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Abstract

The morphological Hit-or-Miss Transform (HMT) is a powerful tool for dig-
ital image analysis. Its recent extensions to grey level images have proven
its ability to solve various template matching problems. In this paper we
explore the capacity of various existing approaches to work in very noisy
environments and discuss the generic methods used to improve their robust-
ness to noise. We also propose a new formulation for a fuzzy morphological
HMT which has been especially designed to deal with very noisy images. Our
approach is validated through a pattern matching problem in astronomical
images that consists of detecting very faint objects: low surface brightness
galaxies. Despite their influence on the galactic evolution model, these ob-
jects remain mostly misunderstood by the astronomers. Due to their low
signal to noise ratio, there is no automatic and reliable detection method yet.
In this paper we introduce such a method based on the proposed hit-or-miss
operator. The complete process is described starting from the building of a
set of patterns until the reconstruction of a suitable map of detected objects.
Implementation, running cost and optimisations are discussed. Outcomes
have been examined by astronomers and compared to previous works. We
have observed promising results in this difficult context for which Mathemat-
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ical Morphology provides an original solution.
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1. Introduction

Template matching is a subject of interest in many computer vision pro-
cesses and more generally in digital image analysis. In a general formulation
it consists of searching for occurrences of a predefined object in an image.
The objects of interest can have several different visual appearances which
lead to several patterns sought in the images.

Among the methodologies to be used for pattern matching in digital im-
ages, mathematical morphology is particularly relevant since it performs spa-
tial based image analysis relying on a pattern called structuring element (SE).
The HMT is a well known morphological operator dedicated to template
matching. Initially defined for binary images, it has been extended recently
to greyscale images [1].

The use of the morphological HMT to perform template matching has
grown during recent years. Different formulations have been proposed and
their application to various domains (medical imaging [2] [3], remote sens-
ing [4][5], character recognition [6], face localisation [7]) have proven their
ability to provide a generic pattern matching method. However it lacks of
robustness to noise and thus cannot be yet considered as a valid option for
object detection in noisy astronomical images, even if some promising re-
sults have already been obtained in other challenging tasks such as galaxy
segmentation and classification [8].

In this paper we propose a new formulation of the morphological HMT
for grey level images. This formulation leads to a fuzzy result and can be
applied even on very noisy images with a signal to noise ratio below 0dB. An
application to detect faint objects: low surface brightness (LSB) galaxies [9]
in astronomical images is also proposed. Detecting these objects is a very
topical problem since astronomers lack of information about them. It also
well fits our interest of adapting the HMT to deal with very noisy environment
for several reasons. The shape and the luminance profile of LSB galaxies are
known, thus we can easily define a set of templates representing the various
visual appearances they can take. However, their detection is a hard task as
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astronomical images have very heterogeneous content. The pixel dynamic can
be very large with a brightness ratio between faintest and brightest objects
coming up to 1:1000. The size variability of objects present in astronomical
images can also be huge with objects covering only a few pixels to the whole
image. Moreover, due to projective effects, different objects may overlap.
Finally, to observe such faint objects as LSB galaxies, astronomers have to
use long exposition time to collect as many photons as possible, thus leading
to also collect a lot of noise.

This paper is organized as follows. First we briefly recall the basics of
grey level morphology. Then we discuss the existing approaches for grey level
HMT and their relative robustness to noise. We introduce a new formulation
of the fuzzy HMT and give a methodology to involve this formulation in
template matching applied to the detection of LSB galaxies in astronomical
images. Finally results of this application are discussed and a comparison
with existing astronomical results is proposed.

2. Review of Existing Hit-or-Miss Transforms

We first recall the basics of grey level morphology, using the notations
given by Naegel et al [10]. Let E be a digital space (e.g. E = Z

n). Let T
be a set of grey levels. We require T to be a complete lattice with respect
to the order “≤” [11][12]. We will next assume that T = R ∪ {+∞,−∞}
or T = Z ∪ {+∞,−∞}. We denote ⊥ and ⊤, respectively, the lowest and
greatest elements of T .

