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Morphological Description of Color Images for
Content-Based Image Retrieval

Erchan Aptoula and Sébastien Lefèvre

Abstract—Placed within the context of content-based image
retrieval, we study in this paper the potential of morphological
operators as far as color description is concerned, a booming
field to which the morphological framework, however, has only
recently started to be applied. More precisely, we present three
morphology-based approaches, one making use of granulometries
independently computed for each subquantized color and two em-
ploying the principle of multiresolution histograms for describing
color, using respectively morphological levelings and watersheds.
These new morphological color descriptors are subsequently
compared against known alternatives in a series of experiments,
the results of which assert the practical interest of the proposed
methods.

Index Terms—Color description, content-based image retrieval
(CBIR), granulometry, mathematical morphology (MM), multires-
olution histogram.

I. INTRODUCTION

T HE first foundations of mathematical morphology (MM)
were laid down during the sixties, within the context of

stereology related projects aiming to describe iron ore proper-
ties [1] and porous media [2]. Hence, visual content description
can be considered as one of the initial goals, that guided the re-
search efforts leading eventually to the development of the entire
morphological framework as it is known today [3].

Since that first period the potential of MM for feature ex-
traction and content description has been demonstrated in var-
ious fields, ranging from biomedical applications [4] to remote
sensing [5], [6]. The topic of general purpose content-based
image retrieval (CBIR), however, with the exception of highly
application specific cases (e.g., hematological cell classification
[7]), has been left relatively unexplored. At the end of the incep-
tion years of CBIR, this has started to change. Rather direct ap-
plications of classical morphological operators, such as pattern
spectra [8], multiscale segmentations [9], combinations with al-
ready known descriptors (Gabor filters and watershed based seg-
mentation [10]) as well as novel morphological approaches [11]
are becoming more frequent. Nevertheless, to the best of the au-
thors’ knowledge no extensive study has yet been carried out.
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Besides the relative popularity of CBIR in the image pro-
cessing community, the motivation for considering morpholog-
ical operators in order to tackle this problem, is mainly due to the
inherent capacity of this framework to exploit spatial pixel rela-
tionships. Based on this concept, in this paper we focus on color
description, and study the potential of morphological operators
for content description within this context. Why color? Because,
although it is certainly not the most important visual quality of
image data when it comes to semantic retrieval, it still is one of
the basic low level visual features, and as such it constitutes a
good launching point for future work consisting of the develop-
ment of more sophisticated morphological content decriptors,
e.g., morphological color interest point detectors or other mul-
tiscale morphological approaches. More precisely, our contri-
bution consists of three novel morphology based color descrip-
tors, based on granulometries and multiresolution histograms in
combination with color levelings and the watershed transform.
All three proposed approaches are compared against known al-
ternatives in a series of tests, that assert the practical interest of
the morphological framework in this field.

We first provide in Section II a short overview of the appli-
cation of MM to color images and its related issues as it is far
from being straightforward. Then we focus on the development
of morphology based color descriptors making use of granu-
lometries and multiresolution histograms (Section III). Next we
present the results of a series of comparative tests illustrating
the interest of the proposed methods (Section IV), followed by
concluding remarks (Section V).

II. COLOR MORPHOLOGY

The extension of morphological operators to color and more
generally to multivariate images is an open problem. Specifi-
cally, since the morphological framework is based on complete
lattice theory [12], it is theoretically possible to define morpho-
logical operators on any type of image data, as long as a com-
plete lattice structure can be introduced on the image intensity
range. In other words, given the vector nature of color pixels,
a vector ordering becomes necessary. Several approaches have
been proposed with this purpose (e.g., marginal orderings, re-
duced orderings, conditional orderings, etc.), a comprehensive
survey of which can be found in [13]. Prior to choosing a vector
ordering, however, it is imperative to select a color space to work
with.

A. Color Space

Here, we choose to follow the trend of the last years in the
domain of color morphology, and employ a polar color space
based on the notions of hue , saturation

and luminance . More precisely, although most
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polar color spaces are essentially a more intuitive description of
the RGB color cube, several implementations exist e.g., HSV,
HLS, HSI, etc. According to Hanbury and Serra [14], [15], the
cylindrical versions of these spaces have serious inconsistencies
and are inappropriate for quantitative color image processing.
Hence, we make our color space choice in favor of the improved
HLS space, which employs the original biconic version of HLS.
This color space has been introduced in [16], [17] under the
name LSH, and can be computed from the RGB space as

(1)

where and denote respectively the maximum,
median and minimum value of the transformed RGB triplet.
is the angle unit ( for radians and 42 for 256 levels), whereas

is set as 0 if , 1 if , 2 if , 3 if
, 4 if , and 5 if .

