2.5) with

CCCF :=
M3

2λπ(8 π − ε0)
+
√
λ

(
2M +

8π − ε0
2

)
+

1

e

∫

R2

e−
√

λ+|x|2 dx

+M

[
8π

ε0λe
+

1

e
− log

(
λM

π

)]

+

+ 4M log

(√
λ

(
2 +

8π − ε0
2M

))
.
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2.3 Concentration control for D
Proof of Theorem 1.9. Let f := ρ1/4. As in the previous proof, for β > 0, we split f in two parts by defining

fβ := min{f, β1/4} and hβ := f − fβ . We have

πD[ρ] = 8 π

∫

R2

|∇f |2 dx− π

∫

R2

f6 dx . (2.6)

Defining Aβ = {x : f(x) ≥ β1/4} = {x : ρ(x) ≥ β}, we have
∫

R2

f6 dx =

∫

R2\Aβ

f6
β dx+

∫

Aβ

(hβ + β1/4)6 dx =

∫

R2

f6
β dx− β3/2|Aβ |+

∫

Aβ

(hβ + β1/4)6 dx . (2.7)

By the convexity of x 7→ x6, for any α ∈ (0, 1)

∫

Aβ

(hβ + β1/4)6 ≤ β3/2

α5
|Aβ |+

1

(1 − α)5

∫

Aβ

h6β dx . (2.8)

By the inequality f6
β ≤ √

βf4, and plugging (2.8) and (2.7) into (2.6), we obtain

πD[ρ] ≥ 8 π

∫

R2

|∇f |2 dx− π

(1− α)5

∫

R2

h6β dx− 8 π2
√
β − π β3/2

(
1

α5
− 1

)
|Aβ | . (2.9)

Given any γ > 1 to be fixed later and using the GNS inequality, see Lemma 1.2, for hβ:

π

∫

R2

h6β dx−
∫

R2

|∇hβ |2 dx
∫

R2

h4β dx ≥ 0 . (2.10)

By definition of fβ and hβ , ∇fβ = 0 in the support of hβ so that
∫

R2

|∇f |2 dx =

∫

R2

|∇fβ|2 dx+

∫

R2

|∇hβ|2 dx . (2.11)

By (2.10) and (2.11) we thus have

0 ≤ π

∫

R2

h6β dx−
∫

R2

|∇fβ |2 dx
∫

R2

h4β dx+

∫

R2

|∇f |2 dx
∫

R2

h4β dx .

Infering in (2.9), for any γ > 0 to be chosen later, we have

πD[ρ] ≥
(
8 π − γ

∫

R2

h4β dx

)∫

R2

|∇f |2 dx+ γ

∫

R2

|∇f |2 dx
∫

R2

h4β dx

+ π

(
γ − 1

(1− α)5

)∫

R2

h6β dx− 8 π2
√
β − π β3/2

(
1

α5
− 1

)
|Aβ | . (2.12)

Let γ be any real number in (1, 2). We set α := 1 − γ−1/5 ∈ (0, 1) so that the last term in (2.12) vanishes.

We will see that the result holds with the choice γ1 := 4π(2− γ). By the concentration control in Lemma 1.8 and

Assumption (1.17), as long as β := 4C1/γ1, we have
∫

R2

h4β dx =

∫

Aβ

(f − β1/4)4 dx <

∫

Aβ

f4 dx ≤ C1

β
+ C2

√
Hλ[ρ] = γ1 .

Since γ ∈ (1, 2) and γ1 ∈ (0, 4π), 8π− γ
∫
R2 h

4
β dx > 8π− γγ1 > 0. And the result is proved with γ1 := 4π(2− γ) ∈

(0, 4π) and

CCCD := π β3/2

(
γ

(
γ1/5 − 1

)5 − 1

)
|Aβ |+ 8π2

√
β where β :=

64

λ(2 − γ)
. (2.13)

Surprisingly, this proof can be adapted to solutions of mass strictly less than 16π but not above.
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3 Displacement convexity and the PKS system

3.1 Gradient flows in the Wasserstein metric and displacement convexity

We recall some facts concerning the 2-Wasserstein metric that will be used here. We shall be brief, aiming mainly

to establish terminology and notation. For more background, see [36] and [1].

Let P(R2) denote the set of probability measures in R
2, and let P2(R

2) the subset of probability measures with

finite second moments. Define the functional W2 in P(R2)× P(R2) by

W2
2(µ, ν) = inf

Π∈Γ

∫∫

R2×R2

|x− y|2 dΠ(x, y) ,

where Π runs over the set of Γ of all couplings of the probability measures µ and ν; that is, the set of joint probability

measures in R
2 ×R

2 with first marginal µ and second ν. For absolutely continuous probability measures f dx and

g dx we will simply write W2(f, g) in place of W2(f dx, g dx). Clearly, W2 is finite in P2(R
2)× P2(R

2), though it

takes on the value +∞ in certain pairs (µ, ν) ∈ P(R2) × P(R2) – for example if µ belongs to P2(R
2), but ν does

not.

It is easy to see that W2 is a metric on P2(R
2); it is called the 2-Wasserstein metric, where the 2 refers to the

exponent 2 on the distance |x − y|. More generally, given any ν ∈ P(R2), W2 is a metric on the subset of P(R2)

given by
{
µ ∈ P(R2) : W2(µ, ν) <∞

}
.

A result of Brenier [6] as extended by McCann [26], provides effective control over the minimization problem

defining W2(µ, ν). To recall this result, let T be a measurable map R
2 → R

2. We say that T transports µ onto ν,

if for any measurable set B ⊂ R
2, ν(B) = µ ◦ T−1(B). In this case we say that ν is the push-forward of µ by T ,

ν = T#µ. An equivalent formulation is that ν = T#µ if

∫

R2

ζ(T (x)) dµ(x) =

∫

R2

ζ(y) dν(y) ∀ζ ∈ C0
b (R

2) . (3.1)

By the Brenier-McCann Theorem [6, 26], for any two probability measures µ and ν on R
2 not charging Hausdorff

dimension 1 sets, there is an essentially unique convex function ϕ in R
2 such that ϕ#µ = ν and

W2
2(µ, ν) =

∫

R2

|x−∇ϕ(x)|2 dµ(x) . (3.2)

The essential uniqueness is that if ϕ and ϕ̃ are two such convex functions, then ∇ϕ = ∇ϕ̃ almost everywhere with

respect to µ. In this paper we will be concerned with densities whose mass is not necessarily one. If µ and ν

are two positive measures of mass M > 0, we define W2(µ, ν) in terms of the 2-Wasserstein distance between the

probability measures µ/M and ν/M as follows:

W2
2(µ, ν) =MW2

2(µ/M, ν/M) . (3.3)

This normalization convention has the advantage that if ∇ϕ#(µ/M) = (ν/M), then (3.2) is still valid for arbitrary

M . Note that if (3.1) holds for µ and ν, it also holds if we change µ and ν by multiplying them by a positive

constant, i.e., ∇ϕ#(µ/M) = (ν/M) if and only if ∇ϕ#µ = ν.

In Section 5 we shall also use the p-Wasserstein distance, 1 ≤ p < 2, especially for p = 1, on account of a useful

description of compact sets for this metric. For two probability measures µ and ν on R
2, p-Wasserstein distance

Wp(µ, ν) is defined by

Wp
p(µ, ν) = inf

Π∈Γ

∫∫

R2×R2

|x− y|p dΠ(x, y) , (3.4)

with notations introduced above. For two positive measures of mass M , we define

Wp(µ, ν) =
√
MWp(µ/M, ν/M) . (3.5)
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This normalization is chosen taking into account (3.3) to extend the standard ordering relation for the Wp-metrics

on probability measures; that is, by Hölder’s inequality, we have for any 1 ≤ p < 2

Wp(µ, ν) ≤ W2(µ, ν) . (3.6)

A fundamental insight of Otto [28] is that the 2-Wasserstein metric is useful when considering any evolution

equation on densities ρ that can be written in the form

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δG[ρ(t)]
δρ

(t, x)

])
(3.7)

for some functional G. The prime example of (3.7) considered in [21] is the Fokker-Planck equation for probability

densities
∂ρ

∂t
= ∆ρ+∇ · (x ρ) ,

for which

G[ρ] =
∫

R2

ρ(x) log ρ(x) dx+
1

2

∫

R2

|x|2ρ(x) dx . (3.8)

In [29], a more general class of evolution equations was considered, rescaled porous medium equations for which

G[ρ] = 1

m− 1

∫

R2

[ρm(x) − 1] dx+
1

2

∫

R2

|x|2ρ(x) dx (3.9)

for m 6= 1. Notice that the formal limit as m→ 1 of the functional in (3.9) is the functional in (3.8).

Otto’s insight [28] is that the equation (3.7) is gradient flow for the functional G with respect to the 2-Wasserstein

metric. This is true for a large class of equations of the form (3.7), see [1, 3, 8, 10, 12, 13, 36]. The “gradient flow

in the 2-Wasserstein metric” point of view is useful to us here for two reasons:

• It provides the means for constructing well-behaved solutions of the equation in question through the solution

of a sequence of variation problems; the Jordan-Kinderlehrer-Otto (JKO) scheme.

• It provides the means for studying the rate at which solutions of (3.7) converge to minimizers of the functional

G, at least when the functional G has a certain convexity property.

The convexity property referred to in the second point is McCann’s notion of displacement convexity [27], which

turns out to be convexity in the “Riemannian metric” associated to the 2-Wasserstein metric; see [29]. If the

functional G is uniformly displacement convex, then there are automatically a family of functional inequalities that

govern the convergence of solutions of (3.7) to minimizers of G. In concrete terms, the functional G is said to be

displacement convex in case the following is true: For any two densities ρ0 and ρ1 of the same mass M , let ϕ be

the essentially unique convex function such that ∇ϕ#ρ0 = ρ1. For 0 < t < 1, define

ϕt(x) = (1− t)
|x|2
2

+ tϕ(x) and ρt = ∇ϕt#ρ0 .

The displacement interpolation between ρ0 and ρ1 is the path of densities t 7→ ρt, 0 ≤ t ≤ 1.

Let γ be any real number. To say that G is γ-displacement convex means that for all such densities ρ0 and ρ1,

and all 0 ≤ t ≤ 1,

(1− t)G[ρ0] + tG[ρ1]− G[ρt] ≥ γt(1− t)W2
2(ρ0, ρ1) .

G is simply displacement convex is this is true for γ = 0, and G is uniformly displacement convex is this is true for

some γ > 0. Let us recall the characterization of displacement convexity given by McCann in [27] for functionals

of the form

GΦ[ρ] :=

∫

Rd

Φ(ρ(x)) dx , (3.10)

where Φ : [0,∞) → [0,∞) with Φ(0) = 0. Then McCann’s Theorem says that if s 7→ sdΦ(s−d) is convex non-

increasing on (0,+∞) then the functional GΦ is displacement convex, and this condition is essentially necessary.
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A much simpler result, also from [27], is that if V is any real valued function on R
2 such that for all x0, x1 ∈ R

2

and all 0 ≤ t ≤ 1, (1− t)V (x0) + tV (x1)− V ((1 − t)x0 + tx1) ≥ γt(1− t)|x0 − x1|2, then the functional

V [ρ] =

∫

R2

V (x) ρ(x) dx

is γ-displacement convex. Using these results, one readily checks that in the case of the Fokker-Planck equation,

the functional (3.8) is indeed uniformly displacement convex. The consequent inequalities that govern the long

time behavior of solutions are Gross’s logarithmic Sobolev inequality and the Talagrand inequality for Gaussian

measures. Our analysis of long time behavior for the PKS system falls outside the scope of previous work in this

direction since the functional FPKS is not displacement convex. The key reason that it is useful to bring the second

formal Lyapunov functional Hλ into the analysis of the PKS system is that it is displacement convex. In the next

section we prove the displacement convexity of Hλ, and study its consequences.

3.2 The critical fast diffusion equation as gradient flow of a uniformly displacement

convex entropy

The equation
∂u

∂t
(t, x) = ∆um(t, x) + κ div(xu(t, x)) , (3.11)

where κ is a non-negative constant and m > 0, is called the porous medium equation with κ = 0 and m > 1 while

for κ = 0 and 0 < m < 1 is called the fast diffusion equation. When κ > 0, there is a restoring drift. In case

m = 1, (3.11) is of course the heat equation for κ = 0, and the linear Fokker-Planck equation for κ > 0.

Equation (3.11) can be written in the gradient flow form

∂u

∂t
(t, x) = div

(
u(t, x)∇δG

δu

)
with G[u] =

∫

R2

(
1

m− 1
um(x) + κ

|x|2
2
u(x)

)
dx , (3.12)

which shows that the evolution equation (3.11) is gradient flow for G with respect to the Wasserstein metric.

The value m = 1/2 for this equation in R
2 is critical in the sense that the functional G in (3.12) is strictly

displacement convex for m ≥ 1/2, but is not displacement convex for m < 1/2. There are many of other “critical”

values ofm between 0 and 1/2 at which other things happen, see [15] for instance. But since displacement convexity

plays a crucial role in our work, it is natural to refer to the m = 1/2 case as critical here. Indeed, by the criteria

of McCann introduced above since G[u] = V [u] + Gφm
[u] with V (x) = κ|x|2/2 and φm(s) = sm/(m− 1), then V [u]

is uniformly displacement convex, and for m ≥ 1/2, Gφm
[u] is displacement convex. As might be expected, some

difficulties arise at the critical value m = 1/2.

Since (3.11) is gradient flow for G, one might hope to find stable steady states by finding the minimizers ū of G.
Computing the Euler-Lagrange equation we find m/(m− 1)ūm−1 + κ|x|2/2 = C, where C is a Lagrange multiplier

for the constraint M :=
∫
R2 u(x) dx, which is conserved. In the case m = 1/2 and choosing

κ = κM,λ := 2

√
π

M λ
we find ū(x) =

M

π

λ

(λ+ |x|2)2 = ̺λ(x) .

One readily checks that ū = ̺λ is a steady state solution to (3.11) with κ = κM,λ and so the family of stationary

solutions of the PKS system which we are investigating are also stationary solutions of the critical fast diffusion

equation for different drifts κ = κM,λ. However, as neither
√
̺λ(x) nor |x|2̺λ is integrable, these functions are not

in the domain of definition of G, and so are not minimizers of

G[u] =
∫

R2

(
−2
√
u(x) + κM,λ

|x|2
2
u(x)

)
dx , (3.13)

the m = 1/2 version of (3.11) with κ = κM,λ as above.
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The cure is a simple renormalization as introduced in [15, 23]: Consider instead the functional Hλ[u] defined by

u 7→
∫

R2

−2
(√

u(x)−
√
̺λ(x)

)
dx+ κM,λ

∫

R2

|x|2
2

[u(x)− ̺λ(x)] dx . (3.14)

Then, at least as long as u has the same behavior at infinity as does ̺λ, the integrals will converge. The counter

terms that we have subtracted off from our functional do not depend on u, and hence they do not affect δG/δu.
This is the key idea used in the improvements of rates of convergence for the fast diffusion equation, see [15, 23].

Since κM,λ|x|2 = 2/
√
̺λ − λκM,λ, the functional in (3.14) can be written in the following simpler form, which we

take to be the definition of the critical fast diffusion entropy:

Hλ[u] :=

∫

R2

(√
u−√

̺λ
)2

√
̺λ

dx.

It is easy to check that for m = 1/2, (3.11) can be written

∂

∂t
u(t, x) = div

(
u(t, x)∇δHλ

δu

)
.

As noted above the displacement convexity of Hλ is formally obvious from the fact that were
√
u(x),

√
̺λ(x)

and |x|2u(x) are integrable, Hλ[u] would differ from the right hand side of (3.13) by a constant. We provide a

rigorous proof in the next subsection.

3.3 Regularization of the critical fast diffusion entropy

To show that u 7→ Hλ[u] is displacement convex, and more generally, to make rigorous computations involving

critical fast diffusion entropy, Hλ[u], we introduce a regularized version of the critical fast diffusion entropy:

3.1 DEFINITION (Regularized fast-diffusion relative entropy functional). For δ > 0, and u a density with mass

M , define Hλ,δ[u] by

Hλ,δ[u] =

∫

R2

(√
u+ δ −√

̺λ + δ
)2

√
̺λ + δ

dx

3.2 PROPOSITION (Displacement convexity of relative entropy functionals). For any density u ∈ L1
+(R

2) of

mass M , δ 7→ Hλ,δ[u] is monotone increasing as δ decreases to zero, and

lim
δ→0

Hλ,δ[u] = Hλ[u] . (3.15)

Furthermore, let u0 and u1 belong to L1
+(R

2) of total mass M such that W2(u0, u1) <∞, and let ut, 0 ≤ t ≤ 1 be

their displacement interpolation. Then for each δ > 0,

(1− t)Hλ,δ[u0] + tHλ,δ[u1]−Hλ,δ[ut] ≥ t (1− t)Kδ(u0, u1) ,

where Kδ(u0, u1) satisfies

lim
δ→0

Kδ(u0, u1) = κM,λ W
2
2(u0, u1) , (3.16)

and Kδ(u0, u1) ≥ γδ W
2
2(u0, u1) with γδ < 0. Consequently, the maps u 7→ Hλ,δ[u] are γδ-displacement convex and

the map u 7→ Hλ[u] is strictly uniformly displacement convex:

(1− t)Hλ[u0] + tHλ[u1]−Hλ[ut] ≥ κM,λ t (1− t)W2
2(u0, u1) .