Let I and G be two functions of TE, the set of functions going from a
subspace of E to T . We call the support of I (supp(I)) and dual support
(supp∗(I)) the set of points where I is strictly above ⊥ and respectively under
⊤. Dilation ⊕ and erosion ⊖ of I by G at every point p ∈ E are then given
by:

(I ⊕ G)(p) = sup
k∈supp(G)

(I(p − k) + G(k)) (1)

(I ⊖ G)(p) = inf
k∈supp(G)

(I(p + k) − G(k)) (2)

You can notice that these formulas can lead to disinclination like +∞ plus
−∞. To keep consistency +∞ plus −∞ must be valued as −∞ in Eq. 1 and
as +∞ in Eq. 2. Further readings about grey level morphology can be found
in [13][14]. We also define the dual G∗ of the function G ∈ TE by:

G∗ : E 7−→ T
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p −→ −G(−p) (3)

We now recall the principles of the HMT. It consists of searching for all
pixels in an image which have a desired neighbourhood. It requires two SEs:
the first one called foreground SE describes the shape and the second one
called background SE is used to describe the spatial neighbourhood of this
shape. In the binary case the interpretation of background and foreground
is straightforward: the foreground is a set of pixels which has to be present
in the image and the background is a set of pixels which has to be present
in the complement of the image (see Fig. 1 for example).

Figure 1: Example of application of binary HMT to detect 3x3 squares with possible
extension along edges. The top left image represents the foreground SE: F , origin of the
image is at the centre of the square. The bottom left image is the background SE B, with
same origin as F . The middle image is the original image I. And the right image is the
result of the HMT applied on I with SEs F and B.

The extension of HMT to complete lattice requires to define foreground

and background in such a general case. Thus several approaches have been
proposed [15][10][3][16]. We will now present these approaches and discuss
their resistance to noise in images with very low signal to noise ratio (SNR ≤
0db), the SNR being defined as signal energy divided by noise energy and is
expressed in logarithmic scale:

SNR = 10 log10

(

σ2
s

σ2
n

)

db

with σs and σn being respectively the standard deviation of signal and noise.

2.1. Existing formulations of grey level HMT

We now introduce the various existing approaches to grey level HMT.
For each operator, we discuss its ability to deal with poor SNR which is of
primary importance for template matching in noisy images.
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Let I, F,B ∈ TE, F and B are the foreground and background SEs such
that F ≤ B (i.e. ∀p ∈ E,F (p) ≤ B(p)), I stands for the image.

2.1.1. Ronse’s and Soille’s HMT

The definition of Ronse’s HMT given in [10] is:

RHMT[F,B](I)(p) =

{

(I ⊖ F )(p) if (I ⊖ F )(p) ≥ (I ⊕ B∗)(p) 6= +∞
−∞ otherwise.

(4)
It assigns the maximum grey value where it is possible to fit both SEs.

Soille’s definition given in [10] is an extension to functional SE of the
initial version proposed in [1].

SHMT[F,B](I)(p) = max{(I ⊖ F )(p) − (I ⊕ B∗)(p), 0} (5)

We can observe that Soille’s and Ronse’s approaches are very similar. Soille’s
definition returns the difference between the highest and lowest values where
it is possible to fit the SEs. A unified formulation of these two approaches
has been proposed in [10]. These approaches are adapted to perform pattern
matching in quite good signal noise ratio environments, as we will discuss in
the next section.

2.1.2. Barat et al’s HMT

Barat et al introduced in [3] an operation called morphological probing

that is defined by:

BHMT[F,B](I)(p) = (I ⊕ B∗)(p) − (I ⊖ F )(p) (6)

It measures the distance between the best inner fit of F and the best outer
fit of B. The lower is this value the best is the fit. This method presents no
special noise related issue. One can note that there is a direct link between
Barat’s and Soille’s HMT:

SHMT[F,B](I)(p) = −min{BHMT[F,B](I)(p), 0} (7)

thus Soille’s HMT can be seen as a constrained version of Barat’s HMT.
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2.1.3. Khosravi-Schaefer’s HMT

Khosravi and Schaefer introduced in [16] another version of HMT which
uses a single SE and is equivalent to Barat et al ’s HMT. It is defined by:

KHMT[F ](I)(p) = (I ⊖ F )(p) − (−I ⊖ (−F ))(p)

= (I ⊖ F )(p) − (I ⊕ F ∗)(p)

= −BHMT[F,F ](I)(p) (8)

KHMT is always less or equal to 0 which is reached for a perfect match.

2.2. Generic solution to improve noise robustness

We place this study in the context of very noisy images, considering that
images are generally affected by impulsive (or speckle), Gaussian or Pois-
son noise, we will first review the different generic solutions that have been
proposed to deal with these kinds of noise. Another aspect of noise is the
inherent slight variations or uncertainties of a real signal to the ideal model.
These variations can be of different types: deformations (local or global),
overlapping with other objects.