One of the most important drawbacks of the cylindrical HLS
space is the unintuitive definition of saturation. Specifically, it
is possible to have maximized saturation values for zero lumi-
nance. This inconvenience, as well as the dependence of satura-
tion on luminance are remedied with the LSH space, where the
maximal allowed value for saturation is limited in relation to lu-
minance. Therefore, in order to benefit from the advantages of
polar spaces in the context of multivariate morphology, the or-
dering of LSH color vectors is required.

B. Color Ordering

As to the issue of color ordering, it is nontrivial since it is
tied both to the problem of multivariate ordering as well as to the
subjective notion of color. In order to realize our choice of color
ordering among the available rich variety, we focused on two
criteria, first its theoretical stability and second its suitability to
the color space under consideration. For these reasons, we have
chosen to use primarily the lexicographical ordering (i.e., a total
ordering leading to theoretically valid morphological operators)
and more specifically its quantization based variant [18], which
renders it not only more flexible but takes into account the par-
ticular relations among the dimensions of LSH as well (e.g., the
redundancy of hue when a pixel is not saturated “enough”).

More precisely, the quantization based lexicographical or-
dering is based on the standard lexicographical cascade, which
is defined by

(2)

It is applied on the color vectors of LSH, where the importance
of saturation is maximized for medium levels of luminance,
whereas hue is of practical importance only for relatively high
levels of saturation. Thus, we conform here to previous works
[13] and use in the lexicographical cascade,
where the first two components are subquantized nonuniformly

according to functions modeling the interchannel relations of
the color space

(3)

In particular, we have used the exact configuration presented
in [18] concerning luminance and saturation to produce
quantized luminance and saturation (note that any even-
tual equivalences among distinct color vectors may be avoided
by using the lexicographical cascade once more with the orig-
inal pixel values). As to the hue, however, since it is a -period-
ical angular value, it has been decided to use a reference based
hue ordering [19]

(4)

where hues are ordered with respect to their distance to a refer-
ence value (to be defined depending on the application), with
the closer ones being considered greater. As to the distance mea-
sure, it is defined as [19]

(5)

Therefore, equipped with the ordering of (3) one can compute
the vector extrema by means of and , necessary for the
definition of the basic morphological operators of vector erosion

and dilation

(6)

(7)

from the combinations of which more sophisticated operators
may be obtained. Now let us proceed to the developments of
morphological operators for color images aiming to describe
color content.

III. MORPHOLOGICAL DESCRIPTION OF COLOR IMAGES

Color is widely regarded as one of the most expressive vi-
sual features [20], and as such it has been extensively studied in
the context of CBIR, thus leading to a rich variety of descrip-
tors [21]. Similarly to texture and shape, it is relatively hard to
establish the exact description of color content. One has to ask,
given a color image, which notions describe the concept of color
within it. Considering the existing amount of work on this topic,
and the multitude of color descriptors employed in commercial
and research systems, one can narrow down the type of infor-
mation extracted from them to the following.

• The presence (or absence) of a particular color (e.g., red
and blue).

• The relative amount in which a particular color is present
(e.g., 80% red and 20% blue).

• The size distribution of each color (e.g., one large patch of
red and multiple small patches of blue).

• The relative spatial position of each color with respect to
others (e.g., red at left and blue at right).
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The last of the aforementioned four notions is of use only in
cases where the relative position of color components is of se-
mantic importance. Such an assumption makes possible to use
(multiscale) segmentation-based approaches where the image is
represented as a set of regions through a graph (or tree) struc-
ture. In this very particular context, mathematical morphology
is a possible solution [9]. An example of images where this no-
tion is relevant is the following: in the case of beaches, the sand
(brown and/or gray) is next to the sea (blue and green), above
which is the sky (blue and/or gray). Of course there are also
numerous other objects for which relative positions cannot be
a priori determined, for instance accordions, books, etc. Con-
sequently, one can understand why the vast majority of existing
work on this topic concentrates on the first three notions in order
to describe color content.

Any attempt on color description, however, has to address cer-
tain issues first. These are the choice of color space and quanti-
zation levels, as well as the variations due to different illumina-
tion conditions. The choice of color space is of vital importance,
as it has a direct effect on channelwise correlation, and con-
sequently on the effectiveness of the resulting feature vectors.
Although perceptual spaces (e.g., ) are consid-
ered to better model the human perception of color, compara-
tive studies have shown phenomenal color spaces to outperform
them in combination with several descriptors [22].

As the standard number of colors in everyday digital images
is usually in the order of millions, color specific approaches
naturally lead to excessively large feature vectors; hence, color
subquantization (i.e., quantization to fewer levels) is a common
practice. The exact number of levels along with their unifor-
mity, however, depend strongly on the chosen color space. For
instance while 4 colors per channel are preferred for RGB (i.e.,
4-4-4, 64 colors), 16-4-4 is usually used with HSV [20], [23].
The question of choosing the optimal quantization model and
number of levels can be considered as a search for the optimal
compromise between feature vector size and effectiveness.