Proof: As δ 7→
(√
u+ δ −√

̺λ + δ
)2

is non-increasing. Then, as δ decreases,

(√
u+ δ −√

̺λ + δ
)2

√
̺λ + δ

increases to

(√
u−√

̺λ
)2

√
̺λ

.
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By the monotone convergence theorem and (3.15), the monotonicity in δ follows. Next,

(√
u+ δ −√

̺λ + δ
)2

√
̺λ + δ

=
u√

̺λ + δ
− 2

(√
u+ δ −

√
δ
)
+

δ√
̺λ + δ

+
√
̺λ + δ − 2

√
δ .

Where by the mean value theorem

u√
̺λ + δ)

≤ u√
δ
,
√
u+ δ −

√
δ ≤ u

2
√
δ

and

∣∣∣∣
δ√

̺λ + δ
+
√
̺λ + δ − 2

√
δ

∣∣∣∣ ≤
̺λ√
δ
.

These three terms are integrable and

Hλ,δ[u] = (I) + (II) + const. (3.17)

where

(I) :=

∫

R2

1√
̺λ + δ

u dx and (II) := 2

∫

R2

(√
δ −

√
u+ δ

)
dx

The criterion (3.10) are easily checked for Φ(u) =
√
δ −

√
u+ δ, and thus (II) is displacement convex.

The term (I) in (3.17) is unfortunately not displacement convex in general. In fact, we will show that is γδ-

displacement convex with a explicit computable constant. In order to check the γδ-displacement convexity of the

regularized functional, notice that (̺λ + δ)−1/2 is a function of |x|2. Thus, the functional (I) is of the general form:

u 7→
∫

R2

Vδ(x)u(x) dx

with Vδ(x) = (̺λ + δ)−1/2. The characterization of γδ-displacement convexity [1] ensures that this is implied by

D2Vδ ≥ γδI2. Let us compute the hessian of the potential Vδ(x). Define the function fδ on [0,∞) by

fδ(|x|2) := Vδ(x) =
1√

̺λ(x) + δ
.

We compute

f ′
δ(s) =

A

[A+ δ(λ+ s)2]3/2
and f ′′

δ (s) = − 3Aδ(λ+ s)

[A+ δ(λ+ s)2]5/2
,

with A =M λ/π. Therefore

D2Vδ(x) = 2f ′
δ(|x|2)δij + 4f ′′

δ (|x|2)(x ⊗ x),

and taking into account that f ′′
δ (s) ≤ 0, then

ξ ·D2Vδ(x) · ξT ≥
[
2f ′

δ(|x|2) + 4f ′′
δ (|x|2)|x|2

]
|ξ|2 := Fδ(|x|2)|ξ|2 (3.18)

for all x, ξ ∈ R
2, where the function Fδ is given by

Fδ(s) = 2f ′
δ(s) + 4sf ′′

δ (s) =
2A2 + 2Aδλ2 − 8Aλδs− 10Aδs2

[A+ δ(λ+ s)2]5/2
.

It is obvious that the function Fδ converges point-wise to the constant κM,λ as δ → 0 in [0,∞). Moreover, since for

each δ > 0, the function Fδ(s) → 0 as s→ ∞ and it is clear that is negative for s large enough since the denominator

is positive and the numerator has a negative dominant term, then Fδ attains its maximum and minimum in [0,∞).

Then, we can choose its minimum value as γδ < 0 and the γδ-displacement convexity is proved.

In order, to show the limiting uniform displacement convexity, we need to refine our arguments. For that, we

come back to the definition of convexity. Let ψ be the essentially unique convex function such that ∇ψ#u0 = u1.

For 0 ≤ t ≤ 1, define

ηδ(t) :=

∫

R2

Vδ(x) [(1− t)u0(x) + t u1(x) − ut(x)] dx

=

∫

R2

[(1 − t)Vδ(x) + t Vδ(∇ψ(x)) − Vδ(x+ t(∇ψ(x) − x))] u0(x) dx .
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We seek a lower bound on ηδ of the form ηδ(t) ≥ t (1 − t)Kδ(u0, u1). Since ηδ(0) = ηδ(1) = 0, it suffices for this

purpose to show that η′′δ (t) ≥ 2Kδ(u0, u1) for all 0 ≤ t ≤ 1. By denoting y := ∇ψ(x) − x, we have

η′′δ (t) =

∫

R2

y ·D2Vδ(x+ ty) · yT u0(x) dx .

Using (3.18), we readily obtain that

η′′δ (t) ≥
∫

R2

Fδ(|x+ ty|2)|y|2 u0(x) dx ≥ Kδ(u0, u1) ,

with

Kδ(u0, u1) := min
0≤t≤1

∫

R2

Fδ(|x+ ty|2)|y|2 u0(x) dx.

Now, let us observe that the function Fδ is bounded in [0,∞) uniformly in δ. For that, note that f ′
δ is decreasing

and thus f ′
δ(s) ≤ f ′

δ(0) ≤ A−1/2. On the other hand, by the geometric-arithmetic mean inequality, we get

|sf ′′
δ (s)| ≤ 3δ1/2

s

A+ δs2
≤ 3

2
√
A
. (3.19)

As a consequence, we get

‖Fδ‖L∞(0,∞) ≤
8√
A
,

and thus,

|Fδ(|x+ ty|2)||y|2 u0(x) ≤
8√
A
|∇ψ(x)|2 u0(x) ∈ L1(R2) ,

for all 0 ≤ t ≤ 1. Thus, the dominated convergence theorem guarantees that

lim
δ→0

∫

R2

Fδ(|x+ ty|2)|y|2 u0(x) dx = κM,λ

∫

R2

|y|2 u0(x) dx = κM,λW
2
2(u0, u1) ,

uniformly in 0 ≤ t ≤ 1, which together with the definition of Kδ(u0, u1) implies the uniform displacement convexity

of the limiting functional Hλ[u].

Continuing with the notation of Proposition 3.2, define the function hδ on [0, 1] by

hδ(t) = Hλ,δ[ut]−Kδ(u0, u1)t
2 .

Then by Proposition 3.2, (1− t)hδ(0) + t hδ(1)− hδ(t) ≥ 0, so that hδ is convex. Therefore, for all t ∈ (0, 1),

hδ(1)− hδ(0) ≥
hδ(t)− hδ(0)

t
.

This in turn implies that

Hλ,δ[u1]−Hλ,δ[u0] ≥ lim sup
t→0

Hλ,δ[ut]−Hλ,δ[u0]

t
+Kδ(u0, u1) .

To compute the lim sup of the right hand side, we treat the two non-constant terms (I) and (II) in (3.17)

separately. As we have noted (II) is displacement convex, and by well known theorems on the sub-gradients of

displacement convex functions [1, Chapter 10], this part contributes

∫

R2

∇u0(x)
2(u0(x) + δ)3/2

· (∇ψ(x) − x)u0(x) dx ,

as long as the integrand satisfies mild regularity properties; in particular whenever u0 is bounded below on every

compact set by some strictly positive number, and
√
u0 has a square integrable distributional gradient. We shall
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show that both of these conditions hold in our application. Given that they do, then by the Cauchy-Schwarz

inequality,

∫

R2

|∇u0|
(u0 + δ)3/2

|∇ψ(x)− x| u0 ≤
√∫

R2

|∇u0|2
(u0 + δ)3

u0

√∫

R2

|∇ψ(x) − x|2 u0

≤
√

1

3δ

∫

R2

|∇u0|2
u0

W2(u0, u1) =
2√
3δ

√∫

R2

|∇√
u0|2 W2(u0, u1) .

The contribution of (I) in (3.17) can be treated by appealing to the general results in [1] since this functional

is γδ-displacement convex, in the notation of [1], and thus, this part contributes

2

∫

R2

f ′
δ(|x|2)x · (∇ψ(x) − x)u0 dx .

Which is finite because s 7→ √
s f ′

δ(s) is a rational functional which tends to 0 when s goes to infinity. Thus we

have:

3.3 LEMMA (First-order characterization of displacement convexity). Let u0 and u1 be two densities of total

mass M such that W2
2(u0, u1) < ∞, and such that u0 is uniformly bounded below on compact subsets of R2 by a

strictly positive number, and that
√
u0 has a square integrable distributional gradient. Let ∇ψ be the unique gradient

of a convex function ψ in R
2 so that ∇ψ#u0 = u1. Then

Hλ,δ[u1]−Hλ,δ[u0] ≥
∫

R2

[
2Ax

[A+δ(λ+|x|2)2] 32
+

∇u0
2(u0+δ)

3

2

]
(∇ψ(x) − x)u0 dx+Kδ(u0, u1) (3.20)

where Kδ(u0, u1) is defined in Proposition 3.2, and the integrand in (3.20) is integrable.

One might be tempted to take the limit δ → 0 at this stage and to conclude

Hλ[u0] ≤ Hλ[u1]−
∫

R2

[
κM,λ x+

∇u0
2u

3/2
0

]
· (∇ψ(x) − x)u0 dx− κM,λ W

2
2(u0, u1) ,

but without further information about ∇ψ(x)− x, it is not possible to do this, or to justify the convergence of the

integral. In our applications, it will be simpler to use the specific information that we obtain on ∇ψ(x) − x, then

to do some integrations by parts, and then take the limit δ → 0.

Let us finally deduce as an application of the uniform displacement convexity of the functional Hλ[u], an inter-

esting functional inequality of Talagrand type. Actually, generalized Log-Sobolev-type inequalities lead formally

to generalized Talagrand-type inequalities for this functional by repeating arguments due to Otto and Villani [30,

Theorem 1, Proposition 1] in the linear case and generalized in [12, Theorem 2.1]. Here, we are able to show it in

full rigor by the previous approximation argument.

3.4 LEMMA (Talagrand’s inequality). Whenever u ∈ L1
+(R

2) of mass M with Hλ[u] <∞, then

W2(u, ̺λ) ≤
√

2Hλ[u]

κM,λ
.

Proof: Using Lemma 3.3 with u0 = ̺λ and u1 = u, we obtain that Hλ,δ[u] ≥ Kδ(̺λ, u). for all δ > 0, since

Hλ,δ[̺λ] = 0 and
2Ax

[A+ δ(λ+ |x|2)2]3/2
+

∇̺λ
2(̺λ + δ)3/2

= 0.

Thus, passing to the limit δ → 0 taking into account (3.16), the desired inequality is obtained.
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3.5 Remark (Basins of attraction). The previous result gives us a localization argument for the densities compared

to Lemma 2.1. It also says in a weaker sense that the mass cannot be too spread from the stationary state ̺λ if the

functional Hλ[u] is finite. Moreover, it tells us that the Wasserstein 2-distance of our initial data to the stationary

state ̺λ is finite provided Hλ[u0] < ∞. Actually, we can observe that each of the equilibrium solutions ̺λ are

infinitely far apart in the W2 metric. We can easily check that with ϕ(x) =
√
λ/µ|x|2/2, one has ∇ϕ#̺µ = ̺λ.

Thus, the uniqueness part of Brenier-McCann Theorem ensures

W2
2(̺µ, ̺λ) =

1

2

∫

R2

∣∣∣∣∣

√
λ

µ
x− x

∣∣∣∣∣

2

̺µ(x) dx = +∞

since the equilibrium densities ̺λ all have infinite second moments. In particular, Hλ[̺µ] = +∞ for µ 6= λ.

4 Analysis of the discrete time variational scheme for the critical mass

PKS system

From now on, we will assume that the mass is 8π.

4.1 The Jordan-Kinderlehrer-Otto scheme for the critical mass PKS system

The Jordan-Kinderlehrer-Otto (JKO) scheme for constructing solutions to (3.7), as described in Section 3, would

be to fix a time step τ > 0, and inductively define the sequence {ρk}k∈N by setting ρ0 to be the initial density, and

then for k ≥ 0,

ρk+1 ∈ argmin

{
W2

2(ρ, ρ
k)

2τ
+ G[ρ]

}
. (4.1)

In other words, ρk+1 is some minimizer of the functional ρ 7→ W2
2(ρ, ρ

k)/(2τ) + G[ρ]. Only existence of the

minimizer is an issue, and not uniqueness, although in many examples that have been investigated a strict convexity

argument furnishes the uniqueness. The key point is existence of a minimizer, since that provides a solution of the

Euler-Lagrange equation for the minimization problem in (4.1). Then, as shown in [21], the fact that each ρk+1

satisfies this Euler-Lagrange equation means that, under certain conditions on G, if one defines ρ̃τ by

ρ̃τ (t, x) = ρk(x) for kτ ≤ t < (k + 1)τ , with ρ̃τ (0, x) = ρ0 ,

there is a sequence of values of τ tending to zero along which ρ̃τ tends to a solution of (3.7) in a suitable weak sense.

This scheme of constructing weak solutions of the PKS system for M < 8π was developed in [3]. However, for

M = 8π we can not proceed in a very direct manner. Our problem lies outside the scope of previous applications

of the JKO scheme, since at the critical mass M = 8π, (1.5) provides no upper bound on E [ρ], and hence, it is not

even clear that minimizers exist for the variational problem in (4.1) when G = FPKS and M = 8π. To circumvent

this difficulty, we introduce a regularized functional. In fact, for reasons that will become evident later on, we shall

even be forced to choose a different degree of regularization at each time step.

4.2 Regularization of FPKS

Let γ be a C∞ probability density in R
2 which is radially symmetric, and supported in the unit disc. Then, for

all ǫ > 0 define γǫ(x) = ǫ−2γ (x/ǫ). This is a radially symmetric, C∞ probability density supported in the discs of

radius ǫ. Finally, we define the regularized Green’s function

Gǫ = γǫ ∗G ∗ γǫ

where ∗ denotes convolution, and G(x) = −1/(2π) log |x|.

4.1 LEMMA (First properties of Gǫ). Let Gǫ be defined as above then:
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(i) For all x ∈ R
2, Gǫ(x) ≤ G(x). Moreover, if |x| > 2ǫ then Gǫ(x) = G(x).

(ii) There exists C > 0 such that for all x ∈ R
2, Gǫ(x) ≤ Cǫ−2.

(iii) For all (x, y) ∈ R
4,

Gǫ(x− y) ≥ − 1

4π

[
4 + log

(
e+ |x|2

)
+ log

(
e+ |y|2

)]
.

Proof: (i) As γ is radially symmetric, G is harmonic in R
2\{(0, 0)}, and subharmonic in R

2 so that, by the mean

value property the first item holds.

(ii) Since log− |x| is locally integrable in R
2, for any x ∈ R

2

G ∗ γǫ(x) =
∫

|y|≤ǫ

G(x − y) γǫ(y) dy ≤ 1

2π

∫

|y|≤ǫ

log− |x− y| γǫ(y) dy ≤ C

ǫ2
.

since γ is bounded. Thus, we get

Gǫ(w) ≤
C

ǫ2

∫

R2

γǫ(z) dz =
C

ǫ2
.

(iii) From the elementary inequality |z − w| ≤ |z|+ |w| ≤ 2max{|z| , |w|}, we obtain

log |z − w| ≤ log 2 + log |z|+ log |w| .

Therefore,

G(z − w) ≥ − 1

2π
(2 + log |z|+ log |w|) .

Integrating both sides against γǫ(x − z) γǫ(y − w), and using Jensen’s inequality, we find

Gǫ(x − y) ≥ − 1

2π

[
2 + log

(∫

R2

|z| γǫ(x− z) dz

)
+ log

(∫

R2

|w| γǫ(y − w) dw

)]

≥ − 1

2π

[
2 + log

(
|x| +

∫

R2

|z| γǫ(z) dz
)
+ log

(
|y|+

∫

R2

|w| γǫ(w) dw
)]

≥ − 1

4π

[
4 + log

(
e+ |x|2

)
+ log

(
e+ |y|2

)]
,

at least for ǫ small enough so that
∫
R2 |z|γǫ(z) dz is small enough.

One of the main uses that we will make of the regularization of the self interaction functional is that it provides a

regularized density for the chemical attractant: given a mass density ρ, we define the regularized chemical attractant

density cǫ
cǫ(x) = Gǫ ∗ ρ(x)

4.2 LEMMA (Uniform estimate regularized chemoattractant). For all ǫ > 0 and all densities ρ with mass 8π,

the regularized chemical attractant density cǫ = Gǫ ∗ ρ satisfies

‖∇cǫ‖∞ ≤ 4CHLS

ǫ
‖γ‖24/3

and

‖|x|∇cǫ‖∞ ≤ 8CHLS ‖γ‖4/3‖|x|γ‖4/3 + 4 +
CHLS

2πǫ
‖γ‖24/3 ‖|x|ρ‖1 . (4.2)

Here CHLS denotes the constant of the sharp Hardy-Littlewood-Sobolev (HLS) inequality [24] for the special

case p = q = 4/3:

∫∫

Rd×Rd

f(x)
1

|x − y|g(y) dx dy ≤ CHLS‖f‖4/3‖g‖4/3 . (4.3)
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Though the explicit value of CHLS is simple enough, see [24], our bounds and their proofs will perhaps be easier to

read if leave CHLS unevaluated in them, as a marker of the use of the HLS inequality.

Proof: By the Young inequality, we have ‖∇cǫ‖∞ = ‖∇Gǫ ∗ ρ‖∞ ≤ 8 π ‖∇Gǫ‖∞. And by the HLS inequality,

‖∇Gǫ‖∞ ≤ 1

2π

∫∫

R2×R2

γǫ(x − z)
1

|z − w| γǫ(w − y) dz dw ≤ CHLS

2π
‖γǫ‖24/3 =

CHLS

2πǫ
‖γ‖24/3 .