A simple solution to improve the tolerance to impulsive noise of all meth-
ods is to use rank operators instead of traditional erosion and dilation [16][17].
However this solution implies to determine an appropriate rank for both di-
lation and erosion operations. Khosravi and Schafer [16] have shown that a
lower and upper bounds for the rank are given respectively by impulsive and
Gaussian noise, but they did not provide a general formula to obtain these
bounds. They also concluded that the effect of rank operator on Gaussian or
Poisson noise is limited. Moreover impulsive noise can be strongly reduced
by applying a rank filter (e.g. a median filter) before the pattern matching
operator with negligible loss of quality [18].

Bloomberg and Maragos [17] proposed several solutions to improve ro-
bustness to noise and shape uncertainties. The first idea is to perform a
subsampling of both image and SEs. This solution is attractive (by consid-
ering less pixels and a Gaussian white noise, the probability of having a very
noisy pixel under the SE is decreased), reduces small shape variations and
saves computation time. Nevertheless it requires the resolution to be good
enough so the subsampling would preserve the major features of the shape.
Another possibility is to perform a spatial decimation of the support of the
structural functions following a regular grid. The advantages of this method
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are the same as subsampling’s ones, but it can be applied even at low reso-
lution. Despite their capacities, these two methods are not sufficient to deal
with very noisy images.

It is also possible to improve noise resistance of the morphological HMT,
by first dilating both foreground and background before performing erosions,
as proposed by Bloomberg [17] in the binary case. In this case the foreground
and the background overlap, thus it becomes easier to fit the SEs. However
the extension to the greyscale case is not trivial since we have to define the
functional SE to be used.

Another way to improve robustness against noise and shape uncertainties
is to provide less informative SEs (i.e. increase distance between foreground
and background). This is nearly equivalent to previous Bloomberg method
and can be the easiest way to work with low level SNR. Nevertheless this
method fails at very low SNR as the SEs become so blurred that almost every
configuration can provide a good match.

3. Robust Hit-or-Miss

Khosravi and Schaefer have widely tested the use of KHMT with general
rank order operators face to impulsive and Gaussian noise at various SNR.
They explain the difficulty to find a suitable rank which is highly dependent
on noise level and type. They have also explored partitioning of the template
which is a kind of variation of the decimation method. Their conclusion
joined Bloomberg’s one saying that it should be done following a regular
grid to obtain best performances. Nevertheless with all these improvements,
performances still fall when the SNR goes under 19 dB [16].

The intrinsic difficulty of Soille’s and Ronse’s HMT to deal with high
noise level is due to their rigid behaviour. Because we have no intermediate
level between a true answer (object is detected at point p) and a false one
(object is not detected) it is really hard to find the good SEs F and B to be
used. In fact, in these HMT the main feature that provide a robustness to
noise is the distance taken between F and B, the larger it is the more noise
they can absorb and inversely. If F and B are too precise, too close then the
transform nearly always gives a negative result. On the contrary, if F and B
are too simple and distance between each other is too large, this will lead to
a high number of false positive.

Barat et al ’s HMT or Khosravi-Schaefer’s HMT are quite different be-
cause they evaluate a distance, thus they look more flexible. Let us consider
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a given pixel expected to return a positive result (ground truth is available).
However applying Barat et al ’s HMT with SE F and B on this pixel may
return a positive value t instead of a negative one. Then to ensure a positive
result with Ronse’s or Soille’s HMT at this point we have to increase the
distance between the two SE’s by t (e.g. F ′ = F − t and B′ = B or F ′ = F
and B′ = B′ + t).

To sum up, Soille’s and Ronse’s HMT noise robustness is mainly de-
termined by the distance between the two SEs. In Barat et al ’s HMT or
Khosravi-Schaefer’s HMT the distance between the two SEs is not important
as it only results in a shift of the result. Thus the problem of determining
a good distance is transformed in a problem of thresholding. The important
point is to understand that these problems are equivalent and that all these
formulations will react similarly when a lot of noise is present. None of them
will deal with this case accurately. Figure 2 illustrates the behaviour of the
various HMTs when SNR is decreasing.

In the binary case Maragos in [19] had the idea to introduce a fuzzy HMT
that allows to keep well defined SEs, close to each other and that works in
noisy environments. It measures a ratio between the number of pixels that
actually fit in the SEs and the total number of pixels contained in the SEs.
Hence, instead of looking for positions where the two SEs perfectly fit the
image, we measure how well the SEs fit the image everywhere.