Another significant obstacle in color description is the one
caused by color variations due to different illumination condi-
tions. Even with exactly the same object and viewing angle,
changing only the illumination source may lead to totally dif-
ferent color distributions. One can counter this effect, either by
means of an appropriate transformation, like histogram equal-
ization (Fig. 1) [24] or by subquantizing strongly the luminance
component in order to reduce its influence [25].

Despite the absence of previous work on the morphological
characterization of color distributions, we believe that morpho-
logical options possess the potential to contribute to all three
stages of it, specifically preprocessing (e.g., image simplifica-
tion), processing (e.g., feature extraction) and postprocessing
(e.g., descriptor refinement). In the light of the aforementioned
color description principles, we present three global/holistic
approaches for the description of color based on morpholog-
ical operators, that are subsequently compared against known
alternatives.

A. Color Specific Granulometry (CSG)

Since the first two requirements for describing color con-
tent can be trivially obtained through an histogram, the main

Fig. 1. In the first row, a texture example from the Outex14 texture database
under three different illumination sources (left to right, 2856 K incandescent CIE
A, 2300 K horizon sunlight and 4000 K fluorescent TL84) and in the second row,
the same images after the application of a channelwise histogram equalization
in RGB.

problem to address is finding a means to describe the spatial/size
distribution of colors. To this end, an important part of the ex-
isting methods follows a color specific approach, where each
color is described independently, either by means of an autocor-
relogram or some other spatial histogram extension, each color
bin is associated additionally with a spatial description. That is
why it has been decided here not to employ a vector processing
strategy, and instead focus on each quantized color separately
using granulometry as our description tool. Besides, CBIR ori-
ented color granulometries have already been reported, such as
the one by Angulo and Serra [26], where they are computed mar-
ginally in the RGB space and the one by Louverdis et al. [27],
defined in HSV using a lexicographical ordering, which, how-
ever, ignores the hue component’s periodicity.

Intuitively, we choose to associate each color of the input with
its corresponding granulometric curve, since it is considered as
the morphological tool by default for the description of size dis-
tributions [28]. In particular, this operator consists in studying
the amount of image detail removed by applying morpholog-
ical openings and/or closings of increasing size . The
volumes (i.e., sum of graylevel pixel values) of the opened (or
closed) images are then plotted against , or more usually their
discrete derivative , i.e., pattern spectrum.

In the present case, given a color image with possible colors
in , a graylevel image for each is computed,
where every pixel denotes the distance of to

(8)

where represents a color metric suitable for the color space
under consideration, e.g., the Euclidean distance for perceptu-
ally uniform spaces. Next we compute the granulometric curve
of using closings by reconstruction. To explain, closing by
reconstruction is a high level morphological operator which can
be expressed in the digital case in terms of geodesic erosions.
Geodesic erosion and dually geodesic dilation
are operations involving two images, a marker image and a
mask , where the first is processed conditionally to the second

(9)
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(10)

where and are the erosion and dilation by the neighborhood
of the origin. Both operators can be further applied successively
as follows:

(11)

hence, by repeating them until stability ( times,
one can realize respectively a reconstruction by ero-

sion and a reconstruction by dilation

(12)

(13)

which reach stability after a finite number of steps. Con-
sequently, one can define closing by reconstruction with a
structuring element (SE)

(14)

which we use in combination with SE of various sizes, in order
to compute the granulometric curve of that describes color

(15)

(16)

where is the SE of size k to be used in the closing by re-
construction, and Vol denotes the image volume (i.e., sum of
graylevel pixel values of each ). Consequently, the final fea-
ture vector is formed by the concatenation of all , leading
to a descriptor of size . The reason for using a closing
instead of an opening is because the regions representing colors
similar to the one under consideration will be at minimal dis-
tance, hence, dark, whereas the choice of a reconstruction based
operator is justified by the reports concerning the improvement
of performance that it brings in the context of content descrip-
tion [29].

Moreover, granulometries, similarly to correlograms, are in-
variant with respect to spatial position [30], and provide a de-
scription of the size distribution of their content. Applying them
directly on the input image results in a fairly effective shape de-
scriptor [8]. By applying them “marginally” for each possible
color, one can distinguish for instance a connected “large” patch
of color , from a number of smaller components of the same
color. As to its similarity comparison, we find it pertinent to use
an approach similar to the relative distance based measure of
correlograms [31]

(17)

An illustrative example of CSG is given in Fig. 2, where the
curves obtained for three colors of different size distribution
are shown. Possible extensions to the definition of (16) could
include using multivariate granulometries (e.g., size-shape)
[32], as well as higher order statistical measures instead of the
volume [33].

Fig. 2. Input image (a) and the granulometric curves (b) coresponding to red,
green and blue, obtained by processing the distance image of (a) computed using
an Euclidean distance in RGB.