Using the triangle inequality |x| ≤ |x− z|+ |z − w|+ |w − y|+ |y| we have

||x|∇cǫ| ≤ 2 |(|x|γǫ) ∗ ∇G ∗ γǫ ∗ ρ|+ |γǫ ∗ ρ|+ |γǫ ∗ ∇G ∗ γǫ ∗ |x|ρ|

Using the Young and HLS inequalities, see (4.3), we obtain

‖|x|∇cǫ‖∞ ≤ 8CHLS ‖|x|γǫ‖4/3 ‖γǫ‖4/3 + 4 +
CHLS

2π
‖γǫ‖24/3 ‖|x|ρ‖1 ,

and the second part of the result is obtained by using ‖γǫ‖4/3 = ε−1/2 ‖γ‖4/3.
Using the regularized Green’s function Gǫ, we introduce the regularized self-interaction functional Wǫ:

Wǫ(ρ) =

∫∫

R2×R2

ρ(x)Gǫ(x− y) ρ(y) dx dy .

4.3 LEMMA (Continuity of the regularized interaction energy). Let ρ1 and ρ2 be any two densities in R
2 of mass

8π bounded in L1(R2, log(e+ |x|2)). Then, for all 0 < ǫ ≤ 1,

|Wǫ[ρ1]−Wǫ[ρ2]| ≤
[
3

π
+ 2Cǫ−2

]
‖ρ1‖L1(R2,log(e+|x|2) dx) ‖ρ1 − ρ2‖L1(R2,log(e+|x|2) dx) (4.4)

Moreover, let {ρn}n≥0 be a sequence of densities all bounded in L1(R2, log(e + |x|2)) uniformly in n. If {ρn}n≥0

converges weakly in L1(R2) to ρ, then for each ǫ > 0,

Wǫ[ρ] ≤ lim inf
n→∞

Wǫ[ρn] .

Proof: By definition of Gǫ:

Wǫ[ρ] = W0[ρ ∗ γε] =
∫

R2

|∇G ∗ ρ ∗ γε|2 (z) dz ≥ 0 .

Using ρ̃ := ρ1 − ρ2 we write

Wǫ[ρ1]−Wǫ[ρ2] = Wǫ[ρ̃] + 2

∫

R2

ρ1 ∗Gǫ(x) ρ̃(x) dx ≥ 2

∫

R2

[ρ ∗Gǫ] ρ̃ dx , (4.5)

Then combining Lemma 4.1 and (4.5), we obtain

Wǫ[ρ1]−Wǫ[ρ2] ≥ 2

∫∫

ρ̃>0

ρ(y)Gǫ(x − y) ρ̃(x) dy dx+ 2

∫∫

ρ̃≤0

ρ(y)Gǫ(x − y) ρ̃(x) dy dx

≥ − 1

2π

∫∫

ρ̃>0

ρ(y)
[
4 + log

(
e+ |x|2

)
+ log

(
e+ |y|2

)]
ρ̃(x) dy dx

+ 2
C

ǫ2

∫∫

ρ̃≤0

ρ(y)ρ̃(x) dy dx

≥ −
[
3

π
+ 2

C

ǫ2

]
‖ρ1‖L1(R2,log(e+|x|2) dx) ‖ρ̃‖L1(R2,log(e+|x|2) dx) .

Now swapping the roles of ρ1 and ρ2, we obtain (4.4).
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By Lemma 4.1 {ρn}n≥0 bounded in L1(R2, log(e + |x|2) dx) uniformly in n implies that ρn ∗Gǫ is bounded in

L∞(R2) uniformly in n. Since {ρn}n≥0 converges to ρ weakly in L1(R2), then ρn ∗(χRGǫ) → ρ∗(χRGǫ) point-wise

for given any cut-off function χR with support in B(0, R) and thus ρ ∗ Gǫ ∈ L∞(R2). Therefore, applying (4.5)

with ρ1 =: ρ and ρ2 := ρn, we have

lim inf
n→∞

(Wǫ[ρn]−Wǫ[ρ]) ≥ lim
n→∞

2

∫

R2

[ρ ∗Gǫ] (ρn − ρ) dx = 0 ,

where we have used the weak convergence on the right hand side.

We are now ready to introduce our regularized free energy functional.

4.4 DEFINITION (Regularized free energy functional). For all 0 < ǫ ≤ 1, define

F ǫ
PKS[ρ] :=

∫

R2

ρ(x) log ρ(x) dx− 1

2

∫∫

R2×R2

ρ(x)Gǫ(x− y) ρ(y) dx dy .

on the set of densities ρ of mass 8π such that ρ ∈ L1(R2, log(e + |x|2) dx) and ρ log ρ is integrable.

Note that by Lemma 4.1 (ii) and (iii), ρ (Gǫ ∗ ρ) is integrable for ρ ∈ L1(R2, log(e + |x|2) dx). Moreover, by

Lemma 4.1 (i)

F ǫ
PKS[ρ] ≥ FPKS[ρ] . (4.6)

In particular, by the sharp log HLS inequality, see Lemma 1.1

F ǫ
PKS[ρ] ≥ −C(8π) = −1 + log 8 . (4.7)

By Lemma 4.1 (iii), we have the upper bound independent of ǫ:

F ǫ
PKS[ρ] ≤

∫

R2

ρ(x) log ρ(x) dx+ 32 π + 2‖ρ‖L1(R2,log(e+|x|2) dx) . (4.8)

4.5 LEMMA (Error estimate for regularized free energy). For all ρ ∈ L1
+ ∩ L3/2(R2) with mass 8π, and all

ǫ < (2
√
e)−1,

F ǫ
PKS[ρ]−FPKS[ρ] ≤ 4

√
5π‖ρ‖3/23/2 ǫ| log(2ǫ)| .

Proof: We use Hölder’s inequality and Young’s inequality for convolutions to get

F ǫ
PKS[ρ]−FPKS[ρ] ≤ ‖ρ‖24/3‖Gǫ −G‖2 .

Hölder’s inequality gives F ǫ
PKS[ρ]− FPKS[ρ] ≤

√
8π ‖ρ‖3/23/2‖Gǫ −G‖2. By Lemma 4.1, the support of Gǫ −G is in

B(0, 2ǫ) and Gǫ ≤ G. We can thus directly compute

‖Gǫ −G‖22 =

∫

|z|≤2ǫ

|(Gǫ −G)(z)|2 dz ≤ 4

∫

|z|≤2ǫ

|G(z)|2 dz = 16π ǫ2
(
1

2
− log 2ǫ+ (log 2ǫ)2

)
.

Finally, simple computations show that when | log(2ǫ)| > 1/2, the term in parentheses on the right in no greater

than 5| log(2ǫ)|2.

4.3 Existence and first properties of the JKO scheme minimizers

Let S denote the set of densities ρ of mass M such that W2(ρ, ̺λ), E [ρ] and
∫
R2 |x|ρ(x) dx are all finite. By (4.7),

the functional

ρ 7→ W2
2(ρ, ρ0)

2τ
+ F ǫ

PKS[ρ],

is bounded from below on S. The next lemma asserts that is has minimizers, and begins the task of their analysis.

We state this lemma for a single step since we shall be changing the value of ǫ from step to step.
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4.6 THEOREM (Existence of minimizers). Let λ > 0, 0 < τ ≤ 1 and 0 < ǫ ≤ 1. For all ρ0 ∈ S

argmin
ρ∈S

{
W2

2(ρ, ρ0)

2τ
+ F ǫ

PKS[ρ]

}
(4.9)

is not empty, and each minimizer ρ belongs to S.

Proof: Let {ρ(k)}k∈N be a minimizing sequence i.e. such that

lim
k→∞

(
W2

2(ρ
(k), ρ0)

2τ
+ F ǫ

PKS[ρ
(k)]

)
= inf

ρ∈S

{
W2

2(ρ, ρ0)

2τ
+ F ǫ

PKS[ρ]

}
.

By what we have noted just above, the infimum on the right hand side is finite. The following observation is the

starting point for obtaining all of the bounds we need: Considering the trial function ρ = ρ0 itself, one sees that

we may suppose
W2

2(ρ
(k), ρ0)

2τ
+ F ǫ

PKS[ρ
(k)] ≤ W2

2(ρ0, ρ0)

2τ
+ F ǫ

PKS[ρ0] = F ǫ
PKS[ρ0]

for all k. Consequently, for all k,

F ǫ
PKS[ρ

(k)] ≤ F ǫ
PKS[ρ0] and W2

2(ρ
(k), ρ0) ≤ 2τ

[
F ǫ

PKS[ρ0]−F ǫ
PKS[ρ

(k)]
]
. (4.10)

We first bound W2(ρ
(k), ̺λ) uniformly in k. Since ρ0 ∈ S, (4.8) ensures that F ǫ

PKS[ρ0] < ∞, and provides a

bound depending only on E [ρ0],
∫
R2 |x|ρ0. Then (4.7) provides a universal lower bound on F ǫ

PKS[ρ
(k)], and thus

by (4.10), there is a finite constant K1 depending only on E [ρ0],
∫
R2 |x|ρ0 such that for all k,

F ǫ
PKS[ρ

(k)] ≤ K1 and W2
2(ρ

(k), ρ0) ≤ K1 . (4.11)

In particular, by the triangle inequality, for all k, W2(ρ
(k), ̺λ) ≤

√
K1 +W2(ρ0, ̺λ) <∞.

We next bound the first moments of ρ(k) uniformly in k. Let ∇ϕ be the optimal transportation plan ∇ϕ#ρ(k) =
̺λ as in the Brenier-McCann Theorem. Then since |x| ≤ |x−∇ϕ(x)| + |∇ϕ(x)| for all x, integrating against ρ(k)

and using the Cauchy-Schwarz inequality yields
∫

R2

|x| ρ(k)(x) dx ≤
√
8 πW2(ρ

(k), ̺λ) +

∫

R2

|x| ̺λ(x) dx ≤
√
8 π [

√
K1 +W2(ρ0, ̺λ)] +

∫

R2

|x| ̺λ(x) dx .

The right hand side is finite and independent of k.

We next bound E [ρ(k)]. By part (ii) of Lemma 4.1, there is a constant C such that

∫

R2

ρ(k)(x) log ρ(k)(x) dx ≤ F ǫ
PKS[ρ

(k)] +
C (8π)2

ǫ2
≤ F ǫ

PKS[ρ0] +
C (8π)2

ǫ2
≤ K1 +

C (8π)2

ǫ2
,

where we have used (4.11) once more. Again the right side is finite and independent of k.

The last two uniform bounds show that {ρ(k)}k is uniformly integrable. Hence, by the Dunford-Pettis theorem,

there exist a weakly in L1 convergent sub-sequence whose limit we shall denote by ρ.

By a standard weak lower semicontinuity argument (see e.g. [1] for the weak lower semicontinuity of W2
2), ρ

satisfies each of the three bound that we have proved uniformly for {ρ(k)}k, and thus ρ ∈ S.
It remains to prove that the functional F ǫ

PKS is lower semi-continuous on L1(R2). For the entropy part, this is

standard. For the self interaction part, this follows from Lemma 4.3. It follows from this that the weak limit ρ is

a minimizer.

4.7 PROPOSITION (Strict positivity of the minimizers). Let ρ0 satisfies the conditions of Theorem 4.6. Then

any minimizer ρ of (4.9) is uniformly bounded below on compact sets, i.e. for all R > 0, there exists s > 0 such

that

ρ(x) ≥ s almost everywhere in DR := {x : |x| ≤ R} . (4.12)

Moreover, s does not depend on the chosen minimizer of Problem (4.9) in case of non-uniqueness.
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4.8 Remark (Idea of the proof). Let us try to quantify this simple statement: Entropy abhors a vacuum. The

functional derivative of E [ρ] is log ρ. On any set where ρ is very close to zero, log ρ is very negative, and we can

lower E [ρ] by transporting some mass from where ρ is relatively large to this spot where it is very small. This will

lower the entropy by a very large multiple of the transported mass. On the other hand, if we do not have to transport

the mass too far, the effects on W2
2(ρ, ρ0) and Wǫ(ρ) will be relatively small.

Proof: For any s > 0, let

AR(s) := {x ∈ DR : ρ(x) ≥ s} and CR :=

∫

AR(2/R2)

ρ(x) dx .

For any s > 0, let αR(s) := {x ∈ DR : ρ(x) ≤ s}, and let |αR(s)| denote its Lebesgue measure. By Theorem 4.6,

|x|ρ(x) is integrable, and hence

∫

DR

ρ(x) dx =

∫

R2

ρ(x) dx−
∫

|x|>R

ρ(x) dx ≥ 8 π −
∫

R2

|x|
R
ρ(x) dx ≥ 4 π ,

as long as 4πR ≥
∫
R2 |x|ρ(x) dx.

If |αR(s)| = 0 for some s > 0, there is nothing to prove: ρ is bounded below uniformly by s on DR. Therefore,

suppose that |αR(s)| > 0 for all s > 0. Pick some small positive numbers δ and s, and define a new density ρ̃ by

transporting a mass δ CR |αR(s)| from AR(2/R
2) to αR(s), distributing it uniformly there, which raises the density

there by δ CR. In formulas, choose s < 2/R2 to have αR(s) ∩ AR(2/R
2) = ∅, and define a new density ρ̃ by

ρ̃(x) =






(1− δ |αR(s)|) ρ(x) x ∈ AR(2/R
2) ,

ρ(x) + δ CR x ∈ αR(s) ,

ρ(x) otherwise .

In order to ensure positivity, we have to impose δ|αR(s)| ≤ δ π R2 ≤ 1/2. In this way, it is easy to check that ρ̃ is

a density.

Note that ‖ρ̃− ρ‖1 ≤ 2 δ |αR(s)|CR , and since all the modifications take place on DR,

‖ρ̃− ρ‖L1(R2,log(e+|x|2) dx) ≤ log(e +R2) 2 δ |αR(s)|CR .

It now follows from the bounds on ρ derived Theorem 4.6 and from Lemma 4.3 that there is a constantK depending

only on R, ǫ, E [ρ0] and Hλ[ρ0] such that

Wǫ[ρ̃] ≤ Wǫ[ρ] + δ |αR(s)|K . (4.13)

Using Taylor’s expansion of x 7→ x log x, that log x is increasing and assuming s ≤ δ CR, we obtain

∫

R2

[ρ̃ log ρ̃− ρ log ρ] dx =

∫

AR(2/R2)

{(1− δ |αR(s)|) ρ log [(1− δ |αR(s)|) ρ]− ρ log ρ} dx

+

∫

αR(s)

[(ρ+ δ CR) log (ρ+ δ CR)− ρ log ρ] dx

≤ −δ |αR(s)|
∫

AR(2/R2)

ρ log [(1− δ |αR(s)|) ρ] dx+ δ |αR(s)|CR log(2δ CR)

≤ δ |αR(s)|CR

[
− log

(
1

R2

)
+ log(2δ CR)

]
, (4.14)

where δ |αR(s)| ≤ 1/2 and x ∈ AR(2/R
2) were used in the last estimate.

To estimate the difference W2
2(ρ̃, ρ0)−W2

2(ρ, ρ0), let Π denote the optimal coupling of ρ and ρ0, and use it to

define a non-optimal coupling Π̃ of ρ̃ and ρ0. To do this, let µ be the measure supported on AR(2/R
2) with density
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ρ, and hence total mass CR. Let ν be the dx–uniform distribution on αR(s) with total mass CR. Let ∇ψ be the

optimal transportation plan with ∇ψ#µ = ν, and define the map T : R2 → R
2 by

T (x) =

{
∇ψ(x) x ∈ AR(2/R

2) ,

x otherwise .

Then Π̃, given by Π̃ = (1− δ|αR(s)|)Π + δ|αR(s)|(T ⊗ Id)#Π is a coupling of ρ̃ and ρ0, and hence

W2
2(ρ̃, ρ0) ≤

∫∫

R2×R2

|x− y|2 dΠ̃(x, y)

= (1− δ|αR(s)|)W2
2(ρ, ρ0) + δ|αR(s)|

∫∫

R2×R2

|T (x)− y|2 dΠ̃(x, y) .

Then, since |T (x)− y|2 ≤ 2|T (x)− x|2 + 2|x− y|2, and |T (x)− x| ≤ 2R, since all of the transportation induced by

∇ψ takes place inside DR, it follows that

W2
2(ρ̃, ρ0) ≤ (1 + δ|αR(s)|)W2

2(ρ, ρ0) + δ|αR(s)|(8π)2 8R2 .

By bounds on ρ derived in the proof of Theorem 4.6, there is a constant K̃ depending only on E [ρ0] and Hλ[ρ0]

such that W2
2(ρ, ρ0) ≤ K̃τ . Finally then, there is a constant depending only on R, τ , E [ρ0] and Hλ[ρ0] such that

W2
2(ρ̃, ρ0) ≤ W2

2(ρ, ρ0) + δ|αR(s)|K . (4.15)

Combining (4.14), (4.13) and (4.15) yields

W2
2(ρ̃, ρ0)

2τ
+ F ǫ

PKS[ρ] ≤
W2

2(ρ, ρ0)

2τ
+ F ǫ

PKS[ρ]

+ δ |αR(s)|CR

[
− log

(
1

R2

)
+ log(2δCR) +K ′

]
,

with a given constant K ′. If |αR(s)| > 0 for all s > 0, then choosing δ small enough such that

− log

(
1

R2

)
+ log(2δ CR) +K ′ < 0

contradicts the optimality of ρ.