This can be extended to grey level images. For this we consider that
the foreground and background SEs describe respectively a local lower and
upper bound for our image. The fitting process measures the ratio between
the number of pixels in the neighbourhood between these two bounds and
the total number of pixels in the area covered by the SEs. The result is a
score between 0 (no points of the neighbourhood fits in the bounds) and 1
(all pixels of the image are between lower and upper bounds).

Whereas in Ronse’s or Soille’s approach the distance between SEs F and
B and so their global shape has to be modified to tolerate noise, in this
approach SEs can keep a well defined shape and tolerate fluctuations due to
noise.

3.1. Definition

We now assume that T is an infinite set of grey values with a total ordering
relation noted ≤ (e.g. T ⊂ Z). Formally we have to decompose the image I
and pair of SEs (F , B) as suprema of impulses and then consider each triplet
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(I, F , B) of impulses independently. Let i(p,t) be an impulse at point p ∈ E
of level t ∈ T :

∀x ∈ E, i(p,t)(x) =

{

t if p = x
−∞ otherwise.

(9)

For practical reasons and because the positions of the impulses have no influ-
ence on the following definitions we write it for i(0,t). Let us write ICt

F,B(q)(v)
the proposition “pixel value v is comprised between F + t and B + t at point
q in the SE”, we have

ICt
F,B(q)(v) ⇐⇒ iF (q)+t ≤ iv ≤ iB(q)+t (10)

⇐⇒ iv ⊕ iB(q)+t ≤ t ≤ iv ⊖ iF (q)+t (11)

A proof of equivalence between Eq. 10 and 11 can be found in [10].
Let us define S = supp(F ) ∪ supp∗(B) and card is the cardinality of a

set. The proposed fuzzy HMT is then defined by:

FHMT[F,B](I)(p) = max
t∈T

card{q ∈ S |ICt
F,B(q)(I(p + q)) }

card (S)
(12)

hence it evaluates the best ratio of pixels satisfying the requirements of
proposition 11 with SEs F and B translated at all possible grey levels.

3.2. Implementation issues and parameters selection

Application of this operator is not straightforward. Indeed T is theoret-
ically an infinite and perhaps continuous set, thus it is not directly possible
to determine at which level t the score in Eq. 12 will be maximized. In fact
the interval of possible values for t can be restricted quite easily by a local
analysis of pixel values. For example in Fig. 3, we can estimate that the up-
per part of our pattern should be between grey levels 6 and 10, and this can
obviously be done by applying a simple mean filter and keep the resulting
value as an estimation of t. One can then compute score for different values
near this estimation. This solution obviously depends on the possibility to
extract a main feature from the pattern (for example “the peak” in Fig. 3)
that can be used to perform a first and quick estimation of t.

Another issue is how to determine ideal distance between the two SEs.
Indeed it can be estimated from local noise information. For example as-
suming that our image is corrupted by a Gaussian noise N (0, σ2), and that
we are looking for a pattern given by function P : we can set F = P − σ
and B = P + σ. Then, according to noise statistic we can expect to have a
matching score of about 68% in a correct case.
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4. Application to astronomical images

Since the discovery of the various surface brightnesses of galaxies, as-
tronomers have become more and more interested in a way to automatically
detect very faint objects in astronomical images. LSB [9] galaxies have a
central surface brightness higher than 22.5 mag/arcsec2 (the magnitude is
an inverse logarithmic brightness scale used in astronomy because of its sim-
ilarities with the human eye behaviour, the arcsec is an angular distance).
Traditional method of sigma clipping (i.e. adaptive thresholding method)
used commonly in astronomy is not able to detect such objects as they are
eliminated with the background (see Sec. 4.2 for details on sigma clipping
method.)

When searching for objects with good SNR, astronomical images are quite
easy to describe because they are mainly composed of bright objects on a
dark background. Unfortunately several problems arise when approaching
background signal level (i.e. looking at the early universe or at low bright-
ness objects). Background is non flat over all the image, even in small images
of about 512×512 pixels. Images are also affected by a Poisson noise (approx-
imated by a Gaussian noise of mean 0 and deviation σ) and some salt and
pepper noise. This last one may be caused by defect pixels on the CCD cam-
era or more usually by cosmic rays. All these properties make the problem
of LSB galaxies detection hard to solve (see Fig. 6 and 7.)