B. Multiresolution Histograms in the Leveling Scale-Space
(MHL)

Color histograms remain simple yet effective tools since the
early days of CBIR [34], with positive properties such as in-
variance to geometric transformations. As they are capable of
providing the first two elements required for the description of
color, their foremost drawback is the lack of any spatial infor-
mation. To this end, several extensions have been proposed [35],
[21]; among which one particular approach is using multiple
resolutions, that has proven itself to be able to capture effec-
tively color content [36], [37]. Multiresolution decomposition
has been achieved by means of Gaussian filters [36], Gabor fil-
ters [38] as well as wavelets [39]. For an in-depth study on this
topic the reader can consult [36]. Morphological scale spaces,
however, have not yet been used to this end, despite being used
for other multiscale image representations (e.g., related to seg-
mentations [9]).

Scale-spaces based on morphological levelings have been
studied in particular by Meyer and Maragos [40], where the
useful properties of levelings, such as contour preservation
and invariance to translation and rotation among others have
been mentioned. This formulation later on has been used for
optimal scale selection by exploiting the property of maxima
propagation within levelings [41], and for multiscale image
description through segmentation tree [9]. Here, however, we
propose to employ this scale space for the description of color
distribution by means of multiresolution histograms. Before
proceeding any further, let us recall the relative definitions.
Levelings are powerful morphological operators representing
a subclass of connected operators, that work on a reference
image and a marker image . The marker image is modified
in such a way that it becomes the leveling of .
From an implementational point of view, the expression

(18)

is iterated until idempotence, although more efficient algorithms
also exist [42].

At this point two issues need to be addressed, first the exten-
sion of levelings to color images, as well as the formulation of
a scale-space. The first has been studied by Gomila and Meyer
[43] and by Angulo and Serra in [44], where different orderings
and color spaces have been tested. It consists in replacing the
scalar morphological as well as binary operators of (18) by their
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Fig. 3. From top to bottom: Original Lenna image and its vectorly leveled versions using (18) and (19), with marker images obtained using alternating sequential
filters (ASF) of increasing size 3, 5, 7, 9, and 11. Each line contains (from left to right): the (leveled) color image (a) and its corresponding 8-bin RGB color
normalized histograms (b), the differences with the finer image (i.e., from previous line or resolution) emphasized with contrast stretch (c) and considering its color
normalized histograms (d). (This figure is best viewed in color).

vector versions. As to the second, multiple methods are possible
such as using a family of extensive and anti-extensive operators
within (18) or a family of marker images that lead to pro-
gressively simplified images

(19)

Of course, a variety of filters may be used in order to obtain the
marker images, including alternating sequential filters (ASF),

Gaussian or even anisotropic diffusion filters, that according to
the study in [45] provide the best quantitative performance in
terms of noise reduction capacity. An example of successive
color levelings applied on the Lenna image (256 256 pixels)
is given in Fig. 3(a), where the multiple marker images are ob-
tained through vectorial ASF (with opening first) of various
sizes expressed as

(20)
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where and represpectively represent the closing and
opening of size . Using a smoother marker leads to larger flat
regions and results in a removal of more details as shown in
Fig. 3(c), where contrast has been stretched for visualization
purpose. Moreover, the leveling process modifies the corre-
sponding color histograms as illustrated in Fig. 3(b), which
contains normalized histograms. Differences between color
histograms at successive resolutions (i.e., when computed from
successive leveled images) are emphasized in Fig. 3(d). These
differences can reach up to 4000 pixels for a given quantized
color and correspond to the large areas shown in Fig. 3(c).

Given resolutions, one can then compute the color his-
togram of size of each and concatenate them in order
to form the feature vector of size . Moreover, the his-
togram differences may also be used. As to the similarity mea-
sure, while the histogram intersection is of course the standard
choice, a weighting factor may also be added, following the
principle of a pyramid match [46]. In detail, since highly sim-
plified images are bound to be more alike than the lower reso-
lutions where more image detail is preserved, it makes sense to
weight the corresponding histogram intersections. For instance,
given and , the
multiresolution histogram families for two images and , re-
spectively, their weighted distance would become

(21)

where denotes the th histogram bin of resolution . Further
refinement may be achieved by modifying the bin width at each
resolution.

C. Multiresolution Histograms Based on Watersheds (MHW)

Another morphological tool that may be used in order to
boost the spatial sensitivity of the standard color histogram is
the watershed transform. This powerful operator represents the
foremost morphological approach to the problem of image seg-
mentation. Although fully automatic, it is relatively sensitive
to image noise, hence leading often to oversegmented results
unless some form of smoothing is applied first. Nevertheless,
the regions that are formed represent uniform areas in terms of
spectral content or “flat” in topological terms. Here we propose
to use this operator in order to produce the different image
resolutions that are to be used in order to construct a mul-
tiresolution histogram. To do so we rely on multiple smoothed
images, e.g., the leveled images presented in previous section.
Let us notice, however, that it would have also been possible to
involve multiscale watershed-based techniques (e.g., waterfalls
[47], using contour saliencies [48], etc.) which produce directly
segmentations at multiple resolutions, thus avoiding the need
for multiple smoothed images.