For instance, choosing sR = δ/CR, all the above procedure can be done. Hence for some ρ is bounded below

by sR on DR. This proves (4.12). Let us point out the the only information used about ρ is that it is a minimizer

of the time-step variational problem (4.9).

We now continue the analysis of the minimizers ρ begun in Theorem 4.6. We obtained ρ ∈ S and the lower

bound (4.12) directly from the variational principle, but to proceed, we need the Euler-Lagrange equation for the

variational problem (4.9).

By the Brenier-McCann Theorem, there is a a lower semi-continuous convex function ϕ in R
2 such that ∇ϕ#ρ =

ρ0, and ∇ϕ is uniquely determined on the support of ρ, which is all R2 by (4.12) . The Euler-Lagrange equation

for (4.9) relates ρ, ρ0 and ∇ϕ:

4.9 LEMMA (Euler-Lagrange equation). Let ρ0 satisfy the conditions of Theorem 4.6 and ρ be any minimizer

for the variational problem in (4.9), and let ∇ϕ be the unique gradient of a lower semi-continuous convex function

such that ∇ϕ#ρ = ρ0. Then the distributional gradient of ρ satisfies

−∇ρ+ ρ∇cǫ =
id−∇ϕ

τ
ρ (4.16)

where cǫ = Gǫ ∗ ρ. In particular, since cǫ is differentiable everywhere, and ϕ is differentiable almost everywhere, ρ

is differentiable almost everywhere.
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Proof: We proceed as in [21], and choose any smooth compactly supported vector-field ξ : R2 → R
2. Then for any

s > 0, let Ts be the map from R
2 to R

2 defined by Ts = id + sξ. Since ξ is smooth with compact support, for all

sufficiently small s, Ts is invertible. For all s > 0, we have

W2
2(ρ, ρ0)

2τ
+ F ǫ

PKS[ρ] ≤
W2

2(Ts#ρ, ρ0)

2τ
+ F ǫ

PKS[Ts#ρ] . (4.17)

Exactly as shown in [21],
∫

R2

[Ts#ρ] log[Ts#ρ](y) dy =

∫

R2

ρ(x) log ρ(x) dx− s

∫

R2

divξ(x) ρ(x) dx+O(s2) (4.18)

and

W2
2(Ts#ρ, ρ0) ≤ W2

2(ρ, ρ0) + 2s

∫

R2

[x−∇ϕ(x)] · ξ(x)ρ(x) dx+O(s2) . (4.19)

Next, by definition of the push-forward,
∫∫

R2×R2

[Ts#ρ](x)Gǫ(x− y)[Ts#ρ](y) dx dy =

∫∫

R2×R2

ρ(x)Gǫ(Ts(x) − Ts(y)) ρ(y) dx dy

=

∫∫

R2×R2

ρ(x)Gǫ([x− y] + s [ξ(x) − ξ(y)]) ρ(y) dx dy

= s

∫∫

R2×R2

ρ(x) [ξ(x) − ξ(y)] · ∇Gǫ(x− y) ρ(y) dx dy

+

∫∫

R2×R2

ρ(x)Gǫ(x− y) ρ(y) dx dy +O(s2) . (4.20)

Now using (4.18), (4.20) and (4.19) in (4.17), we obtain

0 ≤ −
∫

R2

divξ(x) ρ(x) dx− 1

2

∫∫

R4

ρ(x) [ξ(x) − ξ(y)] · ∇Gǫ(x − y) ρ(y) dy

+

∫

R2

x−∇ϕ(x)
τ

· ξ(x) ρ(x) dx .

Arguing as in [21], since this holds for all smooth compactly supported ξ, it holds also for −ξ, and so it holds with

equality. Therefore, for smooth and compactly supported ξ,
∫

R2

div ξ(x) ρ(x) dx+

∫∫

R2×R2

∇Gǫ(x − y) ρ(y) dy · ξ(x) ρ(x) dx =

∫

R2

ρ(x)
x −∇ϕ(x)

τ
· ξ(x) dx .

This implies (4.16), and the rest is clear.

4.10 LEMMA (Qualitative regularity estimates). Let ρ0 satisfy the conditions of Theorem 4.6, and let ρ be any

minimizer for the variational problem in (4.9). Then
√
ρ has a square integrable distributional gradient, and for

any 1 < p <∞, ρp0 is integrable.

Proof: By the positivity of ρ, see Proposition 4.6, we can divide both sides of (4.16) by
√
ρ, to obtain

2∇√
ρ =

(
∇cǫ −

x−∇ϕ
τ

)√
ρ ,

where ∇ϕ is such that ∇ϕ#ρ = ρ0. By the triangle inequality,

2‖∇√
ρ‖2 ≤

(∫

R2

|∇cǫ(x)|2 ρ(x) dx
)1/2

+
1

τ

(∫

R2

|x−∇ϕ(x)|2ρ(x) dx
)1/2

≤
(∫

R2

|∇cǫ(x)|2 ρ(x) dx
)1/2

+
1

τ
W2(ρ, ρ0) . (4.21)
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By Lemma 4.2, ‖∇cǫ‖∞ is uniformly bounded, and so is the first term of (4.21). This proves that
√
ρ has a square

integrable distributional gradient. The integrability of ρp0 is then a consequence of the following classical version of

the GNS inequality valid for functions on R
2 with p ∈ [2,∞)

∫

R2

|v|p dx ≤ Dp

[∫

R2

|∇v|2 dx
]p/2−1 ∫

R2

|v|2 dx

applied to v =
√
ρ.

4.11 Remark. Although the bounds in Lemma 4.10 are not quantitative, and would certainly be ǫ dependent if we

were to extract quantitative bounds, we shall use them only to justify certain integrations by parts, and otherwise

show that subtraction of infinities does not invalidate computations that follow. Thus, these qualitative estimates

are all we require concerning ∇√
ρ and ρ. However, they are absolutely crucial for their purpose, and their necessity

is the main reason we have had to introduce the regularized Green’s function Gǫ, and along with it, the regularized

chemical attractant. Without the regularization, we would only know that 2∇√
ρ − ∇c√ρ was square integrable –

but the possible cancellation effects would not allow us to conclude that ∇√
ρ was square integrable.

4.4 A discrete form of the entropy-entropy dissipation inequality

Our main goal in this subsection is to prove a discrete version of the entropy-entropy dissipation inequality (1.15).

The key idea is to use the κλ displacement convexity of Hλ and the “above the tangent” inequality for convex

functions as follows: For given initial density ρ0, let ρ be any minimizer for the variational problem in (4.9). Let

ut, 0 ≤ t ≤ 1 denote the displacement interpolation between ρ and ρ0 starting at ρ and ending at ρ0. Then u0 = ρ

and u1 = ρ0. Since Hλ is displacement convex, the “above the tangent” inequality for convex functions says that

Hλ[ρ] +
d

dt
Hλ[ut]

∣∣∣∣
t=0

+ κλ W
2
2(ρ, ρ0) ≤ Hλ[ρ0] .

A formal computation of the second term on the left would give, for ǫ = 0,

d

dt
Hλ[ut]

∣∣∣∣
t=0

= D[ρ] .

Indeed, assuming Lemma 3.3 holds for δ = ǫ = 0 applied to u0 = ρ and u1 = ρ0, we get

Hλ[ρ] ≤ Hλ[ρ0]−
1

2

∫

R2

[
κλx+

∇ρ
ρ3/2

]
· (∇ϕ(x) − x) ρ dx− κλ W

2
2(ρ, ρ0) .

Using (4.16), i.e. (∇ϕ(x) − x)ρ = τ (∇ρ− ρ∇c) and expanding, we can rewrite this as

Hλ[ρ] ≤Hλ[ρ0]−
τ

2

[∫

R2

|∇ρ|2
ρ3/2

dx−
∫

R2

∇c · ∇ρ√
ρ

dx− κλ

∫

R2

x · ∇c ρ dx+ κλ

∫

R2

x · ∇ρ dx
]

− κλ W
2
2(ρ, ρ0)

:=Hλ[ρ0]−
τ

2
[(I) + (II) + (III) + (IV)]− κλ W

2
2(ρ, ρ0) .

Using −∆c = ρ we have

(II) = −2

∫

R2

∇c · ∇√
ρ dx = −2

∫

R2

ρ3/2 dx .

Using the symmetrization argument we obtain

(III) = κλ
1

4π

∫

R2

ρ dx = 16πκλ .

And by integration by parts (IV) = −16πκλ, resulting into Hλ[ρ] ≤ Hλ[ρ0]− τD[ρ] − κλ W
2
2(ρ, ρ0).

However, to do the calculation in a rigorous manner we must take into account that ǫ > 0, and we must use the

regularized entropy functional Hλ,δ. Before proceding with this, we point out that no such estimate can be given

for FPKS since this functional is not displacement convex.
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4.12 LEMMA (Convexity estimates at the regularized level). Let ρ0 satisfy the conditions of Theorem 4.6, and

let ρ be any minimizer for the variational problem in (4.9), then

Hλ,δ[ρ] ≤Hλ,δ[ρ0]−
τ

2

∫

R2

|∇ρ|2
(ρ+ δ)3/2

+ τ

∫

R2

ρ3/2 dx+ 16 π
√
δτ + 16π

√
δ(Jγ + 1 + Ĉǫ)τ

− 16πκλτ + 2Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1τ +

16π Jγ√
2λ

τ + 2τ

∫

R2

∇ · [x f ′
δ(|x|2)]ρ(x) dx

−Kδ(ρ0, ρ) ,

and

Hλ,δ[ρ] ≤Hλ,δ[ρ0]−
τ

2

∫

R2

|∇ρ|2
(ρ+ δ)3/2

+ τ

∫

R2

ρ3/2 dx+ 16 π
√
δτ + 16π

√
δ(Jγ + 1 + Ĉǫ)τ

− 16πκλτ + 2Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1τ +

32πCHLS√
2λ

√
ǫ ‖|x| γ‖4/3 ‖ρ‖4/3τ

+ 2τ

∫

R2

∇ · [x f ′
δ(|x|2)]ρ(x) dx−Kδ(ρ0, ρ) ,

where Kδ is defined in Proposition 3.2 and the constants Jγ, Ĉǫ, and Cǫ are explicit constants.

Proof: This is an elaborate calculation in which a number of integrations by parts operations must be carefully

examined for boundary behavior. It is relegated to the Appendix.

As a consequence of this lemma, letting δ go to 0, we obtain the following result concerning the dissipation of

Hλ in one discrete time step.

4.13 COROLLARY (Convexity estimates). Let ρ0 satisfy the conditions of Theorem 4.6. If ρ is any minimizer

for the variational problem in (4.9) then

Hλ[ρ] ≤ Hλ[ρ0]− τ D[ρ] + τ A ‖γ‖4/3 − κλW
2
2(ρ, ρ0) , (4.22)

and

Hλ[ρ] ≤ Hλ[ρ0]− τ D[ρ] + τ
√
ǫA ‖ρ‖4/3 − κλW

2
2(ρ, ρ0) . (4.23)

where A := 32π(2λ)−1/2CHLS ‖|x| γ‖4/3.

Proof: Let us first observe that
∫

R2

∇ · [x f ′
δ(|x|2)]ρ(x) dx =

∫

R2

[
2f ′

δ(|x|2) + 2|x|2f ′′
δ (|x|2)

]
ρ(x) dx.

Let us recall from the proof of Proposition 3.2 that 2f ′
δ(s) ր κλ and f ′′

δ (s) → 0 as δ → 0 for all s ≥ 0. Moreover, we

have that sf ′′
δ (s) is a bounded function uniformly in δ from (3.19). These properties together with the dominated

convergence theorem leads easily to

‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1 → 0 and

∫

R2

∇ · [x f ′
δ(|x|2)]ρ(x) dx→ 8κλπ

as δ → 0, since (1 + |x|)ρ ∈ L1(R2). By monotone convergence theorem, we obtain

lim
δ→0

∫

R2

|∇ρ|2
(ρ+ δ)3/2

=

∫

R2

|∇ρ|2
ρ3/2

.

Putting together all these facts and Proposition 3.2, we can pass to the limit as δ → 0 in Lemma 4.12 to get

the desired estimates (4.23) and (4.22).
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4.5 One-step estimates

Neither of the one step dissipation estimates that we have so far, namely (4.23) and (4.22), are exactly what we

need. The problem is the term τA‖γ‖4/3 in the first of these, and the term τA‖ρ‖4/3 in the second of these.

These terms might be large compared to the other terms so that these estimates might even give only “negative

dissipation”.

In the first main result of this subsection, we use one and then the other of these inequalities in combination

with the controlled concentration inequality of Theorem 1.9 to produce the kind of dissipation estimate that we

really want. In the second main result, we show that Lp norms of the densities are essentially propagated along

each step of the discrete variational scheme. Again, Theorem 1.9 play a crucial role in both proofs.

4.14 THEOREM (One-step theorem). Let ρ0 satisfy the conditions of Theorem 4.6, and let ρ be any minimizer

for the variational problem in (4.9). Moreover, let ρ0 satisfy the bound

Hλ[ρ0] < Cλ (4.24)

with Cλ defined Theorem 1.11 and Lemma 1.8. Define Q0 > 0, τ⋆0 > 0 by

Q0 := Cλ −Hλ[ρ0] and τ⋆0 := min

{
Q0

2A‖γ‖4/3
, 1

}
, (4.25)

where A is the constant given in Corollary 4.13. Finally, given Q0 and 0 < τ ≤ τ⋆0 , and also any positive integer

ℓ, let ǫℓ be given by

τ1/3
√
ǫℓ

[
8 π1/3Aγ

−2/3
1 (π Cλ + τ⋆0CCCD)

2/3
]
=
Q0

4
τ22−ℓ . (4.26)

Then for all τ ≤ τ⋆0 and all ǫ = ǫℓ, ρ satisfies

Hλ[ρ] < Cλ

and

Hλ[ρ]−Hλ[ρ0] ≤ − τD[ρ] +
Q0

4
τ22−ℓ − κλW

2
2(ρ0, ρ) . (4.27)

Proof: By (4.22) our choice of τ and of Q0 in (4.25) imply that

Hλ[ρ] ≤ Hλ[ρ0]− τD[ρ] +
Q0

2
= Cλ −Q0 − τD[ρ] +

Q0

2
≤ Cλ − τD[ρ] . (4.28)

On one hand, the GNS inequality, see Lemma (1.2), implies D[ρ] ≥ 0 so that (4.28) implies that ρ also satisfies (4.24).

On the other hand, since Hλ[ρ] cannot be negative it implies

D[ρ] ≤ Cλ

τ
. (4.29)

We can thus apply the concentration controlled inequality, Theorem 1.9 which implies, using (4.29)
∫

R2

∣∣∣∇ρ1/4
∣∣∣
2

dx ≤ 1

γ1
[πD[ρ] + CCCD] ≤

1

τ

1

γ1
[πCλ + τ⋆0CCCD] .

By the GNS inequality of Lemma 1.2, we have
∫

R2

ρ3/2 dx ≤ 8

∫

R2

∣∣∣∇ρ1/4
∣∣∣
2

dx ≤ 1

τ

8

γ1
[πCλ + τ⋆0CCCD] :=

C3

τ
, (4.30)

Next, by Hölder’s inequality,

∫

R2

ρ4/3 dx =

∫

R2

ρ1/3ρ dx ≤ (8π)1/3
(∫

R2

ρ3/2 dx

)2/3

≤ (8π)1/3
(
C3

τ

)2/3

.

Now using this bound in (4.23), we obtain

Hλ[ρ]−Hλ[ρ0] ≤ −τD[ρ] + τ1/3
√
ǫ
[
A (8π)1/3C

2/3
3

]
− κλW

2
2(ρ0, ρ).

We thus obtain the stated result by choosing ǫ = ǫℓ for any positive integer ℓ.
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4.15 LEMMA (Propagation of the Lp-norm). Let ρ0 satisfy the conditions of Theorem 4.6 together with the

condition (4.24). Assume additionally that ρ0 ∈ Lp(R2), 2 ≤ p <∞, and let ρ be any minimizer for the variational

problem in (4.9), then there exist K0 > 0 such that for all K ≥ K0

∫

R2

(ρ−K)p+ dx ≤
∫

R2

(ρ0 −K)p+ dx+ τA1 + τA2D[ρ] ,

where A1 and A2 are universal positive constants depending on K. Moreover, K0 only depends on

∫

R2

ρ| log ρ| dx.