The whole process of LSB galaxies detection is decomposed in two steps:
first a segmentation map of interesting objects is built, and then the objects
present in segmentation map are characterized using physical criteria. As-
tronomers of the Centre de Données astronomiques de Strasbourg1 (CDS)
have recently developed such a tool that performs an automatic characteri-
sation of astronomical objects [20]. This tool has been tested to detect LSB
galaxies based on segmentation map obtained using a Markovian quadtree
segmentation tool [21]. The Bayesian approach is useful to involve a prior
on noise but does not deal with large shape knowledge, thus we proposed a
new method to compute more selective segmentation map using FHMT.

In this section we describe a method based on FHMT to automatically
build a segmentation map of potential LSB galaxies. The algorithm is de-
composed into several steps. First we need to build several patterns corre-
sponding to LSB galaxies of various shapes and orientations. Because the

1http://cdsweb.u-strasbg.fr/
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objects we are looking for are very close to the background in terms of pho-
tometry, we also need to compute a precise map of the background (i.e.
evaluate the intrinsic luminosity of the sky at all points.) Next the original
image is preprocessed with a median filter to reduce noise. Filtered image,
background map, and pattern set are then used to calculate FHMT. The
result is thresholded and the original shape of LSB galaxies is reconstructed.

4.1. Description of patterns

We now describe how LSB galaxies are modelled. They are elliptic ob-
jects with a luminosity profile roughly following an exponential law. Let us
consider a two dimensional discrete plane E. Let (cx, cy) ∈ E be the centre
of the galaxy, then we have for all p ∈ E the following expression for the
luminance:

LSB(px, py) = µ0e
−

1

R0

√
(px−cx)2+b∗(py−cy)2

(13)

where µ0 is the central surface brightness given in pixel value unit, R0 is the
scale length, b ∈]0; 1] defines the ellipticity of the model. Using this model we
are able to generate several patterns with various brightnesses, elongations,
orientations and scale lengths.

Because of the non constant background and the huge number of possible
luminosities we choose to generate patterns at a normalized brightness (µ0 =
1) and dynamically stretch patterns depending on local background value and
noise statistics. Since there is a high correlation between the noise standard
deviation σn and magnitude scale, brightness t will then be expressed as a
factor k of the noise deviation: t = k ∗ σn + µb with µb the background level.

We considered scale length from 1.33 to 10.33 arcsec by step of 1.0 arcsec
(the equivalence between arcsec and pixel unit can be computed from image
file header). We quantify 14 orientations between 0 and π. The final set
of SEs was obtained by combining all possible scale lengths, elongations
and orientations while avoiding identical cases induced by symmetries. It is
composed of 640 templates (see for example2 Fig. 4 and 5.)

All SEs are then convolved with a Gaussian kernel of 5 × 5 pixels to re-
produce the point spread function (PSF) of the telescope (seeing and optics
deformations). This is an approximation because PSF depends on the im-
age and the location in the image, but this approximation is negligible in
comparison with shape uncertainties.

2All images are given in inverse grey level to save ink.
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Finally each pattern is composed of two SEs of same orientation and
elongation. We choose to take the foreground SE to have a scale length
smaller of 1 arcsec than the background one. The distance between the SEs
is adjusted dynamically with respect to local noise statistics (see Sec. 4.2.).

4.2. Computation of FHMT

Once we have generated all different patterns, we estimate background
and noise of the image by following a regular grid of 32 × 32 pixels in a
window of 256 × 256 pixels with the sigma clipping method widely used in
astronomical imaging. This method performs in two steps: in the first one it
computes the average value µ (mean or median) and deviation σ of pixels in
the estimation window, then in the second step, it masks all pixels for which
value is greater (resp. lower) than µ + kσ (resp. µ − kσ), and goes back to
step one until convergence. Parameter k gives the confidence interval with
respect to noise power, a value of 3 is generally used3. Background and noise
estimation cannot be performed over all pixels because of its prohibitive
computation time. Nevertheless as these parameters vary slowly over the
image, we can have a good estimation of them by simply interpolating values
of the background grid.

Computation of scores is done according to principles given in Sec. 3.2.
Estimation of the best grey level t for the vertical translation of the SEs is
done using a median filter (5 × 5). We transpose foreground (resp. back-
ground) SE to local background level and stretch it so that its highest value
is t − σ (resp. t + σ) with σ the local deviation of noise. Matching scores
between each pattern and median filtered image is then computed and the
best one is kept as the result (Fig. 6 and 7).