In particular, given a color image , it is first smoothed rela-
tively to resolution and then segmented by means of the wa-
tershed transform, which leads usually to several regions. Then,
the pixels of each region are associated with the representative

color of that region. Several techniques may be involved to com-
pute this representative color, among which we can cite: the av-
erage color (using a standard average function computed mar-
ginally on each component of the color space under considera-
tion); the most dominant color (seeking for the main peak of the
color histogram); the most homogeneous color (considering the
color of the valley in the topographic surface, i.e., the pixel with
minimum gradient value). Consequently, one can at this point
compute the standard histogram taking into account the newly
formed regions. Besides, using multiple resolutions means that
the initial image will be further smoothed, hence leading to the
formation of even larger flat regions, and, thus, we obtain a mul-
tiresolution representation of the input the histograms of which
capture indirectly the spatial organization of its content. This
procedure is further illustrated in Fig. 5. Consequently, the end
feature vector is formed by the concatenation of the histograms
of each resolution, thus leading to a size of , where is
the number of resolutions and the number of bins of each his-
togram. As a similarity measure, we consider the pyramid match
of (21) as adequate.

Although it appears as a straightforward approach, its imple-
mentation is hindered, however, by certain elements. First, there
is the issue of a morphological color image segmentation [17].
The watershed transform is most often applied on a graylevel
input representing the topographic relief of the image under con-
sideration, usually its gradient, that is why an effective means
of computing the color variations is necessary. To this end, we
choose to combine the color channels by means of a channel-
wise maximum of marginal gradients

(22)

where is the standard internal morphological
gradient, chosen instead of its alternatives based on experi-
mental observations. Although the components of the polar
color spaces are highly intuitive, their combination is relatively
problematic. In particular, hue is of no importance if saturation
is “low,” while the biconic shape of the color space assures
that no high saturation levels exist, if luminance is not “high
enough.” Hence, the hue gradient needs to be weighted with a
coefficient that has a strong output only when both compared
saturation values are “sufficiently high”. Besides, on the con-
trary of the other two components, it has been observed that
the form provides visually superior results with the
hue, hence leading us to use the following expression:

(23)

where is the local 8-neighborhood, the hue distance defined
in (5) and a double sigmoid controling the transition from
“low” to “high” saturation levels

(24)

where the slope and the offset .
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Fig. 4. From top to bottom: Original Lenna image and the results obtained after the watershed computation on the levelings of Fig. 3(a), where pixel values
have been replaced by the valley color of each basin. Each line contains (from left to right): the resulting color image (a) and its corresponding 8-bin RGB color
normalized histograms (b), the differences with the finer image (i.e., from previous line or resolution) emphasized with contrast stretch (c) and considering its color
normalized histograms (d). (This figure is best viewed in color).

Moreover, one also has to choose a means to compute the
progressively smoothed versions of the input image. Here, we
consider color levelings with this purpose, the marker images
of which may be obtained with any of the options mentioned in
Section III-B. Following the flattening realized by levelings, the
flat regions will be easily detected by the watershed transform,
that will also detect as regions all basin shaped areas that have not
been flattened by levelings. Whether this nuance has a positive
or negative effect on the operator’s color content description
capacity is a question to be answered experimentally in Sec-
tion IV but we still provide here a comparison on the standard

Lenna image. The application of the watershed transform on the
computed gradient leads to the result shown in Fig. 4(a), whereas
Fig. 4(b) shows their color normalized histograms. Similarly
to the leveled images, interresolution differences are present
though hard to observe. Thus, we also provide contrast-stretched
visual and normalized histogram differences in Fig. 4(c) and (d),
respectively. Here we consider the valley color as the repre-
sentative color of each region, but let us notice that some other
tests with average color provide very similar results.

To illustrate the difference between the two multiscale ap-
proaches (using levelings only or levelings followed by wa-
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Fig. 5. Illustration of the steps required for forming the watershed transform
based multiresolution histograms.