Proof: The displacement convexity of the functional

ρ 7→
∫

R2

(ρ−K)p+ dx

with 2 ≤ p <∞ and K > 0, is easy to check using the McCann’s criterion [27], see Section 3. The Euler-Lagrange

equation of the variational scheme (x−∇ϕ) ρ = −τ∇ρ+τρ∇cǫ together with the standard first-order displacement

convexity characterization [36, 1] imply

∫

R2

(ρ−K)p+ dx−
∫

R2

(ρ0 −K)p+ dx ≤ −p
∫

R2

∇
[
(ρ−K)p−1

+

]
(∇ϕ− x) ρ dx

≤ − (p− 1)pτ

∫

R2

|∇(ρ−K)+|2 (ρ−K)p−2
+ dx

+ (p− 1)τ

∫

R2

∇
[
(ρ−K)p+

]
∇cǫ dx+ pτK

∫

R2

∇
[
(ρ−K)p−1

+

]
∇cǫ dx

≤ − 4(p− 1)

p
τ

∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx+ (p− 1)τ

∫

R2

(ρ−K)p+(−∆cǫ) dx

+ pτK

∫

R2

(ρ−K)p−1
+ (−∆cǫ) dx := τ(I1 + I2 + I3) . (4.31)

The last two integration by parts have to be justified for any given ǫ working as in the proof of Lemma 4.12 in the

Appendix. Integrating by parts on the ball of radius R, we obtain for any k ∈ {p, p− 1}
∫

|x|≤R

∇
[
(ρ−K)k+

]
∇cǫ dx =

∫

|x|≤R

(ρ−K)k+(−∆cǫ) dx+

∫

|x|=R

(ρ−K)k+∇cǫ · n dσ

≤
∫

|x|≤R

(ρ−K)k+(−∆cǫ) dx+ ‖∇cǫ‖∞
∫

|x|=R

ρk dσ .

As above, it is enough to show by dominated convergence theorem that there exists a sequence of radii {Rj}j∈N

such that the boundary terms tend to zero as j → ∞. Due to Lemma 4.10 with p ≥ 2, for any given natural N > 1,

we can write that

∞∑

N=1

∫ N

N−1

∫

|x|=r

ρk dσ dr =

∫

R2

ρk dx <∞ , implying that lim
N→∞

∫ N

N−1

∫

|x|=r

ρk dσ dr = 0 ,

for k ∈ {p, p− 1}, and the two integration by parts for any given ǫ are justified.

We now estimate I2 and I3, showing in particular that they are finite. Starting with I2, using −∆cǫ = ρǫ where

ρǫ := γǫ ∗ ρ ∗ γǫ, so that by Hölder’s inequality and Young’s inequality for convolutions, obtain
∫

R2

(ρ−K)p+(−∆cǫ) dx =

∫

R2

(ρ−K)p+ρǫ dx ≤ ‖(ρ−K)+‖pp+1‖ρǫ‖p+1 ≤ ‖(ρ−K)+‖pp+1‖ρ‖p+1 (4.32)

Likewise for I3, we use the fact that on the support of (ρ−K)+, K ≤ ρ. Therefore

K

∫

R2

(ρ−K)p−1
+ (−∆cǫ) dx = K

∫

R2

(ρ−K)p−1
+ ρǫ dx ≤

∫

R2

(ρ−K)p−1
+ ρǫρ dx .
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Therefore, by Hölder’s inequality and Young’s inequality for convolutions,

K

∫

R2

(ρ−K)p−1
+ (−∆cǫ) dx ≤ ‖(ρ−K)+‖p−1

p+1‖ρ‖2p+1 . (4.33)

Applying the arithmetic-geometric mean inequality to the right side of (4.32), we have that for any ν > 0,

‖(ρ−K)+‖pp+1‖ρ‖p+1 ≤ p

p+ 1
ν−(p+1)/p‖(ρ−K)+‖p+1

p+1 +
1

p+ 1
νp+1‖ρ‖p+1

p+1 .

Making a similar estimate for the right hand side of (4.33), and combining results, we have that

I2 + I3 ≤ F1(ν)‖(ρ−K)+‖p+1
p+1 + F2(ν)‖ρ‖p+1

p+1 (4.34)

where F1(ν) is a positive linear combination of negative powers of ν, and F2(ν) is a positive linear combination of

positive powers of ν.

By Lemma 4.10, ρp is integrable for any 1 ≤ p <∞, and so the right side of (4.34) is finite. Then by (4.31),
∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx <∞ .

From here we show that
∫

R2

∣∣∣∇ρp/2
∣∣∣
2

dx ≤
∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx+
16K(2p−1)/2

γ1
[πD[ρ] + CCCD] . (4.35)

Indeed, ∫

R2

∣∣∣∇ρp/2
∣∣∣
2

dx =

∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx−
∫

{ρ<K}

∣∣∣∇ρp/2
∣∣∣
2

dx ,

and ∫

{ρ<K}

∣∣∣∇ρp/2
∣∣∣
2

dx ≤ 16K(2p−1)/2

∫

R2

∣∣∣∇ρ1/4
∣∣∣
2

dx ≤ 16K(2p−1)/2

γ1
[πD[ρ] + CCCD] ,

where we applied again the concentration controlled inequality, Theorem 1.9 using the hypothesis (4.24).

Following an idea of Jäger and Luckhaus [20], we use the GNS inequality

∫

R2

vp+1 dx ≤ Dp

(∫

R2

|∇vp/2|2 dx
)(∫

R2

v dx

)
, (4.36)

which is a consequence of the Sobolev embedding inequality ‖u‖L2(R2) ≤ C‖∇u‖L1(R2) applied to u = v(p+1)/2 and

Cauchy-Schwartz inequality since ∇u = p+1
p v1/2∇vp/2. Applying (4.36) to v = (ρ−K)+, we get

∫

R2

(ρ−K)p+1
+ dx ≤M(K)

∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx where M(K) :=

∫

R2

(ρ−K)+ dx .

Then (4.34) becomes

I2 + I3 ≤ F1(ν)M(K)

∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx+ F2(ν) 8π

∫

R2

∣∣∣∇ρp/2
∣∣∣
2

dx .

We finally work with I1 to estimate it using (4.35) as

p

2(p− 1)
I1 ≤ −

∫

R2

∣∣∣∇
[
(ρ−K)

p/2
+

]∣∣∣
2

dx−
∫

R2

∣∣∣∇ρp/2
∣∣∣
2

dx+
16K(2p−1)/2

γ1
[πD[ρ] + CCCD] .

Now choose ν0 > 0 small enough such that 8πF2(ν0) < 2(p − 1)/p, and then K0 < ∞ large enough such that

M(K)F1(ν0) < 2(p− 1)/p. This choice of K0 only depends on ν0 and the bound on
∫
R2 ρ| log ρ| dx since

M(K) =

∫

R2

(ρ−K)+ dx ≤
∫

ρ>K

ρ dx ≤ 1

logK

∫

ρ>K

ρ log ρ dx ≤ 1

logK

∫

R2

ρ log+ ρ dx .
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We find ∫

R2

(ρ−K)p+ dx−
∫

R2

(ρ0 −K)p+ dx ≤ τ
32K(2p−1)/2(p− 1)

pγ1
[πD[ρ] + CCCD] ,

for all K ≥ K0. The desired result follows with

A1 =
32K(2p−1)/2(p− 1)

pγ1
CCCD and A2 =

32K(2p−1)/2(p− 1)

pγ1
π .

5 Proof of the main results

5.1 Approximate solutions

We now combine the single step operations described in the previous section to inductively define infinite sequences

{ρkτ}k∈N giving a discrete-time approximation to the PKS evolution. For the rest of this section, fix any λ > 0, and

any density ρ0 in R
2 with total mass 8π such that ρ0 log ρ0 and such that

Hλ[ρ] ≤
√
λ

128
√
2π

= Cλ . (5.1)

It then follows from Lemma 1.10 that |x|ρ0 is integrable, and from Lemma 3.4 that W2(ρ0, ̺λ) < ∞. Thus, ρ0
satisfies the conditions of Theorem 4.6 on the existence of minimizers for our single step variational problem.

Then, since (5.1) is satisfied, we may choose 0 < γ1 < 1 so that Hλ[ρ] ≤ Cλ, the constant in the condition

for applicability of Theorem 1.9, the concentration control theorem for D[ρ]. Thus, ρ0 satisfies the conditions of

Theorem 4.14, which provides us our single step estimates.

Fixing an arbitrarily small parameter τ > 0, we now inductively define the sequence of densities {ρkτ}k∈N with

ρ0τ := ρ0 by solving the sequence of variational problems

ρkτ ∈ argmin
ρ∈S

{
W2

2(ρ, ρ
k−1
τ )

2τ
+ F ǫk

PKS[ρ]

}
(5.2)

for a sequence of regularization parameters {ǫk}k∈N to be specified now. By Thereom 4.6, the sequence {ρkτ}k∈N is

well defined no matter how we choose 0 < τ < 1 and {ǫk}k∈N. However, we must make these choices carefully to

ensure

Qk := Cλ −Hλ[ρ
k
τ ] > 0 for each k . (5.3)

5.1 LEMMA (Good step sizes). Let {ρkτ}k∈N be the sequence of minimizers defined inductively using (5.2) starting

from ρτ = ρ0. With Qk defined as in (5.3), let A be the constant given in Corollary 4.13, and let Λ be defined by

Λ :=

∞∏

m=1

(
1− 2−m

4

)
,

and note that 1 > Λ > 0. Choose any τ > 0 satisfying

τ < min

{
ΛQ0

2A‖γ‖4/3
, 1

}
:= τ⋆ , (5.4)

and define ǫk by

τ1/3
√
ǫk

[
8 π1/3Aγ

−2/3
1 (π Cλ + CCCD)

2/3
]
=
Q0

4
τ22−k . (5.5)

Then for all k, Qk > ΛQ0 > 0, and in particular, Hλ[ρ
k
τ ] ≤ Cλ. Note that for some constant Z, ǫk := Z τ10/3 4−k.
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Proof: We shall show by induction that each for each positive integer j

Qj ≥
j∏

m=1

(
1− 2−m

4

)
Q0 , (5.6)

which is somewhat more than we need since the right hand side is larger than ΛQ0.

We now make the inductive hypothesis that for some positive integer k, (5.6) is true for all positive integers

j < k. Since Λ < 1, we may apply Theorem 4.14 with ρk−1
τ in place of ρ0, and ρ

k
τ in place of ρ and with τ and ǫk

specified as above. Then the conclusion (4.27) can be simplified and rewritten as

Hλ[ρ
k
τ ] ≤ Hλ[ρ

k−1
τ ] + τ2

Qk−1

4
2−k . (5.7)

Since τ < 1, this means that

Qk ≥ Qk−1

(
1− 2−k

4

)
.

By the inductive hypothesis, we obtain (5.6) for j = k. The proof that (5.6) is valid for j = 1 is a direct application

of Theorem 4.14, in the same way, since Λ < 1.

5.2 The passage to continuous time

Throughout the rest of this section, we assume that 0 < τ < τ⋆, where τ⋆ is defined in (5.4), and that ǫk is defined

by (5.5), and then that {ρkτ}k∈N is a corresponding sequence of minimizers of (5.2).

We now interpolate between the terms of the sequence {ρkτ}k∈N to produce a function from [0,∞) to L1(R2)

that we shall show to be, for sufficiently small τ , an approximate solution of the PKS system. For technical reasons,

we shall need two distinct, but closely related, interpolations.

• The Lipschitz interpolation: For each positive integer k, let ∇ϕk be the optimal transportation plan with

∇ϕk#ρkτ = ρk−1
τ . Then for (k − 1)τ ≤ t ≤ kτ we define

ρτ (t) =

(
t− (k − 1)τ

τ
Id +

kτ − t

τ
∇ϕk

)
#ρkτ .

• The piecewise constant interpolation: For each t and each positive integer k with (k− 1)τ ≤ t < kτ we define

ρ̃τ (t) = ρk−1
τ , with ρ̃τ (0) = ρ0.

For displacement convex functionals of ρ, such as Hλ[ρ], E [ρ], or the absolute first moment, any uniform bounds

on the functional along the sequence {ρkτ}k∈N extend to ρ(t) for all t, since if G is such a functional, then for

(k − 1)τ < t < kτ ,

G[ρτ (t)] ≤
t− (k − 1)τ

τ
G[ρk−1

τ ] +
kτ − t

τ
G[ρkτ ] .

Of course it is evident that for any sort of functional G[ρ], displacement convex or not, a uniform bound on G[ρ]
along the sequence {ρkτ}k∈N extends to ρ̃(t) for all t. Some of the functionals with which we work, such as D[ρ],

are not displacement convex, and this is the reason we need the second interpolation.

The uniform equicontinuity properties that we prove next explain the utility of the first interpolation, and also

why we can use the two different interpolations at once. Since ρkτ is a minimizer for (5.2), using ρk−1
τ as trial

function yields

F ǫk
PKS[ρ

k
τ ] +

1

2 τ
W2

2(ρ
k
τ , ρ

k−1
τ ) ≤ F ǫk

PKS[ρ
k−1
τ ] ,

and hence,

W2
2(ρ

k
τ , ρ

k−1
τ ) ≤ 2τ

[
F ǫk

PKS[ρ
k−1
τ ]−F ǫk

PKS[ρ
k
τ ]
]
. (5.8)

In standard applications of the JKO scheme, in which the functional in the variational problem does not change

from step to step, one would sum both sides in (5.8) over a range of values of k, and then the sum of the terms
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on the right would telescope. This is not so in our case. However, for small ǫ, F ǫ
PKS ≈ FPKS and we recover the

telescoping sum in a useful approximate sense. The precise version of F ǫ
PKS ≈ FPKS follows from (4.6), Lemma 4.5,

and (5.5), which says that ǫk = Zτ10/34−k to get

F ǫk
PKS[ρ

k−1
τ ]−FPKS[ρ

k−1
τ ] ≤ 16

√
5πZ‖ρk−1

τ ‖3/23/2 τ
10/34−k

(
| log(2Z)|+ 10

3
| log(τ)|+ k log 4

)

≤ Z̃‖ρk−1
τ ‖3/23/2 τ

32−k (5.9)

for τ < τ̃⋆ := min(τ⋆, (2Z
√
e)−3/10) according to Lemma 4.5 and since τ | log τ | and k 2−k are bounded for τ < 1

and k positive integer. We thus deduce

W2
2(ρ

k
τ , ρ

k−1
τ ) ≤ 2τ

[
FPKS[ρ

k−1
τ ]−FPKS[ρ

k
τ ]
]
+ 2Z̃‖ρk−1

τ ‖3/23/2 τ
42−k .

Using (4.30) as in the proof of Theorem 4.14 where the concentration control inequality (1.9) is crucial, we deduce

that ‖ρk−1
τ ‖3/23/2 ≤ C3/τ to conclude that

W2
2(ρ

k
τ , ρ

k−1
τ ) ≤ 2τ

[
FPKS[ρ

k−1
τ ]−FPKS[ρ

k
τ ]
]
+ 2Z̃C3τ

32−k . (5.10)

We are almost in a position to obtain a crucial a-priori Hölder continuity estimate, but there is still one more

consequence of our step dependent regularization to deal with: If for each k we had been using the functional

FPKS instead of the functional F ǫk
PKS, it would be immediate that k 7→ FPKS[ρ

k
τ ] would be decreasing. Since by the

Log-HLS inequality, FPKS is bounded below, this would give an immediate upper bound on the sum of the right

hand side of (5.10) over any range of k.

However, we have used our freedom to choose the sequence {ǫk}k∈N of regularization parameters to converge to

zero as rapidly as we may require, and hence easily obtain:

5.2 LEMMA (The free energy FPKS is almost decreasing along {ρkτ}k∈N). There are positive constants F̄0, F̄1

depending only on the initial data and the regularization mollifier γ such that for each τ < τ̃⋆ and each k ∈ N,

FPKS(ρ
k
τ ) ≤ F̄0 + F̄1τ

2.

Proof: Directly from the variational problem (5.2) we have F ǫk
PKS[ρ

k
τ ] ≤ F ǫk

PKS[ρ
k−1
τ ]. Then, as above from (4.6),

(5.9), and (4.30) we get

F ǫk
PKS[ρ

k−1
τ ] ≤ F ǫk−1

PKS [ρ
k−1
τ ] + Z̃C3τ

22−k . (5.11)

A telescoping sum argument yields F ǫk
PKS[ρ

k
τ ] ≤ F ǫ0

PKS[ρ0] + Z̃C3τ
2, and then one more application of (4.6) gives

FPKS(ρ
k
τ ) ≤ F ǫ0

PKS[ρ0] + Z̃C3τ
2 ≤ E [ρ0] + 32 π + 2‖ρ0‖L1(R2,log(e+|x|2) dx) + Z̃C3τ

2 := F̄0 + F̄1τ
2 ,

where (4.8) was used.

We are now ready to prove the Hölder continuity estimate.

5.3 LEMMA (Hölder continuity). There is a positive constant F̄2 depending only on the initial data and the

regularization mollifier γ such that for each τ < τ̃⋆ and each k ∈ N, such that for all t > s ≥ 0,

W2(ρτ (t), ρτ (s)) ≤ F̄2 (t− s)1/2 .

Proof: Let j be such that (j − 1)τ ≤ s ≤ jτ and let ℓ be such that ℓτ ≤ t ≤ (ℓ+ 1)τ . By the geodesic property of

McCann’s displacement interpolation,

W2(ρτ (s), ρ
j
τ ) =

jτ − s

τ
W2(ρ

j−1
τ , ρjτ ) and W2(ρτ (t), ρ

ℓ
τ ) =

t− ℓτ

τ
W2(ρ

ℓ
τ , ρ

ℓ+1
τ ) .
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By Lemma 5.2 and the Log-HLS inequality (4.7), FPKS[ρ
k
τ ]−FPKS[ρ

k−1
τ ] ≤ F̄0 + F̄1τ

2 − (log 8− 1), and thus, by

plugging into (5.10), we get

W2
2(ρ

k
τ , ρ

k−1
τ ) ≤ 2τ

[
F̄0 + F̄1τ

2 − (log 8− 1)
]
+2Z̃C3τ

32−k ≤ τ
[
2F̄0 + 2F̄1 − 2(log 8− 1) + 2Z̃C3

]
:= F̄2

2 τ (5.12)

since τ < 1 and k ∈ N. Therefore, we deduce

W2(ρτ (s), ρ
j
τ ) ≤

jτ − s

τ
F̄2

√
τ and W2(ρτ (t), ρ

ℓ
τ ) ≤

t− ℓτ

τ
F̄2

√
τ .