4.3. Reconstruction of score map

In the next step, the score map is thresholded. The threshold value offers
a good tuning option and was determined to minimize false negative rate
and, with less importance, minimize false positive rate. We found that a
score of 80% offers a good compromise. The use of the same threshold for
every observation is not a problem. As all parameters of the algorithm are set
automatically according to observation parameters and statistics, the score
gives an absolute measure which is independent of the observation.

3See Sextractor documentation for details: http://terapix.iap.fr/
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Once we have a binary map, we need to reconstruct the final map. To do
this, each pixel of the binary map is dilated by the support of the pattern
that gives the maximum score in this position (Fig. 6 and 7). Scheme of the
procedure is given in Fig. 8.

To improve map’s precision we could have used a geodesic reconstruc-
tion instead of a simple dilation so the reconstructed areas would exactly
fit detected objects. In our case this is useless because the next step of the
algorithm rather prefers to work with idealised shapes instead of precise but
noisy boundaries.

4.4. Optimisation

Without any optimisation the proposed algorithm takes about 20 minutes
to compute the segmentation map on an image of 512×512 pixels. This time
includes estimation of background and generation of the 640 patterns. The
code is written in Java and executed on a Pentium IV computer. In this
section we propose several optimisations to improve algorithm performances:

• We perform a spatial decimation of patterns using Bloomberg’s method [17],
we choose to keep one pixel every two;

• As the resolution is sufficient in our images, we perform segmentation
in a sub-grid of the images at scale 1:2;

• Score computation and thresholding are done simultaneously, so the
computation of a fit can be discarded as soon as threshold becomes
unreachable;

• Last optimisation is heuristic and comes from the idea that we can
perform the segmentation in two steps. The first step will make a fast
selection of possibly interesting pixels, second step will perform a full
computation for selected pixels. During the first step we will segment
the images using only a few patterns (we take only circular patterns,
orientation and elongation are not considered) and a low threshold
(60%). During second step we segment pixels selected at first step
with the full process (all patterns, threshold at 80%).

With all these optimisations we are able to compute a segmentation map
of a 512 × 512 images in about 2 minutes, that is ten times faster than
original algorithm. Detection maps obtained with and without optimisation
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are nearly the same. One can notice that last optimization is purely heuristic
and so we cannot assert that target will never be lost. However we have
compared results obtained with both the original strategy and this 2-step
approach, and we have observed only minor differences (small difference in
the shape or size of the detected targets). In these experiments no target
were lost.

5. Results

In this section, the method was evaluated through two different datasets.
First, to compensate the lack of ground truth in real images, we created a
simulated dataset. However we also involved a set of real images which have
already been analysed by experts [22] to show the relevance of the proposed
approach in this context. Due to the lack of related work and the clear
inability of existing HMT to deal with this problem (as shown in Sec. 3),
evaluation can rely only on quantitative and qualitative analysis (and thus
cannot involve any comparison).

5.1. Simulated dataset

It is very important for astronomers to know the detection limits of the
algorithm they are using. This information is used to determine the statical
bias of their conclusions due to selection effects of the algorithm.

A batch of tests has been designed with astronomers of the CDS to de-
termine the detection limits of our algorithm in terms of brightness and scale
length. These tests apply on simulated images of LSB galaxies for which
we know the ground truth. The algorithm used to generate artificial LSB
galaxies is nearly the same as the one used to build the SEs in the detection
algorithm. We used a Gaussian function to reproduce PSF. We also had
the possibility to add other astronomical objects in our images (like stars or
bright galaxies) to test robustness of our algorithm in crowded part of the
sky. Noise power and pixels statistics used to create images were taken di-
rectly from a real astronomical image. Figure 9 shows examples of simulated
images of LSB galaxies.

Our test protocol is divided into three parts (Fig. 9), we applied the
algorithm on:

• images containing only one LSB galaxy (one test per couple (brightness,
radius)) to determine absolute limits;
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• images containing one LSB galaxy and a bright star (one test per couple
(brightness, radius)) to study reaction in a sparse environment;

• images containing one LSB galaxy and between 3 and 7 other objects
located randomly over the images (21 tests per couple (brightness, ra-
dius)) to test robustness in crowded environment.