Fig. 6. Difference between multiresolution histograms using levelings only
(MHL) and levelings followed by watersheds (MHW): (a) evolution of the color
number at different image resolutions relatively to the first resolution, (b) av-
erage difference (among the different resolutions) between the three 8-bin RGB
color normalized histograms obtained from MHL and MHW.

tersheds), we measure in Fig. 6(a) the color number at each
image resolution (the initial Lenna image contains 52319 dif-
ferent colors, i.e., RGB triplets). We can observe that the water-
shed segmentation greatly reduces (by a factor of 15) the color
number. However, since a quantization is usually applied on the
input image as indicated at the beginning of this section, the
difference appears not on the color number but rather on the
quantized color distributions, as illustrated in Fig. 6(b). As we
can notice in left column of Fig. 7, the watershed-based addi-
tional step introduces changes in particular on the object bor-
ders. Moreover, these changes appear more on a region-basis
than on a pixel-basis, thus asserting the effect of the segmen-
tation step. These interresolution differences lead to different
evolutions of color distributions, see right column of Fig. 7.

IV. EXPERIMENTAL EVALUATION

A. Setup

The retrieval tests that have been carried out have served mul-
tiple purposes. First they have been used in order to verify the
practical interest of the presented morphological color descrip-
tors, as well as to determine the optimal color space and quan-
tization couple for this task. To this end, a total of 3000 images
from three different sources have been used [49]–[51]. This set
contained 16 semantic categories of 100 images each, along with
1400 bulk images, in order to simulate real-life retrieval from an
unorganized database. Examples from each category are given in
Fig. 8. Furthermore, in order to obtain more reliable estimates,
each image of the 16 categories served as the query subject in

Fig. 7. Amount of differences accumulated over the five different resolutions
using levelings only (top) and levelings followed by watersheds (bottom). The
visual differences (left) lead to differences in the color distributions (right).

Fig. 8. Representative category examples of the image database used for color
descriptor comparisons. From top-left to bottom-right: Africa, beach, bicycles,
building, bus, clouds, chimneys, dinosaur, elephant, flower, food, horse, moun-
tain, sunflower, tree, and window.

turn, making a total of 1600 queries. From the results of which
the precision versus recall charts have been computed, as well as
ANMRR values that provides an overall rating of performance.

ANMRR stands for average normalized modified retrieval
rank and is the MPEG-7 retrieval effectiveness measure com-
monly accepted in the CBIR community [20]. More precisely,
this measure has been introduced in order to overcome problems
such as those related to queries with varying ground truth set
sizes. In particular, given a query , assume that the th ground
truth image is retrieved at . Then a number is de-
fined, which denotes the ranks that are considered as feasible
in terms of retrieval evaluation. is often set as twice the
size of the ground truth set associated with the query
under consideration. Hence, is defined, which repre-
sents the penalty attributed to a retrieved item

(25)



APTOULA AND LEFÈVRE: MORPHOLOGICAL DESCRIPTION OF COLOR IMAGES FOR CONTENT-BASED IMAGE RETRIEVAL 2513

Thus, one gets the average rank (AVR) for a query

(26)

Skipping the intermediate notions, we can directly define the
ANMRR as

(27)

where NQ is the number of queries. Thus, ANMRR can provide
values between 0 for best results (i.e., all images of the ground
truth of the queries have been retrieved), and 1 for worst results
(i.e., none of the ground truth images of the queries has been
retrieved).

It should be additionally noted that for the charts the first
retrieved image was always ignored as it represents the query
image itself. In our tests, the proposed morphological color de-
scriptors have been compared against the standard histogram,
the autocorrelogram (AC) [31], the superiority of which with
respect to the histogram has been shown by multiple compar-
ative studies [22], [25], the color structure descriptor (CSD)
[20] of the MPEG-7 standard and color distribution entropy
(CDE) [21].

Moreover, a question that arises at this point is “why use a
nonstandard image database?”. Indeed, our initial intent was
in the opposite direction; however, it became soon clear that
contemporary image collections, such as Caltech-256 [50] are
rather unsuitable for this particular testing suite, in the sense that
they require descriptors capable of taking into account multiple
visual dimensions (e.g., color, shape, etc.) simultaneously, thus
rendering them inappropriate for the present case where we wish
to focus on color, and color only. Of course this also represents
a limit for this series of tests, as the results rest valid for collec-
tions with a certain level of color separability among categories.

B. Test Results

1) Color Space and Quantization: According to previous
comparative studies [22] and the MPEG-7 standard [20], polar
color spaces in general outperform most of their alternatives in
the context of content description, in combination with different
quantization models. Considering, however, the design prob-
lems of these spaces (Section II-A), and the alternative formu-
lations that have been proposed, it has been considered appro-
priate to test their effectiveness in order to determine the most
suitable color space along with its quantization model for the
image database under consideration.