Adding these two estimates and using the concavity of square root,

W2(ρτ (s), ρ
j
τ ) +W2(ρτ (t), ρ

ℓ
τ ) ≤ F̄2

√
(t− s)− (ℓ− j)τ . (5.13)

Next, by the triangle inequality, the Cauchy-Schwartz inequality, and (5.10) and proceeding as in (5.12), we finally

conclude

W2(ρ
ℓ
τ , ρ

j−1
τ ) ≤

ℓ∑

k=j

W2(ρ
k
τ , ρ

k−1
τ ) ≤ (ℓ− j)1/2




ℓ∑

k=j

(
2τ
[
FPKS[ρ

k−1
τ ]−FPKS[ρ

k
τ ]
]
+ 2Z̃C3τ

32−k
)



1/2

≤[(ℓ − j)τ ]1/2
(
2
[
FPKS[ρ

j−1
τ ]−FPKS[ρ

k
τ ]
]
+ 2Z̃C3τ

2
)1/2

≤ F̄2 [(ℓ − j)τ ]1/2.

Adding this to the estimate in (5.13), and using the subadditivity of the square root concludes the proof.

5.3 Compactness

In this subsection, we will show the compactness of the sequence of interpolating curves. We cannot proceed

as usually done, for instance in [1], since we want to show that the limiting curves are not only measures but

rather densities for each time and also since our densities have infinite second moment. The next lemma shows a

compactness property of the sets {ρτ (t) : 0 < τ < τ̃⋆} for each fixed t.

5.4 LEMMA (Uniform integrability at fixed t). There is a finite and computable constant F̄3 depending only on

ρ0 and for any fixed 1 ≤ p < 2 so that for all τ < τ̃⋆

E [ρτ (t)] =
∫

R2

ρτ (t, x) log ρτ (t, x) dx ≤ F̄3 and

∫

R2

|x|pρτ (t, x) dx ≤ F̄3(1 + tp/2) .

Proof: By the uniform control of Hλ in (5.3), Lemma 5.2, and by the first concentration control Theorem 1.11 we

conclude that

γ2

∫

R2

ρkτ log+ ρ
k
τ dx ≤ F̄0 + F̄1τ

2 + CCCF (5.14)

where 0 < γ2 ≤ 1, uniformly in k.

Next, using the triangle inequality for Wp defined in (3.4) and (3.5), we deduce

Wp
p(ρτ (t), δ0) =

∫

R2

|x|pρτ (t, x) dx ≤ 2p
(
Wp

p(̺λ, δ0) +Wp
p(ρτ (t), ̺λ)

)
= 2p

∫

R2

|y|p̺λ(y) dy + 2p Wp
p(ρτ (t), ̺λ) .

Then by (3.6), the last term on the right is bounded by Wp
2(ρτ (t), ̺λ). Since W2(ρ0, ̺λ) is finite, and since by the

previous lemma, W2(ρτ (t), ρ0) ≤ F̄2

√
t, the proof of the moment bound is completed by simple computations.

Finally, using the bound of the absolute first moment together with (5.14) and Lemma 2.4, we conclude that

E [ρkτ ] is bounded uniformly in k. Then, by the displacement convexity of E , this bound extends to ρτ (t) for all

t > 0, as explained at the beginning of this subsection.

It follows immediately from (3.6) that Lemma 5.3 remains true if W2 there is replaced by any of the weaker

metrics Wp, 1 ≤ p < 2. The following characterization of the convergence in Wp metrics in [36, Chapter 9]:

convergence of the absolute p-moment plus the weak-* convergence as measures of a sequence of densities {ρn}n∈N

towards ρ is equivalent to Wp convergence; implies the following compactness result.
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5.5 LEMMA (Compactness for the Wp metric). For any M > 0, let K be a subset of the set of densities ρ of

mass M that is uniformly integrable, and such that {|x|pρ(x) : ρ ∈ K} is also uniformly integrable. Suppose also

that K is closed in the L1-weak topology. Then K is compact in the Wp metric.

Proof: Let {ρn}n∈N be any sequence in K. Since K is uniformly integrable and weakly closed in L1, the Dunford-

Pettis Theorem provides us with a ρ ∈ K and a subsequence {ρnk
}k∈N such that limk→∞ ρnk

= ρ weakly in L1

and thus, weakly-* as measures. It is trivial to check that weak-L1 convergence plus the uniform integrability of

{|x|pρ(x) : ρ ∈ K} implies that

lim
k→∞

∫

R2

|x|pρnk
(x) dx =

∫

R2

|x|pρ(x) dx .

The characterization of Wp convergence mentioned above then implies limk→∞ Wp(ρnk
, ρ) = 0.

5.6 THEOREM (Convergence as τ → 0). Given T > 0 and any 1 ≤ p < 2, define (Mδ
T ,Wp) to be the metric

space in which Mδ
T is the set of densities on R

2 satisfying E [ρ] ≤ F̄3 and

∫

R2

|x|p+δρ(x) dx ≤ F̄3(1 + T (p+δ)/2) ,

with p < p + δ < 2. Then there is a function ρ on [0,∞) with values in the set of densities of mass 8π such that

for all T > 0, the restriction of ρ to [0, T ] is continuous in (Mδ
T ,Wp), and there is a sequence {τn}n∈N such that

for all T > 0,

lim
n→∞

[
max
0≤t≤T

Wp(ρτn(t), ρ(t))

]
= lim

n→∞

[
max
0≤t≤T

Wp(ρ̃τn(t), ρ(t))

]
= 0 . (5.15)

Moreover the sequence {τn}n∈N can be chosen independently of p, i.e., such that the convergence property (5.15)

holds for all 1 ≤ p < 2. Furthermore, as a consequence for all t > s ≥ 0 and all 1 ≤ p ≤ 2:

Wp(ρ(t), ρ(s)) ≤ F̄2 (t− s)
1/2

. (5.16)

Proof: For each T > 0, (Mδ
T ,Wp) is a compact metric space as a consequence of Lemma 5.5. By Lemma 5.4,

for each t ≤ T , and each 0 < τ < τ̃⋆, the restriction of ρτ to [0, T ] takes values in (Mδ
T ,Wp). Next, by (3.6) and

Lemmas 5.3, the set of these functions for 0 < τ < τ̃⋆ is uniformly equicontinous into (Mδ
T ,Wp). Thus by the the

Arzela-Ascoli Theorem, we can select a uniformly convergent sequence.

Now a simple diagonal sequence argument concludes the construction of ρ and proof of (5.15). Apply the above

for T = 1 to get the initial sequence. Now take T = 2 and choose a subsequence of the first sequence, and so forth.

For the piecewise-interpolation sequence, note that W2(ρ̃τ (t), ρτ (t))≤C
√
τ by standard properties of displacement

interpolation and (5.12) in Lemma 5.3.

Another simple diagonal sequence argument shows that the sequence can be made independent of p. Take a

sequence of increasing exponents {pn}n∈N ր 2 and {δn}n∈N ց 0 with 1 ≤ pn < pn+ δn < 2 and apply the diagonal

sequence argument to the constructed sequences for each pn. Also, take into account that the sequence of distances

Wp(ρτn(t), ρ(t)) is increasing in p.

The last part of the claim (5.16) follows directly from (5.15) and Lemma 5.3 for all 1 ≤ p < 2. Since the

constant F̄2 obtained in Lemma 5.3 does not depend on 1 ≤ p < 2, then we conclude (5.16) for p = 2.

5.4 Lp regularity

Our goal in this section is to prove:

5.7 THEOREM (Lp-regularity). For each finite a > 0 and p > 1, there is a finite and computable constant Cp

depending only on a, p and ρ0 such that whenever τ < a,
∫

R2

ρpτ (t, x) dx ≤ C̃p for all t ≥ a .
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Proof: From (4.27), we deduce that for each m, Hλ[ρ
m
τ ] +D[ρmτ ] ≤ Hλ[ρ

m−1
τ ] +

Qm

4
2−mτ2, proceeding in the

same way that we did in deducing (5.7), except this time we do not discard the dissipation term. Let n ≥ k be

positive integers. Since Qm ≤ Cλ for all m, summing from m = n− k to n yields

Hλ[ρ
n
τ ] +

n∑

m=n−k

τD[ρmτ ] ≤ Hλ[ρ
n−k−1
τ ] +

Cλ

4
τ2 . (5.17)

Then since 0 ≤ Hλ[ρ
k
τ ] ≤ Cλ for all k, using τ < 1 and dividing by kτ , we may simplify this to

1

k

n∑

m=n−k

D[ρmτ ] ≤ 2Cλ

kτ
. (5.18)

We now choose k to be the greatest integer less than or equal to a/τ , and of course suppose that n > k. Since

kτ ≤ a < (k + 1)τ , and k ≥ 1, a/2 ≤ kτ , and then the fact that averages dominate minima yields the conclusion

that for some positive integer m with τ ≤ a,

D[ρmτ ] ≤ 4Cλ

a
.

Then since Hλ[ρ
m
τ ] ≤ Cλ we have from Theorem 1.9 that

∫

R2

|∇(ρmτ )1/4|2 dx ≤ 4πCλ

aγ2
+
CCCD

γ1
.

Recall the GNS inequality

‖f‖qq ≤ Bq‖∇f‖q−4
2 ‖f‖44 ,

valid for locally integrable functions f on R
2 and q > 4. Applying this with q = 4p and f = (ρmτ )1/4, we obtain

‖ρmτ ‖pp ≤
[
B4p

(
4πCλ

aγ2
+
CCCD

γ1

)2(p−1)

8π

]1/4
. (5.19)

Thus we have an a-priori bound on ‖ρmτ ‖pp for some m with n− k ≤ m ≤ n. We now apply Lemma 4.15, in which

the constant A1 and A2 in (5.20) are defined, to conclude that

∫

R2

(ρnτ −K)p+ dx ≤
∫

R2

(ρmτ −K)p+ dx+A1kτ +A2

n∑

j=m

τD[ρjτ ] . (5.20)

We bound the first term on the right in (5.20) using (5.19), the second using the fact that kτ ≤ a, and the third

using (5.18). The result,

∫

R2

(ρnτ −K)p+ dx ≤
[
B4p

(
4πCλ

aγ2
+
CCCD

γ1

)2(p−1)

8π

]1/4
+A1a+ 2A2Cλ

uniformly for all n such that nτ ≥ a. Note that the bound depends only on a, p. Since ‖ρnτ ‖p ≤ ‖(ρnτ −K)+‖p +
K(p−1)/p(8π)1/p, we have the same type of bound on ‖ρnτ ‖p, uniformly for all n such that nτ ≥ a. By the

displacement convexity of

ρ 7→
∫

R2

ρp(x) dx

for p > 1, this bound immediately extends to ρτ (t) for all t ≥ a.
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5.5 Verification that ρ = limτ→0 ρτ is a solution of the PKS system

Let τn, ρτn and ρ be given as in Theorem 5.6. Our goal in this subsection is to prove that ρ is a weak solution on

the PKS system as given in item (1.5.2) of the Definition 1.5.

5.8 LEMMA (ρ is a weak solution of the PKS system). Let τn, ρτn and ρ be given as in Theorem 5.6. Then for

all smooth and compactly supported test functions η and all t2 > t1 ≥ 0,

∫

Rd

ζ(x) [ρ(t2, x)− ρ(t1, x)] dx= − 1

4π

∫ t2

t1

∫∫

R2×R2

ρ(s, x) ρ(s, y)
(x− y) · (∇ζ(x) −∇ζ(y))

|x− y|2 dy dx

+

∫ t2

t1

∫

Rd

∆ζ(x) ρ(s, x) dx ds ,

In order to prove Lemma 5.8, we first prove an analog for the functions ρτ :

5.9 LEMMA (Approximate weak solutions of the PKS system). For 0 < τ < 1, define ǫ(t, τ) = ǫk for t ∈
((k − 1)τ, kτ ], and all integers k ≥ 1. Then for all smooth and compactly supported test functions η and all

t2 > t1 ≥ 0,

∫

Rd

ζ(x) [ρτ (t2, x)− ρτ (t1, x)]dx =
1

2

∫ t2

t1

∫∫

R2×R2

ρτ (s, x) ρτ (s, y)∇Gǫ(t,τ)(x − y) · (∇ζ(x) −∇ζ(y)) dy dx

+

∫ t2

t1

∫

Rd

∆ζ(x) ρτ (s, x) dx ds+O(τ1/2) .

Proof: By Lemma 4.9 for any ζ smooth and compactly supported ∇ζ, we have

∫

R2

ρk+1
τ (x)

[x−∇ϕk(x)]

τ
· ∇ζ(x) dx (5.21)

=

∫

R2

∆ζ(x) ρk+1
τ (x) dx+

∫∫

R2×R2

ρk+1
τ (x) ρk+1

τ (y)∇Gǫk(x− y) · ∇ζ(x) dy dx .

Using the Taylor’s expansion ζ(x)− ζ
[
∇ϕk(x)

]
=
[
x−∇ϕk(x)

]
·∇ζ(x)+O

[∣∣x−∇ϕk(x)
∣∣2
]
, we can recast τ times

the left-hand side of the Euler-Lagrange equation (5.21) as

∫

Rd

ζ(x) ρk+1
τ (x) dx−

∫

Rd

ζ
[
∇ϕk(x)

]
ρk+1
τ (x) dx +O

[∫

Rd

∣∣x−∇ϕk(x)
∣∣2 ρk+1

τ (t) dx

]

=

∫

Rd

ζ(x) ρk+1
τ (x) dx−

∫

Rd

ζ(x) ρkτ (x) dx+O
[
W2

2

(
ρkτ , ρ

k+1
τ

)]
.

We multiply (5.26) by τ and eventually obtain

∫

Rd

ζ(x)
[
ρk+1
τ (x) − ρkτ (x)

]
dx+O

[
W2

2

(
ρkτ , ρ

k+1
τ

)]

= τ

∫

R2

∆ζ(x) ρk+1
τ (x) dx+ τ

∫∫

R2×R2

ρk+1
τ (x) ρk+1

τ (y)∇Gǫk(x− y) · ∇ζ(x) dy dx . (5.22)

Let 0 ≤ t1 < t2 be fixed times, m = [t1/τ ] + 1 and n = [t2/τ ]. By summing equation (5.22) and symmetrizing the

convolution term,

∫

Rd

ζ(x) [ρnτ (x) − ρmτ (x)] dx =
τ

2

n−1∑

k=m

∫∫

R4

ρk+1
τ (x) ρk+1

τ (y)∇Gǫk(x− y) · (∇ζ(x) −∇ζ(y)) dy dx

+ τ

n−1∑

k=m

∫

Rd

∆ζ(x) ρk+1
τ (x) dx+O(τ) . (5.23)
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Now add and subtract to conclude

ρτ (t2, x) − ρτ (t1, x) = [ρτ (t2, x)− ρnτ (x)] + [ρnτ (x)− ρmτ (x)] + [ρmτ (x)− ρτ (t1, x)] . (5.24)

By the Kantorovich-Rubinstein duality Theorem, for any bound Lipschiz function ζ with ‖ζ‖Lip = L,
∣∣∣∣
∫

Rd

ζ(x) dµ−
∫

Rd

ζ(x) dν

∣∣∣∣ ≤ LW2(µ, ν). (5.25)

Using (5.25), we control the integrals against the third term on the right in (5.24):
∫

Rd

ζ(x) |ρmτ (x)− ρτ (t1, x)| dx ≤ CW2(ρ
m
τ , ρτ (t1, x)) ≤ CW2(ρ

m
τ , ρ

m−1
τ ) ≤ O(τ1/2) ,

and likewise with the first. In the same manner, we obtain that for all k in [m,n− 1]

τ

∫

Rd

ψ(x)ρk+1
τ (x) dx =

∫ (k+1)τ

kτ

∫

Rd

ψ(x)ρτ (s, x) ds+O(τ3/2) ,

where ψ denotes any Lipschitz test function. This observation applies to the first term in (5.23) with ψ(x) = ∆ζ(x)

and to the second term in (5.23) in the product space R2d applied to the function ψ(x, y) = ∇Gǫk(x− y) · (∇ζ(x)−
∇ζ(y)) which is compactly supported and Lipschitz in each time interval (kτ, (k+1)τ), m ≤ k ≤ n−1. Finally, the

test contributions are bounded in L∞((0, T )×R
d) so that the bordering time integrands in (t1,mτ) and (nτ, t2) are

negligible of order τ . Hence we can transform the discrete in time sum (5.23) into a continuous time integration.

Collecting all the terms we conclude the proof.