LSB galaxies do not have strict boundaries, thus we choose to define their
limits as the ellipse where the signal has lost 95% of its central energy. The
area enclosed in this radius gives us the reference truth to evaluate the map
proposed by the detection algorithm. Let Cref be the set of pixels present in
the reference map. There may be several objects in the segmentation map
provided by the method, thus we choose to keep the connected component
having the largest intersection with the reference map as the final result and
denotes it by C.

Finally we used a F1–measure [23] to evaluate correctness of the detection.
The later combines the precision and the recall measures to obtain a score
between 0 and 1. It is given by:

F1–measure =
2 ∗ precision ∗ recall

precision + recall
(14)

with precision defined as:

precision =
card (C ∩ Cref )

card (C)
(15)

and recall defined as:

recall =
card (C ∩ Cref )

card (Cref )
(16)

Experiments have shown that a F1–measure value equal to at least 0.4 is
sufficient for the following steps to perform accurately.

We have determined that the FHMT algorithm is able to detect LSB
galaxy up to a scale length of 2 arcsec (this is PSF limit anyway) and a
central surface brightness of ∼ 26.2 mag/arcsec2 (0.7 σ over sky background
level which is nearly equivalent to 0 dB SNR). Moreover detection is nearly
not affected by other objects except if the wing of another bright object
covers the LSB galaxy (the two objects overlap and the LSB galaxy is drown
in the other object luminosity).
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We have also compared the results of our method to those obtained with
a traditional correlation method [18]. This was done by replacing the FHMT
measure by the correlation one and adjusting the threshold value in the
process to ensure the best possible results. The correlation based method
performs well until 1.5 σ over sky background level (Fig. 10), i.e. its ro-
bustness to noise is lower than the FHMT one. This shows that (robust)
morphological approaches can be relevant alternatives to statistical methods
even in such noisy environments.

5.2. Real dataset

Next the FHMT operator was applied on a test set of 16 blue band (a
filter centred at wavelength of 4500 Angström corresponding to blue colour
is used) images of 2048 × 4096 pixels coming from the INT Wide Angle
Survey4. The dataset covers the Virgo cluster which has the advantage to
be close to the Galaxy and in a relatively sparse area of the sky. Moreover
the population of LSB galaxies in this survey has already been studied by
astronomers [22], which gives us a reference catalogue to evaluate our results.

The algorithm has been run over the whole dataset and segmentation
maps were used as inputs for the characterisation tool of the CDS: De-
tectLSB. At the end of the process, this tool provides HTML files describing
potential LSB galaxies found and XML catalogues in the VOTable stan-
dard [20].

A full analysis of the result for two images was performed in collaboration
with an astronomer. The reference catalogue contains 9 LSB galaxies in
these areas. The algorithm proposed 23 candidates. It founds 6 objects
of the reference catalogue and provided 8 new LSB galaxies. The spurious
detections were mainly due to artefacts created by two close sources (when
wings of two close objects intersect, they locally create an artificial raise
of luminosity) or very distant galaxies (the brightness of the galaxy is then
decreased by absorption of intergalactic environment). That leads to a total
of 17 interesting objects (9 already known and 8 newly discovered) for the
2 images. The recall of the method is then 0.82 and the precision is 0.6.
One can note that the 3 LSB galaxies missed from the reference catalogue
were correctly segmented by FHMT but were rejected by the characterisation
algorithm. Because LSB galaxies detection is a very challenging task for

4http://www.ast.cam.ac.uk/~rgm/int_sur/
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which no automatic solution has been proposed yet, these scores can be
considered as really good.

The traditional correlation method performed on these two images, using
the same methodology as in section 5.1, proposed 54 candidates. It founds 9
of the 17 LSB galaxies previously mentioned, yielding a recovery rate equals
to 53%. The false positive were mainly multiple detections (two or more close
objects are fused in a single one in the final map) or very distant galaxies.

A comparison of the new catalogue for the whole set of 16 images with
the existing one gives us a recovery rate of 87% and several new candidates.
These candidates have now to be analysed by astronomers’ community before
any conclusion can be drawn on them.

6. Conclusion

We have addressed the particular problem of template matching in very
noisy environment using the morphological HMT. We have shown that the
existing formulations of HMT are not adapted to do this, thus we proposed a
formulation of a “fuzzy” HMT. It relies on two SEs: the foreground and the
background one and consists of measuring the ratio of the image area that
fit the SEs compared to the total area covered by the SEs.

We have described how it can be applied to a real and still unsolved
case in astronomical imaging: the automatic detection of LSB galaxies. Our
results have been analysed by an astronomer and confirmed that FHMT is
suitable for pattern matching at very low SNR.