To this end, we have employed color histograms along with
RGB, , HSV, and LSH with three different uniform
quantization models, namely 8 (8-8-8), 6 (6-6-6), and 4 (4-4-4)
bins per channel. The resulting ANMRR values are given
in Table I. Judging from the obtained results, there are pri-
marily two remarks to be made: first, the general superiority of
LSH with respect to its counterparts, a result which confirms
previous studies [25]. And additionally, one can observe the
relatively light influence of histogram bin numbers. As a matter
of fact, even with eight times less colors, the performance of

TABLE I
ANMRR VALUES FOR DIFFERENT QUANTIZATION MODELS (HISTOGRAM

BINS) AND COLOR SPACES

TABLE II
ANMRR VALUES FOR DIFFERENT EXPRESSIONS OF BRIGHTNESS USING

256 BIN BRIGHTNESS HISTOGRAMS

TABLE III
ANMRR VALUES FOR DIFFERENT EXPRESSIONS OF SATURATION USING

256 BIN SATURATION HISTOGRAMS

TABLE IV
ANMRR VALUES FOR SATURATION WEIGHTED AND UNWEIGHTED

256 BIN HUE HISTOGRAMS

the histograms decreases only by 4% for the best color space
under study and less than 6% for the others.

Based on the performance of the two polar color spaces, from
this point on we focus on the optimization of their arguments.
For instance, which brightness expression is most adequate for
this task? Value (maximum of R, G, B), intensity (average of
R, G, B), or luminance (perceptually weighted combination of
R, G, and B)? Table II presents the results obtained using a 256
bin brightness histogram with the aforementioned expressions.
According to the obtained results, the relatively simple expres-
sion of red green blue average, provides an overall better per-
formance with this set.

Proceeding to the other two channels, as far as saturation is
concerned, we test the brightness dependent version of HSV
against the brightness independent definition of LSH, by means
of a 256 bin saturation histogram. Table III shows the obtained
ANMRR values. According to the results, brightness indepen-
dence aids saturation’s retrieval performance.

As to the hue component, we choose the implementation of
LSH, and test the effect of using a saturation weighted hue his-
togram against a “raw” hue histogram, where the hue values of
achromatic pixels take place as well. Table IV shows the ob-
tained results. The weighting factor has indeed a positive effect.

In the light of these results, we opt for the LSH color space,
equipped with the R, G, B average as brightness expression,
and its hue weighted by its saturation. Furthermore, since
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Fig. 9. Nonuniform hue circle quantization.

TABLE V
ANMRR VALUES FOR VARIOUS QUANTIZATION MODELS.

NU STANDS FOR NONUNIFORM

the hue histogram is evidently more pertinent with respect to
brightness and saturation, similarly to the general tendency
[20], [23], nonuniform quantization of LSH is tested next.
Besides, allowing a lower number of levels for brightness,
has the additional advantage of limiting the effect of illumi-
nation variations. But the question is, how exactly should one
quantize this space? Common models include 4-4-16 [20],
3-3-12 [25], as well as 3-3-9 [21]. Moreover one has also the
option of quantizing the hue circle nonuniformly, according to
[52], which is based on the fact that human color perception
has a varying capacity of hue distinction. For instance, the
average person can distinguish more hues of red than blue. This
principle is illustrated in Fig. 9, and the quantization option is
tested as 3-3-7 (NU). Table V summarizes the results obtained
from various quantization models. Although in general the
exact configuration has relatively small effect on the retrieval
performance, as a practical compromise between color number
(i.e., feature size) and effectiveness, the nonuniform 3-3-7
stands out. Hence, it will be subsequently used as the default
quantization scheme, unless stated otherwise.

2) Descriptors: Having chosen the LSH color space with a
nonuniform subquantization of type 3-3-7 [52] (see Fig. 9), we
now continue to compare the color descriptors presented in Sec-
tion III against some of the classical methods of color content

Fig. 10. Precision versus recall chart of the tested color descriptors, from worst
to best descriptors: standard histogram, autcorrelogram (AC), color structure
descriptor (CSD), color distribution entropy (CDE), multiresolution histograms
with watersheds (MHW), color specific granulometry (CSG), multiresolution
histogram with levelings (MHL).

description. As far as CSG is concerned, the projection of each
quantized color within the 63 color set is computed using the
distance between the color under consideration and the original
unquantized image. The distance expression is set to a weighted
combination of hue and luminance difference

(28)

where all color components have been normalized to [0,1], the
weight is given in (24) and represents the standard hue
distance defined in (5). Moreover, the granulometries have been
computed using square shaped SE with 4 sizes, 1, 5, 9, and 13
pixels wide using the efficient algorithm of [53]. Thus, with

colors, it leads to a feature vector of length
. As to MHL, based on empirical observations it has been

decided to use ASF (with opening first) in order to realize the
levelings, in 4 different resolutions, with the same SE options
as CSG. Levelings of the same setup have been also used along
with MHW, prior to applying the watersheds. Consequently, all
three operators lead to identical feature vector sizes.