Proof of Lemma 5.8: As τ → 0 along the sequence {τn}n, limn→∞ W1[ρτn(t), ρ(t)] = 0 uniformly on [0, T ] for

any finite T . Hence by the Kantorovich-Rubinstein Theorem,

lim
n→∞

∫

R2

∆ζ(x) ρτn(t, x) dx =

∫

R2

∆ζ(x) ρ(t, x) dx ,

uniformly on [0, T ]. The interaction term can be rewritten as
∫

R2

[
∇Gǫ(t,τn) ∗ ρτn(t)] (x) · ∇ζ(x) ρτn(t, x) dx

=

∫

R2

[
∇G ∗ γǫ(t,τn) ∗ ρτn(t)

]
(x) ·

[
γǫ(t,τn) ∗ (ρτn(t)∇ζ)

]
(x) dx

= − 1

4π

∫∫

R2×R2

(γǫ ∗ ρτn)(t, x) (γǫ ∗ ρτn)(t, y)
(x− y) · (∇ζ(x) −∇ζ(y))

|x− y|2 dx dy

+

∫

R2

[
∇G ∗ γǫ(t,τn) ∗ ρτn(t)

]
(x) ·

[
γǫ(t,τn) ∗ (ρτn(t)∇ζ) − (γǫ(t,τn) ∗ ρτn(t))∇ζ

]
(x) dx

:= I1 + I2. (5.26)

As {ρτn(t)}n converges weakly in L1(R2) towards ρ(t) as n→ ∞, so does {γǫ(t,τn) ∗ρτn(t)}n. We then deduce that

{(γǫ(t,τn) ∗ ρτn(t))⊗ (γǫ(t,τn) ∗ ρτn(t))}n converges weakly in L1(R2 ×R
2) towards ρ(t)⊗ ρ(t) when n→ ∞, see [3,

Lemma 2.3]. As a consequence we can pass to the limit in the first term in the right-hand-side of (5.26) to obtain

lim
n→∞

I1 = − 1

4π

∫∫

R2×R2

ρ(t, x) ρ(t, y)
(x− y) · (∇ζ(x) −∇ζ(y))

|x− y|2 dx dy .

We must now show that I2 disappears in the limit. We can estimate I2 using

|γǫ(t,τn) ∗ (ρτn(t)∇ζ)−(γǫ(t,τn) ∗ ρτn(t))∇ζ|(x) ≤
∫

R2

γǫ(t,τn)(x − y) |∇ζ(y)−∇ζ(x)| ρτn(t, y) dy

≤ Cζ

∫

R2

γǫ(t,τn)(x− y) |x− y| ρτn(t, y) dy = Cζ ((γǫ(t,τn)|x|) ∗ ρτn(t))(x) .
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By the HLS inequality, (4.3),

|I2| ≤
CHLS

2π
‖γǫ(t,τn) ∗ ρτn(t)‖4/3 ‖γǫ(t,τn) ∗ (ρτn(t)∇ζ)− (γǫ(t,τn) ∗ ρτn(t))∇ζ‖4/3.

Then by similar arguments similar to those used to prove Lemma 4.12,

|I2| ≤ 4CHLSCζ‖ρτn(t)‖4/3 ‖γ|x|‖4/3
√
ǫ(t, τn).

In case t1 > 0, estimating ‖ρτn(t)‖4/3 using Theorem 5.7, we obtain the result. If t1 = 0 we can use instead (4.30)

and Hölder’s inequality to obtain

|I2| ≤ 4CHLS Cζ (8π)
1/4
√
2C3 ‖γ|x|‖4/3

√
ǫ(t, τn)

τ
= O((τn)7/6) ,

where (5.5) was used.

5.6 Entropy Dissipation

At this point we have shown that the limit ρτ = limn→∞ ρτn posesses the properties (1.5.1), (1.5.2), and (1.5.3) in

Definition 1.5 of properly dissipative weak solutions. In this subsection, we show that (1.5.4) is also satisfied. This

will complete the proof of the existence of properly dissipative solutions in Theorem 1.6. Choosing n = k in (5.17)

we obtain, for all k ∈ N

Hλ[ρ
k
τ ] +

k∑

m=1

τD[ρmτ ] ≤ Hλ[ρ0] +
Cλ

4
τ2 .

Thus, using the discrete time interpolation ρ̃τ , we have that for any T > 0 and the positive integer N such that

Nτ ≤ T ≤ (N + 1)T ,

Hλ[ρ̃τ (T )] +

∫ Nτ

0

D[ρ̃τ (t)] dt ≤ Hλ[ρ0] . (5.27)

We emphasize that the use of the piecewise constant interpolation is essential at this point since the functional

D[ρ] is not displacement convex.

Note that the Lp bounds deduced in Theorem 5.7 apply to ρ̃τ as well as to ρτ . To make full use of these bounds,

we choose any fixed a > 0, and then for all τ < a, we weaken the bound in (5.27) by increasing the lower limit of

integration in t to a. Also writing b := Nτ , this yields

Hλ[ρ̃τ (T )] + 8

∫ b

a

∫

R2

|∇ρ̃1/4τ (t, x)|2 dt−
∫ b

a

∫

R2

ρ̃3/2τ (t, x) dx dt ≤ Hλ[ρ0] .

It is legitimate to express D[ρ̃τ ] as the difference of two integrals since Theorem 5.7 tells us the (ρ̃τ )
3/2 is integrable

over [a, T ] × R
2. We now show that passing to a further subsequence of {τn}n∈N, we may arrange that for all

0 < a < b <∞, along this subsequence,

lim
n→∞

∫ b

a

∫

R2

|ρ̃τ (t, x) − ρ(t, x)|3/2 dx dt = 0 (5.28)

and

lim
n→∞

ρ̃τ (t, x) = ρ(t, x) (5.29)

for almost every (t, x) ∈ [a, b]× R
2. The following lemma is the key:

5.10 LEMMA (Uniform integrability for ρ
3/2
τ (x, t)). For each integer N > 1, the set of function {(ρ̃τn)3/2(t, x), n ∈

N} is uniformly integrable on [1/N,N ]× R
2.
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Proof: First, note that for each τ = τn, ρ̃
3/2
τ = ρ̃

2/3
τ ρ̃

5/6
τ . Therefore, by Hölder’s inequality

∫

R2

|x|2/3ρ̃3/2τ (t, x) dx ≤
(∫

R2

|x|ρ̃τ (t, x) dx
)2/3(∫

R2

ρ̃5/2τ (t, x) dx

)1/3

.

Recall the first moment is controlled by Hλ in Lemma 1.10, and that Hλ[ρ̃τ (t)] ≤ Cλ. Also, Theorem 5.7 give us

a bound on ‖ρ̃τ (t)‖5/3 uniformly in t ∈ [1/N,N ] for all sufficiently small τ . Thus, there is a constant C depending

only on N so that for all sufficiently small τ ,

∫ N

1/N

∫

R2

|x|2/3ρ̃3/2τ (t, x) dx dt ≤ C .

Even more simply, by Theorem 5.7 we have a constant C depending only on N so that for all sufficiently small τ ,

such that ∫ N

1/N

∫

R2

ρ̃3/2τ (t, x) dx dt ≤ C and

∫ N

1/N

∫

R2

ρ̃2τ (t, x) dx dt ≤ C .

The uniform integrability is an immediate consequence of these estimates.

By Lemma 5.10 and the Dunford-Pettis Theorem, we may select a subsequence along which

lim
n→∞

∫ b

a

∫

R2

ρ̃
3/2
τn (t, x) dx dt =

∫ b

a

∫

R2

ρ3/2(t, x) dx dt

Since bounded sets in L3/2 are weakly compact, we may select a further subsequence along which {ρ̃τn}n is

weakly convergent in L3/2([a, b] × R
2). By a classical lemma, a weakly convergent sequence of functions in L3/2

whose norms converge is strongly convergence. Hence for some function σ ∈ L3/2([a, b] × R
2), we have that

limn→∞ ‖ρ̃τn − σ‖3/2 = 0. We many now pass to a further subsequence along which limn→∞ ρ̃τn(t, x) = σ(x, t)

almost everywhere.

We claim that σ(x, t) = ρ(x, t) almost everywhere. For this purpose, let ϕ by any smooth, compactly supported

ϕ on [a, b]× R
2. By Fubini’s Theorem, the Dominated Convergence Theorem and by Theorem 5.6,

lim
n→∞

∫ b

a

∫

R2

ϕ(t, x)ρ̃τn(t, x) dx dt =

∫ b

a

(∫

R2

lim
n→∞

ϕ(t, x)ρ̃τn(t, x) dx

)
dt =

∫ b

a

∫

R2

ϕ(t, x)ρ(t, x) dx dt .

On the other hand, by the definition of σ as a weak limit of {ρ̃τn}n,

lim
n→∞

∫ b

a

∫

R2

ϕ(t, x)ρ̃τn(t, x) dx dt =

∫ b

a

∫

R2

ϕ(t, x)σ(t, x) dx dt .

This proves σ = ρ, and thus, that along the sequence we have chosen, limn→∞ ρ̃τn(t, x) = ρ(x, t) almost everywhere.

Thus, we have seen how to choose a subsequence {τn}n∈N along which (5.28) and (5.29) both hold. Of course,

the construction depends on a and b. In the next Lemma, we use a diagonal sequence argument to make one final

choice of the subsequence.

5.11 LEMMA (Further subsequence). There is a subsequence of the sequence {τn}n∈N, denoted with the same

index, such that along this subsequence, (5.28) is valid for each 0 < a < T <∞ and

lim
n→∞

ρ̃τn(t, x) = ρ(t, x) almost everywhere on [0, T ]× R
2 .

Proof: ForN = 2 choose, using the argument just given, a subsequence of {τn}n∈N along which {ρτn}n∈N converges

to ρ strongly in L3/2([1/2, 2]× R
2) and almost surely on [1/2, 2]× R

2. Next, for N = 3, choose a subsequence of

{τn} of the N = 2 subsequence along which {ρ3/2τn }n∈N converges to ρ strongly in L3/2([1/3, 3]× R
2) and almost

surely on [1/3, 3]× R
2. We finish by an inductive argument.
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5.12 THEOREM (Entropy-entropy dissipation). For each T > 0 the weak solution ρ of the PKS system that we

have constructed for the initial data ρ0 satisfies

Hλ[ρ(T )] +

∫ T

0

D[ρ(t)] dt ≤ Hλ[ρ0] . (5.30)

Proof: By previous lemmas, it suffices to show that

Hλ[ρ(T )] ≤ lim inf
n→∞

Hλ[ρ̃τn(T )] ,

and that for any 0 < a < b < T <∞,

∫ b

a

∫

R2

∣∣∣∇ρ1/4
∣∣∣
2

dx dt ≤ lim inf
n→∞

∫ b

a

∫

R2

∣∣∣∇ρ̃1/4τn

∣∣∣
2

dx dt , (5.31)

for a suitable sequence {τn}n∈N, since the rest easily follows by a monotone convergence argument for taking a to

0 and b to T .

The first of these follows from the fact that Hλ[ρ] is a lower semi-continuous function on L1 with respect to the

W1 metric just by using the expression of Hλ[ρ] in (1.11). To see the second, denote fn = ρ̃
1/4
τn and f = ρ1/4, then

the sequence of functions {fn}n∈N → f in L4 ∩ L6((a, T )× R
2) from Lemma 5.11. From (5.27), we have that the

sequence {∇fn}n∈N is bounded in L2((a, T )×R
2), therefore it has a weakly convergent subsequence denoted with

the same index such that {∇fn}n∈N ⇀ σ weakly in L2((a, T )×R
2). Due to the strong convergence of the sequence

{fn}n∈N → f in L4 ∩L6((a, T )×R
2), it is simple to identify the weak limit as σ = ∇f . By standard properties of

L2-weak convergence, we deduce that

∫ b

a

∫

R2

|∇f |2 dx dt ≤ lim inf
n→∞

∫ b

a

∫

R2

|∇fn|2 dx dt

which shows (5.31).

Proof of Theorems 1.6: As noted above, Theorem 5.12 provides the final step in the construction of the properly

dissipative weak solutions. Theorems 5.7 and 5.12 provide the additional regularity properties (1.6.1) and (1.6.2).

It remains to prove (1.6.3), the dissipation of FPKS.

We now show that FPKS[ρ(t)] ≤ FPKS[ρ(s)] for all 0 ≤ s < t. Take τ to be any element of the sequence

{τn}n∈N whose corresponding approximated solutions {ρ̃τn}n∈N converges to the constructed properly dissipative

weak solution ρ. Let j be such that (j − 1)τ ≤ s ≤ jτ and let ℓ be such that ℓτ ≤ t ≤ (ℓ + 1)τ . Using (5.11) in

Lemma 5.2 and (4.6), we deduce

FPKS[ρ̃τ (t)] ≤ F ǫℓ
PKS[ρ

ℓ
τ ] ≤ F ǫℓ−1

PKS [ρ
ℓ−1
τ ] + Z̃C3τ

22−ℓ ≤ F ǫj−1

PKS [ρ
j−1
τ ] + Z̃C3τ

2
ℓ∑

k=j

2−k ≤ F ǫj−1

PKS [ρ
j−1
τ ] + Z̃C3τ

2 .

Using (5.9) and the Lemma 5.7, we can control the error term in the right-hand side by

FPKS[ρ̃τ (t)] ≤ FPKS[ρ̃τ (s)] + Z̃‖ρ̃τ (s)‖3/23/2 τ
32−j+1 + Z̃C3τ

2 ≤ FPKS[ρ̃τ (s)] + Z̃(2C̃
3/2
3/2 + C3)τ

2

Finally, the a-priori bounds uniform in τ due to Lemmas 5.6 and 5.7 together with Lemma 5.14 allow us to pass

to the limit τ → 0 leading to our claim.

5.7 Large-Time Asymptotics

We start by identifying the large-time asymptotics of the solutions in an time average sense.
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5.13 LEMMA (Time-averaged Strong Convergence). Let ρ be the properly dissipative weak solution of the PKS

system that we have constructed. Then

lim
T→∞

(∫ T+1

T

∫

R2

|ρ(t, x) − ̺λ(x)| dx dt

)
= 0 . (5.32)

Proof: This follows by a standard entropy dissipation argument. Let {tn}n∈N ր +∞ be an increasing diverging

sequence of times and consider σn(t, x) = ρ(t + tn, x), for 0 ≤ t ≤ 1. By using the entropy dissipation inequality

(5.30) which is true for all T > 0, we deduce that

∫ ∞

0

D[ρ(t)] dt <∞ , and thus, lim
n→∞

∫ 1

0

D[σn(t)] dt = 0 . (5.33)

Now, again using the uniform bounds (5.30) for the solution in time Hλ[σn(t)] ≤ Hλ[ρ0] ≤ Cλ, the concentration

control inequality in Lemma 1.10 and the Gagliardo-Nirenberg-Sobolev inequality in Lemma 1.2, we deduce

1

8

∫ 1

0

∫

R2

σ3/2
n dx dt ≤

∫ 1

0

∫

R2

∣∣∣∇[σ1/4
n ]
∣∣∣
2

dx dt ≤ π

γ1

∫ 1

0

D[σn] dt+
CCCD

γ1
≤ π

γ1
Cλ +

CCCD

γ1
. (5.34)

Moreover, due to Theorem 5.7, we deduce

sup
n∈N

sup
0≤t≤1

∫

R2

σp
n(t, x) dx ≤ Cp , (5.35)

for all 1 ≤ p <∞. Note that the sequence {σn}n∈N satisfies the equicontinuity property (5.16) in Theorem 5.6.

Summarizing, the sequence {σn}n∈N has the same properties (5.34) and (5.35) as the sequence of approximate

solutions we used in previous sections to construct the solution in Theorem 1.6. Proceeding as in Subsections 5.3-

5.6, we deduce the existence of a subsequence, denoted with the same index, such that {σn}n∈N converges towards

ρ∞ with the same convergence properties as in previous subsections 5.3-5.6. Here, ρ∞ is a weak solution of (1.1)

on the time interval (0, 1) in the sense of (1.5.2) and satisfying (1.5.3) in Definition 1.5. In particular, {σn}n∈N

converges to ρ∞ in the metric space (M1/2
1 ,W1), with the notation of Theorem 5.6, giving

lim
n→∞

[
max
0≤t≤1

W1(σn(t), ρ∞(t))

]
= 0 . (5.36)

Moreover, repeating the arguments in Theorem 5.12 and 5.11, we get

sup
0≤t≤1

Hλ[ρ∞(t)] ≤ Cλ and lim inf
n→∞

∫ 1

0

∫

R2

∣∣∣∇(σn)
1/4
∣∣∣
2

dx dt ≥
∫ 1

0

∫

R2

∣∣∣∇ρ1/4∞

∣∣∣
2

dx dt , (5.37)

and

lim
n→∞

∫ 1

0

∫

R2

σ3/2
n (t, x) dx dt =

∫ 1

0

∫

R2

ρ3/2∞ (t, x) dx dt .

Furthermore, Theorem 5.11 implies the almost everywhere convergence in (0, 1)×R
2 of {σn}n∈N towards ρ∞, that

together with (5.36) implies that

lim
n→∞

(∫ 1

0

∫

R2

|σn(t, x)− ρ∞(t, x)| dx dt

)
= 0 . (5.38)

Now, let us identify the limit function ρ∞, passing to the limit using (5.33), we obtain

∫ 1

0

∫

R2

(
8
∣∣∣∇ρ1/4∞

∣∣∣
2

− ρ3/2∞

)
dx dt = 0 ,

which means that ρ∞(t) is a minimizer to the Gagliardo-Nirenberg-Sobolev inequality for al t ∈ (0, 1), see

Lemma 1.2, and thus that there exists λ̄(t) such that ρ∞(t) = ̺λ̄(t) where ̺λ is the family of the minimizers
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of the Gagliardo-Nirenberg-Sobolev inequality, see Lemma 1.2. Due to (5.37) then Hλ[̺λ̄(t)] < ∞, we conclude

that λ̄(t) = λ since Hλ[̺µ] = +∞ for µ 6= λ. Therefore, ρ∞(t) = ̺λ that together with (5.38) implies (5.32).

