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A Hit-or-Miss Transform
for Multivariate Images

E. Aptoula, S. Lefèvre∗, C. Ronse

LSIIT UMR-7005 CNRS-ULP, Pôle API, Blvd Sébastien Brant, PO Box 10413, 67412
Illkirch Cedex, France

Abstract

The hit-or-miss transform (HMT) is considered to be among the fundamental
operations in the morphological toolbox. Initially, it was defined for binary
images, as a morphological approach to the problem of template matching,
whereas its extension to grey-level data has been problematic, leading to mul-
tiple definitions, that have been only recently unified by means of a common
theoretical foundation. In this paper, we generalise these definitions to the case
of multivariate images, and propose a vectorial HMT, allowing the detection of
objects over multiple image channels. Moreover, in order to counter the oper-
ator’s extreme sensitivity to variations, rank order filters as well as synthetic
structuring functions are studied in the context of multivariate data. We addi-
tionally present examples of the use of the suggested operator in combination
with colour images.

Key words: Hit-or-miss transform, colour HMT, multivariate morphology,
template matching.

1. Introduction

The hit-or-miss transform (HMT) is a powerful morphological tool that was
among the initial morphological transforms developed by Matheron (1975) and
Serra (1982). It constitutes the morphological approach to pattern matching.
Its initial definition for binary images has been widely used since then, with the
purpose of shape recognition (Bhattacharya et al., 1995; Bloomberg and Vin-
cent, 2000), while multiple theoretical extensions have been proposed in order to
improve its performance (Bloomberg and Vincent, 2000; Soille, 2002b; Zhao and
Daut, 1991). The extension of this transform to grey-level images however has
not been straightforward, since it is neither increasing nor decreasing, hence
leading to multiple definitions, such as those of Ronse (1996), Soille (2002a)
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and Barat et al. (2003). Only recently a unified theoretical framework has been
proposed for grey-level HMTs by Naegel et al. (2007a).

As far as multivariate image data is concerned, the potential of the HMT
has been left largely unexplored (Wilson, 1989), with the exception of the re-
cent work from Weber and Lefèvre (2008), which presents a novel approach for
a multivariate HMT based however on a marginal strategy. The reason of this
situation, besides the aforementioned ambiguities of its extension to grey-level
data, lies additionally in the complications inherent to the application of mor-
phological operators to multivariate images. Specifically, a multivariate ordering
is required, in order to impose a complete lattice structure on the vectorial data.
Considering the numerous possibilities of multivariate ordering, an almost equal
number of approaches to multivariate morphology has also been proposed, a re-
cent survey of which is provided by Aptoula and Lefèvre (2007). Despite these
difficulties, a vectorial HMT has an important potential, that can be exploited
for instance with the purpose of object detection from multispectral remote
sensing data, or colour object recognition in the context of content-based image
retrieval (CBIR).

Motivated by this application potential, we propose a vectorial HMT (VHMT)
definition, capable of detecting objects from colour images, based on colour tem-
plates. Its main advantage with respect to a marginal or component-wise defini-
tion, lies in its capacity to be further configured by means of the vector ordering
choice, hence allowing the introduction of a priori information concerning the
sought object’s inter-channel presence. Furthermore, since the HMT is inher-
ently sensitive to image variations, a couple of approaches aiming to counter
this drawback, already used with binary and grey-level images (Barat et al.,
2003; Doh et al., 2002; Soille, 2002b), are studied in the case of colour data.
Specifically, rank order filters as well as “synthetic” structuring functions are
discussed.

After presenting the case of binary and grey-level HMT in Sec. 2, the vec-
torial case is elaborated in Sec. 3, where the VHMT definition is given. Then
Sec. 4 presents the adaptation to the vectorial case of two known techniques for
increasing the robustness of the HMT.