On the other hand, as to their rivals, the standard color his-
togram is computed in LSH using the subquantization model
4-4-16 with histogram size 256. The AC is calculated with the
same setup as in [25], where it is defined for the HSV color
space in combination with a subquantization model of 12-3-3.
Namely, with four distances (1,3,5,7), hence leading to a fea-
ture vector of length . For the CSD, we use
the configuration presented in [20] but with the aforementioned
color space related choices instead of the HMMD space. Con-
sequently it provides a feature vector of the same length as the
standard histogram. In order to calculate the CDE we follow the
definition given in [21], with the number of radius quantization
levels set to which results in a description of length 252.

The precision versus recall charts resulting from the 1600
queries are shown in Fig. 10, whereas the ANMRR values are
given in Table VI. As expected, the total lack of spatial informa-
tion places the standard color histogram last, while considerable
improvements are achieved by both AC and CDE that provide
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TABLE VI
ANMRR VALUES FOR THE TESTED COLOR DESCRIPTORS

Fig. 11. Chart of ANMRR values with respect to various noise deviation levels
of the tested color descriptors.

TABLE VII
RELATIVE COMPUTATION TIMES OF VARIOUS DESCRIPTORS TO THE STANDARD

COLOR HISTOGRAM

likewise performances. Among the legacy descriptors, similarly
to the study of Ojala et al. [23], the CSD gives the best retrieval
results. As far as the proposed color description operators are
concerned, with the exception of MHW, they all lead to supe-
rior performances, especially in terms of precision. In particular,
we can observe that the MHW has a similar output with CSD,
while both CSG and MHL outperform their counterparts, with
the latter providing the best results. We now proceed to test their
robustness against noise.

To test the noise robustness of the proposed descriptors, we
have corrupted the images of our database with various levels of
zero-mean additive Gaussian noise, and measured their retrieval
performances. In particular, the images have been contaminated
with noise in the RGB color space. The ANMRR values that
have been obtained are shown in Fig. 11. This time they are
compared only against CSD, as its noise robustness is known to
be superior to its alternatives [20]. Judging from the obtained
values, we can immediately remark the sensitivity of the pre-
viously outperforming MHL to noise levels, while MHW and
CSD once more provide very similar outputs. CSG, however,
exhibits a somewhat higher robustness. Further steps to improve
their performance with corrupted image data could include the
use of rank based morphological operators.

As to their computation times, they are given in Table VII
with respect to that of a standard color histogram. Generally
speaking all three morphology based approaches are signifi-
cantly slower than their counterparts, nevertheless they still pos-
sess a certain margin for further efficiency optimization. Hence,
one tends to conclude that they are unsuitable, at least in this

form, for online retrieval systems. Nevertheless, we have not yet
used all optimized versions of morphological operators during
the elaboration of the proposed descriptors. A deep execuction
analysis of our descriptors gives the following results. The main
bottleneck within CSG is the closing by reconstruction step in-
volved in the granulometry. Since we are using the efficient re-
construction algorithm from Vincent [53], most of the time is
computed in the morphological closing operator itself. Possible
ways of decreasing computation time are to involve efficient
low-level (e.g., erosion/dilation) or high-level (e.g., granulom-
etry) operators [54], perform SE decomposition to reduce the
number of pixel comparisons, etc.As far as the mutiresolution
histograms are concerned, the high computation time is due to
the ASF and levelings operations. Nevertheless, it is possible
to rely on other multiscale watershed segmentations to produce
the scale-space from which is computed the histogram. Such ef-
ficient multiscale segmentations have focusing the attention of
the mathematical morphology community for years [47], [48]
and is still very topical [9].

V. CONCLUSION

This paper has focused on the application of the morpholog-
ical framework to the problem of color description. In particular,
the main properties of color from a descriptive point of view
have been determined and a state-of-the-art ordering approach
has been implemented for the extenstion of mathematical mor-
phology to color images. Subsequently, three global descriptors
have been proposed, focusing mainly on the integration of spatial
information with spectral color distribution through morpholog-
ical means. Specifically, the proposed approaches include the
color specific granulometry, which provides a size distribution
independently computed for each subquantized color, and two
multiresolution histograms based on morphological levelings
and watersheds. The tests that have followed, have provided
results asserting their competitive performance with respect to
known alternatives. Nevertheless, the relatively high computa-
tion time that is required prohibits their use with online retrieval
systems, while also leaving a considerable margin for speed
optimization. A the field of mathematical morphology offers
numerous efficient algorithms, this issue is not so critical.

In conclusion, the proposed morphological descriptors pos-
sess mixed properties, and while providing a retrieval perfor-
mance as well as noise robustness comparable to contemporary
approaches, they do have still efficiency issues that need to be
resolved if they are to be used along with online CBIR systems.
Nevertheless, since the existence of efficient morphological al-
gorithms will most probably greatly reduce the computation
time of proposed descriptors, this step into the field of CBIR-ori-
ented morphological image content description will serve as a
basis for the subsequent development of more sophisticated op-
erators, e.g., morphological color interest point detectors, mul-
tiscale watershed segmentations.
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