We now will take advantage of the other Lyapunov functional, we shall prove that limt→∞ FPKS[ρ(t)] =

FPKS[̺λ]. In doing this, we shall make essential use of the monotonicity of FPKS[ρ(t)]. Let us introduce for

any C > 0 and δ > 0 the set

SC,δ :=

{
ρ ∈ L1

+(R
2) :

∫

R2

ρ(x) dx = 8π ,

∫

R2

|x|δρ(x) dx ≤ C and

∫

R2

ρ1+δ(x) dx ≤ C

}

5.14 LEMMA (Convergence for FPKS). Given any sequence {ρn}n∈N in SC,δ there is a ρ ∈ SC,δ and a subsequence

{ρnk
}k∈N such that

lim
k→∞

‖ρnk
− ρ‖1 = 0 and lim

k→∞
FPKS[ρnk

] = FPKS[ρ] .

Proof: Choose any 0 < δ′ < min(δ, 1) so that 2δ′/(1−δ′) ≤ δ. By uniform integrability arguments such as we have

made above, see Lemma 5.10, we can find a subsequence (denoted with the same index) along which {ρn}n∈N is

weakly convergent in L1+δ′(R2) and along which {ρ1+δ′

n }n∈N is weakly convergent in L1. It follows as in Subsection

5.6 that {ρn}n∈N is strongly convergent in L1+δ′(R2), and passing to a further subsequence, we may suppose it is

also almost everywhere convergent, and strongly convergent in L1(R2). Let ρ denote the limit. By Fatou’s Lemma,

ρ ∈ SC,δ.

Since for t ≥ 1, t log t ≤ (tδ − 1)/δ′, we have for ρ ≥ 1, ρ log ρ ≤ (1/δ′)ρ1+δ′ and for ρ < 1, ρ log(1/ρ) ≤
(1/δ′)ρ1−δ′ . Since for ǫ = 2δ′,

∫

R2

ρ1−δ′(1 + |x|2)ǫ dx =

∫

R2

ρ1−δ′(1 + |x|2)2ǫ(1 + |x|2)−ǫ dx

≤
(∫

R2

ρ(1 + |x|2)2ǫ/(1−δ′) dx

)1−δ′ (∫

R2

(1 + |x|2)−2 dx

)δ′

,

our choice of δ′ gives the uniform integrability of {ρ1−δ′

n }n∈N. Then, by what we have said above, {ρn log ρn}n∈N

is uniformly integrable, and hence

lim
n→∞

∫

R2

ρn log ρn dx =

∫

R2

ρ log ρ dx .

The convergence of the positive part of the interaction potential is straightforward, due to the uniform bound of

{|x|δρn}n∈N in L1(R2) and a dominated convergence argument. Concerning the negative part, it follows by Young’s

inequality for convolutions using the convergence of {ρn}n∈N → ρ in L1+δ′(R2) and the fact that log− |x| ∈ Lp(R2)

for all 1 ≤ p <∞.

5.15 LEMMA (Qualitative Stability got FPKS). For any ǫ > 0 and C > 0, there exists δ(ǫ, C) > 0 so that if

ρ ∈ SC,δ, then

FPKS[ρ] ≤ (−1 + log(8π)) + δ(ǫ, C) ⇒ ‖ρ− ̺µ‖1 ≤ ǫ for some µ > 0 ,

and for any R > 0, there exists δ(ǫ, C,R) > 0 such that

FPKS[ρ] ≤ (−1 + log(8π)) + δ(ǫ, C,R) ⇒
(∫

{|x|≤R}

|(√ρ−√
̺µ)(x)|2 dx

)1/2

≤ ǫ for some µ > 0 .

Proof: Given C,R > 0 fixed, suppose not. Then for some ǫ > 0, there is a sequence {ρn}n∈N in SC,δ such that

limn→∞ FPKS[ρn] = −1 + log(8π) but

inf
n,µ

‖ρn − ̺µ‖1 ≥ ǫ .
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However, by Lemma 5.14, there is a subsequence, still indexed by n, converging strongly in L1(R2) to ρ ∈ SC,δ,

such that

−1 + log(8π) = lim
n→∞

FPKS[ρn] = FPKS[ρ] .

By the cases of equality in the Log-HLS inequality, ρ = ρµ for some µ. This is a contradiction. The second part is

proved the same way, using the uniform integrability of the
√
ρ, ρ ∈ SC,δ on {|x| ≤ R}.

Proof of Theorems 1.7: Recall that FPKS[ρ(t)] ≤ FPKS[ρ(s)] for all 0 ≤ s < t. We now apply this monotonicity

to improve our large time asymptotic result.

By (5.32) in Lemma 5.13, there is a sequence of times {tn}n∈N ր ∞ such that limn→∞ ‖ρ(tn)− ̺λ‖1 = 0. By

our regularity results in Lemmas 5.6 and 5.7, {ρ(tn)}n∈N ⊂ SC,δ for some 0 < C, δ < ∞. Then by Lemma 5.14,

there is a subsequence, still indexed by n, such that limn→∞ FPKS[ρ(tn)] = FPKS[̺λ]. By the monotonicity of

FPKS[ρ(t)] it follows that

lim
t→∞

FPKS[ρ(t)] = FPKS[̺λ] = −1 + log(8π) .

Then by Lemma 5.15 it follows that given R > 0 there exists µ > 0 such that for all sufficiently large t,

‖ρ(t)− ̺µ‖1 ≤ ǫ and ‖√̺µ −√
ρ‖2,R :=

(∫

{|x|≤R}

|(√ρ−√
̺µ)(x)|2 dx

)1/2

≤ ǫ.

However, for any R > 0, by Minkowskii’s inequality and (5.30),

(∫

{|x|≤R}

|√̺µ −√
̺λ|2̺λ−1/2 dx

)1/2

≤
(∫

{|x|≤R}

|√̺µ −√
ρ|2̺λ−1/2 dx

)1/2

+
√
Hλ[ρ]

≤
√
8λ(λ +R2)‖√̺µ −√

ρ‖2,R +
√
Cλ .

Since the left hand side diverges as R increases, uniformly on for |µ− λ| > δ > 0, we readily conclude that µ = λ

and limt→∞ ‖ρ(t)− ̺λ‖1 = 0.

Appendix: proof of Lemma 4.12

By Lemma 3.3 applied to u0 = ρ and u1 = ρ0

Hλ,δ[ρ] ≤ Hλ,δ[ρ0]−
∫

R2

[
2 x f ′

δ(|x|2) +
1

2

∇ρ
(ρ+ δ)3/2

]
· (∇ϕ(x) − x) ρ dx−Kδ(ρ, ρ0)

with f ′
δ(s) = 8λ

[
8λ+ δ(λ+ s)2

]−3/2
. Using (4.16), i.e. x−∇ϕ(x) = τ (∇cǫ −∇ρ/ρ) and expanding we can rewrite

it as

Hλ,δ[ρ] ≤ Hλ,δ[ρ0] + τ

(
1

2
(I) +

1

2
(II) + 2 (III) + 2 (IV)

)
−Kδ(ρ, ρ0) ,

where

(I) := −
∫

R2

|∇ρ|2
(ρ+ δ)3/2

dx, (II) :=

∫

R2

ρ∇cǫ · ∇ρ
(ρ+ δ)3/2

dx

(III) :=

∫

R2

f ′
δ(|x|2)x · ∇cǫ ρ dx and (IV) := −

∫

R2

f ′
δ(|x|2)x · ∇ρ dx ,

We will keep the term (I) and we need to perform some integration-by-parts in the other terms:

Control of (II): We can rewrite this term as

(II) = 2

∫

R2

∇
(
ρ+ 2δ√
ρ+ δ

)
· ∇cǫ dx .
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By integrating by parts on the ball of radius R and noticing that −∆cǫ = γǫ ∗ ρ ∗ γǫ, we obtain

2

∫

|x|≤R

∇
(
ρ+ 2δ√
ρ+ δ

)
· ∇cǫ dx =2

∫

|x|≤R

(
ρ+ 2δ√
ρ+ δ

)
(γǫ ∗ ρ ∗ γǫ) dx

+ 2

∫

|x|=R

ρ+ 2δ√
ρ+ δ

∇cǫ · n dσ

≤ 2

∫

|x|≤R

√
ρ (γǫ ∗ ρ ∗ γǫ) dx+ 4

√
δ

∫

|x|≤R

γǫ ∗ ρ ∗ γǫ dx

+ 2

∫

|x|=R

ρ+ 2δ√
ρ+ δ

|∇cǫ| dσ

≤ 2

∫

|x|≤R

√
ρ (γǫ ∗ ρ ∗ γǫ) dx+ 32 π

√
δ

+ 2

∫

|x|=R

(
√
ρ+ 2

√
δ) |∇cǫ| dσ , (5.39)

where we used twice the estimate
ρ+ 2δ√
ρ+ δ

≤ √
ρ+ 2

√
δ .

Let us deal first with the second boundary term. By (4.2) in Lemma 4.2, we have

4
√
δ

∫

|x|=R

|∇cǫ| dσ ≤ 8π
√
δ

(
8CHLS ‖γ‖4/3‖|x|γ‖4/3 + 4 +

CHLS

2πǫ
‖γ‖24/3 ‖|x|ρ‖1

)
(5.40)

:= 16π
√
δ(Jγ + 1 + Ĉǫ) ,

for all R > 0. To cope with the first boundary term, we observe that taking any natural N > 1, and consider

(∫ N

N−1

∫

|x|=r

√
ρ |∇cǫ| dσ dr

)2

≤ π
(
N2 − (N − 1)2

)
‖∇cǫ‖2∞

∫

N−1≤|x|≤N

ρ dx

≤ π ‖∇cǫ‖2∞
2N − 1

N − 1

∫

N−1≤|x|≤N

|x| ρ dx

≤ C̃2
ǫ

∫

N−1≤|x|≤N

|x| ρ dx

where C̃ǫ :=
√
2 π ‖∇cǫ‖∞. Since

∞∑

N=3

∫ N

N−1

∫

|x|=r

√
ρ |∇cǫ| dσ dr ≤ C̃ǫ

(∫

R2

|x| ρ dx
)1/2

,

it follows that

lim
N→∞

∫ N

N−1

∫

|x|=r

√
ρ |∇cǫ| dσ dr = 0 ,

and thus, there exists a sequence {Rj} ր ∞ such that

lim
j→∞

∫

|x|=Rj

√
ρ |∇cǫ| dσ = 0. (5.41)

Plugging (5.40) and (5.41) into (5.39), we get

(II) ≤ 2

∫

R2

√
ρ (γǫ ∗ ρ ∗ γǫ) dx+ 32 π

√
δ + 4

√
δ(Jγ + 2π) .
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Finally, a simple application of Hölder’s inequality gives

∫

R2

√
ρ (γǫ ∗ ρ ∗ γǫ) dx ≤ ‖√ρ‖3 ‖γǫ ∗ ρ ∗ γǫ‖3/2 ≤

∫

R2

ρ3/2 dx ,

to conclude

(II) ≤ 2

∫

R2

ρ3/2 dx+ 32 π
√
δ + 4

√
δ(Jγ + 2π) . (5.42)

Control of (III): Remind that f ′
δ(s) ≤ (8λ)−1/2 := κλ/2 and that 2f ′

δ(s) → κλ as δ → 0, see Proposition 3.2. By

definition of cǫ and Gǫ and by symmetry of γ

(III) =

∫

R2

ρ(x) f ′
δ(x)x · (∇Gǫ ∗ ρ) (x) dx =

∫∫

R2×R2

ρ(x) f ′
δ(x)x γǫ(x− z) (∇G ∗ γǫ ∗ ρ) (z) dz dx

=

∫

R2

(ρ f ′
δ id ∗ γǫ)(z) (∇G ∗ γǫ ∗ ρ) (z) dz .

By definition of the convolution, we have

ρ f ′
δ id ∗ γǫ(z) =

∫

R2

ρ(z − x) f ′
δ(z − x) (z − x) γǫ(x) dx

= z

∫

R2

ρ(z − x) f ′
δ(z − x) γǫ(x) dx−

∫

R2

ρ(z − x) f ′
δ(z − x)x γǫ(x) dx

= z (ρf ′
δ ∗ γǫ)(z)− (ρf ′

δ ∗ id γǫ)(z) .

As a consequence, we infer

(III) =

∫

R2

[z (ρf ′
δ ∗ γǫ)(z)− (ρf ′

δ ∗ id γǫ)(z)] · (∇G ∗ γǫ ∗ ρ) (z) dz := (III)1 − (III)2 . (5.43)

By the symmetrization argument just as in (1.13), the first term of the right hand side of (5.43) reads

(III)1 =
1

2

∫

R2

z (ρ(2f ′
δ − κλ) ∗ γǫ)(z) · (∇G ∗ γǫ ∗ ρ) (z) dz − 8πκλ

:= (III)11 − 8πκλ .

We now control (III)11 using the HLS and Young inequalities, see (4.3) to obtain

|(III)11| ≤
1

2

∫∫

R2×R2

|z| |(ρ(2f ′
δ − κλ) ∗ γǫ)(z)|

1

|x− z| |(γǫ ∗ ρ)(x)| dz dx

≤ CHLS

4π
‖|z| |(ρ|2f ′

δ − κλ| ∗ γǫ)‖4/3 ‖ρ ∗ γǫ‖4/3

≤ CHLS

4π

(
‖(|x| ρ|2f ′

δ − κλ|) ∗ γǫ‖4/3 + ‖(ρ|2f ′
δ − κλ|) ∗ (|x| γǫ)‖4/3

)
‖ρ ∗ γǫ‖4/3

≤ 2CHLS

(
‖|x| ρ|2f ′

δ − κλ|‖1 ‖γǫ‖4/3 + ‖ρ|2f ′
δ − κλ|‖1 ‖|x| γǫ‖4/3

)
‖γǫ‖4/3 ,

from which

(III)1 ≤ −8πκλ + Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1 . (5.44)

To estimate the second term of the right hand side of (5.43), we make again use of the HLS inequality, see (4.3):

|(III)2| ≤
1

4
√
2λπ

∫∫

R2×R2

(ρ ∗ |z| γǫ)(z)
1

|z − y| (γǫ ∗ ρ)(y) dy dz

≤ CHLS

4
√
2λπ

‖ρ ∗ (|z| γǫ)‖4/3 ‖γǫ ∗ ρ‖4/3 .
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By the Young inequality, and a direct calculation,

‖ρ ∗ (|z| γǫ)‖4/3 ≤ 8π ‖|x| γǫ‖4/3 = 8π
√
ǫ ‖|x| γ‖4/3 .

and in the same way

‖γǫ ∗ ρ‖4/3 ≤ 8π ‖γǫ‖4/3 = 8π
1√
ǫ
‖γ‖4/3 .

The positive and negative powers of ǫ cancel, and using (5.44), we conclude

(III) ≤ −8πκλ + Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1 +

16πCHLS√
2λ

‖|x| γ‖4/3 ‖γ‖4/3

= −8πκλ + Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1 +

8π Jγ√
2λ

. (5.45)

Let us estimate this third term in a different way that will be useful later on. Using again the Young inequality,

but this time eliminating γ instead of ρ, i.e. ‖γǫ ∗ ρ‖4/3 ≤ ‖ρ‖4/3, we get

‖ρ ∗ (|z| γǫ)‖4/3 ‖γǫ ∗ ρ‖4/3 ≤ 64π2√ǫ ‖|x| γ‖4/3 ‖ρ‖4/3 .

As a consequence, we get this other control on (III) by

(III) ≤ −8πκλ + Cǫ ‖ |2f ′
δ − κλ| (1 + |x|)ρ‖1 +

16πCHLS√
2λ

√
ǫ ‖|x| γ‖4/3 ‖ρ‖4/3 . (5.46)

Control of (IV): By integrating by parts for any R > 0, we have

∫

|x|≤R

x f ′
δ(|x|2) · ∇ρ(x) dx =

∫

|x|=R

ρ(x) f ′
δ(|x|2)x · n dσ −

∫

|x|≤R

∇ · [x f ′
δ(|x|2)] ρ(x) dx ,

where n denotes the outward normal to the disk DR. Taking into account that

∞∑

N=3

∫ N

N−1

∫

|x|=r

|x| |f ′
δ(|x|2)| ρ(x) dσ dr ≤ 1

2
√
2λ

∞∑

N=3

∫

N−1≤|x|≤N

|x| ρ dx ≤ 1

2
√
2λ

∫

R2

|x| ρ dx <∞

we have

lim
N→∞

∫ N

N−1

∫

|x|=r

ρ(x) |f ′
δ(|x|2)| |x| dσ dr = 0 .

As a consequence, there exists a sequence {Rj} ր ∞ such that

lim
j→∞

∫

|x|=Rj

ρ(x) |f ′
δ(|x|2)| |x| dσ = 0,

and thus, we conclude

(IV) =

∫

R2

∇ · [x f ′
δ(|x|2)]ρ(x) dx . (5.47)

The desired estimates are obtained by putting together estimates (5.42), (5.45), (5.46) and (5.47).
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