2. Binary and grey-level HMT

In this section, we will review briefly the binary and grey-level approaches
to the HMT. The initial binary definition of the HMT (Matheron, 1975; Serra,
1982), consists in searching in the input binary image X ∈ P(E), E = Rd (d-
dimensional Euclidean space) or Zd (d-dimensional discrete space), a template
described by a couple of structuring elements (SE), A,B ∈ P(E) (Fig. 1). Specif-
ically, it attempts to match A (foreground SE) within the image (i. e. “a hit”)
while also matching B (background SE) in its background Xc = E \X (i. e. “a
miss”):

X ~ (A,B) = (X ªA) ∩ (Xc ªB) (1)
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Figure 1: From left to right, the input binary image X (foreground in black, background in
white), the sought template (A, B), and the output of Eq. (1). The “×” within A marks the
center of the SE.

where ª denotes the binary erosion operator, and it is assumed that A∩B = ∅.
However, since Eq. (1) uses both X and Xc, its extension to grey-level images
has not been straightforward.

As a matter of fact, this extension was not realised until after the HMT was
expressed in terms of an interval operator η, through the work of Heijmans and
Serra (1992). For A,B ∈ P(E), A ⊆ B:

η[A,B](X) = {p ∈ E |Ap ⊆ X ⊆ Bp} = X ~ (A,Bc) (2)

where Ap = {x + p | x ∈ A} denotes the translate of A by p. Through this
formulation, the grey-level HMT of Ronse (1996) and subsequently of Soille
(2002a) have been defined, and along with others (Barat et al., 2003; Khosravi
and Schaefer, 1996; Raducanu and Grana, 2000; Schaefer and Casasent, 1995),
they have been recently unified into a common theoretical framework for grey-
level interval operators (Naegel et al., 2007a).

More precisely, in the case of grey-level images, an image F ∈ T E , (T being a
complete lattice, usually R or Z), besides a SE, can also interact with a structur-
ing function (SF) V ∈ T E . Consequently, the sought template is translated not
only horizontally (by a point p ∈ E), but vertically as well (by a finite grey-level
t ∈ T ) (Fig. 2) in an attempt to detect the positions where it fits. Specifically,
a translation by a couple (p, t) is V(p,t) : x → V (x − p) + t. According to the
unified theory for grey-level HMT (Naegel et al., 2007a), such an operator is
decomposed into two stages:

• the fitting, where the locations fitting the given structuring functions,
describing the sought template, are computed,

• and valuation, where the resulting image containing the previously de-
tected locations is constructed.

To explain, there are two types of fittings. Given a grey-level image F , along
with a couple of structuring functions V, W, (V ≤ W ) describing the sought
template, there is first:

HV,W (F ) =
{
(p, t) ∈ E × T | V(p,t) ≤ F ≤ W(p,t)

}
(3)

the inequality of which according to Naegel et al. (2007a) is equivalent to:

εV (F )(p) ≤ t ≤ δW∗(F )(p) (4)
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Figure 2: The integral interval operator, Eq. (9).

where W ∗ : x → −W (−x), is the dual of W and ε, δ represent respectively the
grey-level erosion and dilation with a SF:

εB(F )(p) = inf
x ∈ supp(B)

{F (p + x)−B(x)} (5)

δB(F )(p) = sup
x ∈ supp(B)

{F (p− x) + B(x)} (6)

where supp(B) = {p ∈ E |B(p) > ⊥}, while inf and sup denote respectively the
infimum and supremum.