Thereby the field of application of the morphological HMT has been ex-
tended to very noisy images for which statistical approaches are generally pre-
ferred. The process we described can be easily adapted for pattern matching
in other domains such as radar imaging. Moreover, in case of noisy mul-
tispectral data, the proposed operator should be extended to multivariate
mathematical morphology [24].
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Figure 2: This figure shows how the grey dilation and erosion and consequently the various
formulations of HMT react when SNR falls. In this example a round shape with a Gaussian
luminosity profile is hidden in noise. The image (a) is a one dimensional cut of the
foreground SE F (blue curve) and background SE B (red curve). Then the left column
shows images with decreasing SNR: ∼ 20 dB for image (b), ∼ 0 dB for image (d) and
∼ −8 dB for image (f). The right column represent a one dimensional cut of the left
images (in green), a cut of a median filtered (size 5*5) version of the left image (black),
the erosion of the filtered image by the foreground SE: I ⊖F (in blue), and the dilation of
filtered image by the dual of background SE I ⊕ B∗ (in red). In plot (c) and (e), the red
curve goes under the blue one, which would give a positive result for RHMT and SHMT.
In the third case the detection fails as dilation and erosion are disturbed by noise. One
can note that if we increase the distance between SE F and B for example by defining
F ′ = F − k with k a grey value, the result would be equivalent to a vertical translation of
the blue curve. And this is obviously useless as no vertical translation of the blue curve
can make it cross the red curve only at the centre (i.e. if the blue line crosses the red one
at another point this means that a false positive is detected.)21



Figure 3: Example of application of the fuzzy HMT to detect an exponential profile with
Gaussian noise. Image (a) represents a 1D noisy signal (SNR≈ 9dB). Image (b) represents
the uncertainty area defined by the 2 SEs F and B. Image (c) shows how well the pattern
can fit the signal.

Figure 4: Example of SEs obtained with a variation of orientations convolved with a
Gaussian point spread function.

Figure 5: Example of SEs obtained with a variation of elongations convolved with a
Gaussian point spread function.
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(a) (b) (c)

Figure 6: Application of FHMT to LSB detection, an easy case. (a) original image of
512 × 512 pixels with a LSB galaxy at centre. One can note that the pixel dynamic has
been adjusted manually so the LSB galaxy becomes visible. (b) score map obtained after
application of FHMT. The LSB is clearly visible. We can observe that both centre and
wings of the object give a good score. (c) Thresholded and reconstructed map. The
final map contains different classes proportional to the object luminosity. This allows
deblending capabilities for overlapping objects having different luminosities.

(a) (b) (c)

Figure 7: Application of FHMT to LSB detection, a hard case. (a) original image of
512 × 512 pixels with a LSB galaxy at centre. One can note that the pixel dynamic has
been adjusted manually: the LSB galaxy is still hard to view (b) score map obtained after
application of FHMT. The LSB is clearly visible. We can observe that the object appears
to be composed of several small ellipses, that is due to the irregular aspect of the galaxy.
(c) Thresholded and reconstructed map. There is clearly one false positive on this map
on the top right border (it corresponds to the wings of a brighter object). Other objects
detected have to be deeper analysed to determine their physical nature.
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Figure 8: Scheme of the pattern matching method. The algorithm takes three inputs: im-
age pixel values, image file header, and physical limits. The whole procedure is automatic.
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Figure 9: Example of simulated images for the three steps of our evaluation protocol.
LSB galaxies displayed in the centre of each image have a scale length of 10 pixels and
a central surface brightness of 25.7mag/arcsec2 (one σ over sky background level with
σ the deviation of noise). SNR is very low about −1dB. First line shows results for a
single LSB galaxy, second line for a LSB galaxy with a star near it, and third line for a
LSB galaxy surrounded by 5 stars randomly placed. The first column shows the simulated
image, the second one shows result of FHMT, and the third one the final map.
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Figure 10: Comparison of the results obtained using the FHMT (blue circles) and the
correlation (red circles) on simulated LSB galaxies. For each couple (radius, brightness
factor), the circle area is proportional to the F1–measure value. The green circles on
the right side give a reference scale. The experiments showed that the detection can
be considered to be effective when the F1–measure is above or equal to 0.4. While the
performances of the correlation drops under 1.5σ, the FHMT remains effective until 0.5σ
over sky background level.
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