The other fitting is:

KV,W (F ) =
{
(p, t) ∈ E × T | V(p,t) ≤ F ¿ W(p,t)

}
(7)

where F ¿ W means that there is some h > 0 such that for every p ∈ E we
have F (p) ≤ W (p)− h. Besides, the inequality of the second fitting once more
according to Naegel et al. (2007a) is equivalent to:

εV (F )(p) ≤ t < δW∗(F )(p) (8)

Likewise, there are two 1 types of valuations. First there is supremal val-
uation, which for every point p of fit couple (p, t), takes the supremum of t,
and then there is integral valuation which instead for every point p of fit couple
(p, t), uses the length of the interval of t for which the couples (p, t) fit. More-
over, Soille’s grey-level HMT (Soille, 2002a) employs the fitting K of Eq. (7)
along with an integral valuation, which leads to the integral interval operator
ηI (Fig. 2):

ηI
[V,W ](F )(p) = max {εV (F )(p)− δW∗(F )(p), 0} (9)

It should be noted that the reason for choosing the fitting K instead of H
is that it produces a semi-open interval [εV (F )(p), δW∗(F )(p)[ and not a closed
one. Thus in the discrete case the interval length formulation corresponds indeed
to that of Eq. (9). Ronse’s grey-level HMT on the other hand, uses the fitting

1In fact there is also the binary valuation, which consists in taking the set of points p ∈ E
for which there is at least one t ∈ T such that (p, t) fits.
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H of Eq. (3) combined with a supremal valuation, which leads to the supremal
interval operator ηS :

ηS
[V,W ](F )(p) =

{
εV (F )(p) if εV (F )(p) ≥ δW∗(F )(p),
⊥ otherwise (10)

where ⊥ is the least element of T , −∞ if T = R. In the next section, the grey-
level integral operators of Eqs. (9) and (10) will be extended to multivariate
images.

3. Vectorial HMT

Given Eqs. (9) and (10) in combination with multivariate image data, the
obvious way of searching for a multivariate template would be to apply them in-
dependently to each image channel. This principle is endorsed by Wilson (1989),
where binary multivariate images are considered. A more original approach us-
ing channel specific thresholds is presented by Weber and Lefèvre (2008), which
however is still based on a marginal strategy. In short, these approaches ig-
nore any eventual correlation among image channels. This drawback can be
solved using a (possibly costly) decorrelation method (e.g. PCA) and applying
the marginal strategy on decorrelated channels. However this solution does not
ensure to preserve input vectors, which may be a serious drawback in some ap-
plications. Thus the alternative consists in defining multivariate morphological
operators (Aptoula and Lefèvre, 2007).

In the multivariate case, the pixel values of images are now in T = Rn

or Zn
, n > 1. The initial step consists in defining the erosion and dilation

operators for multivariate images in combination with multivariate SF. More
precisely, these operators are once more based on horizontal translations (by a
point p ∈ E) as well as on vertical ones (by a finite pixel value t ∈ T ) as in
the grey-level case, the difference is however that pixel values are now multi-
dimensional; in particular, given a multivariate image F : E → T :

∀ (p, t) ∈ E × T , F(p,t)(x) = F(p− x) + t (11)

Furthermore, according to the fundamental works of Heijmans and Ronse (Heij-
mans, 1994; Heijmans and Ronse, 1990), translations need to be complete lattice
automorphisms (i. e. bijections T → T that preserve order, and whose inverse
also preserve order). Consequently, the vector ordering (≤v) from which the
complete lattice is derived, must be translation invariant. In other words:

∀w,w′, t ∈ T , w ≤v w′ ⇔ w + t ≤v w′ + t (12)

Thus we can give the definition of the erosion and dilation respectively of a
multivariate image F by a multivariate SF B as a simple extension of Eqs. (5)
and (6):

εB(F)(p) = infv
x ∈ supp(B)

{F(p + x)−B(x)} (13)

δB(F)(p) = supv
x ∈ supp(B)

{F(p− x) + B(x)} (14)
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where here infv and supv denote respectively the infimum and supremum based
on the vector ordering (≤v) under consideration. Hence, these formulations form
an adjunction as demanded by (Heijmans, 1994; Heijmans and Ronse, 1990) and
besides, with a flat SE (i. e. ∀ x, B(x) = 0) they are reduced to the flat mul-
tivariate erosion and dilation formulations. Furthermore, thanks to Eq. (12),
both fitting equivalences between Eqs. (3) and (4) as well as between Eqs. (7)
and (8) become directly extendable to this case by replacing the grey-level oper-
ators with their multivariate counterparts. As to valuation, the same options as
before are available, however the supremum is of course now computed among
vectors through the vector ordering in use. In the case of integral valuation, a
vector distance now can be used in order to measure the distance among the
vectors that have fit. Consequently one can express the multivariate versions of
the integral and supremal interval operators respectively as follows:

ηI
[V,W](F)(p) =

{
‖εV(F)(p)− δW∗(F)(p))‖ if εV(F)(p) >v δW∗(F)(p)
0 otherwise.

(15)

ηS
[V,W](F)(p) =

{
εV(F)(p) if εV(F)(p) ≥v δW∗(F)(p)
⊥ otherwise.

(16)

where V ≤v W. As far as ηI is concerned, it provides a non-zero output at
positions p where V(p,t) ≤v F ¿v W(p,t) for some t ∈ T according to the
ordering in use. It should also be noted that the grey-level valuation choice
by means of the Euclidean norm (‖·‖) is arbitrary, and a multi-dimensional
valuation is of course possible. As to ηS , it produces a non-zero output at
positions p where V(p,t) ≤v F ≤v W(p,t) for some t ∈ T . The choice between ηI

and ηS depends on the application under consideration. The first one measures
the interval of possible positions and thus can be used to determine how much
an object or image fits a given pattern. The second one returns the erosion value
(i.e. the highest possible position) and thus can be used in a filtering purpose
to build an idempotent pseudo-opening defined as δV(ηS

[V,W](F)), see (Ronse,
1996; Naegel et al., 2007a) for more details.

Therefore, the only obstacle preventing the definition of a VHMT is a transla-
tion preserving vector ordering. This useful property, among others, is provided
by the standard lexicographical ordering frequently employed in the context of
multivariate morphology since it provides a total ordering and enable to define
priority among the different channels (Aptoula and Lefèvre, 2007):

∀ v,v′ ∈ Rn, v <L v′ ⇔ ∃ i ∈ {1, . . . , n} , (∀ j < i, vj = v′j) ∧ (vi < v′i) (17)

while for instance its recent variation α-modulus lexicographical (Angulo, 2005),
does not provide it. Moreover, the chosen ordering directly affects the behaviour
of VHMT. For instance, in the case of lexicographical ordering, which is known
for its tendency of prioritising the first vector component, this property can be
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observed in the detection process of VHMT. In particular, during the fitting
stage where the erosion and dilation outputs are computed, since it is the first
vector component that decides the outcome of the majority of lexicographical
comparisons, fitting the first channel of the vectorial structuring function be-
comes more important with respect to the rest. This example is illustrated in
Fig. 3, where although only V1 ≤ F1, according to the lexicographical ordering,
V <L F. This property would allow for a prioritised detection, where a colour
template might be searched for example with more emphasis on some compo-
nents than others (e.g. brightness rather than saturation (Angulo, 2005)).

F1

V1

F2

V2

Figure 3: A two-channel image F = (F1, F2) and a vectorial structuring function V = (V1, V2).

A more practical example of VHMT is given in Fig. 4, where the yellow sign
of the middle is sought using a lexicographical (pre-)ordering in the LSH space
(Angulo, 2005) where saturation (S) is compared after luminance (L), and hue
does not participate in comparisons due to its periodicity. More precisely, the
SF positioned under the object (V) is formed by decreasing the pixel values of
the template by a fixed amount (e. g. 3, if pixel values are in [0, 255]), whereas
the background SF (W) is formed by increasing it. Hence, the operator looks for
all objects that fit between the upper and lower SF based on the lexicographical
principle. In this particular case, as the hue is not taken into account, it detects
the left sign despite its different hue value, while it misses the right sign, even
though its only difference from the template are a few white points; a result
that asserts the sensitivity of the operator.

4. Strategies for robust VHMT

As the HMT attempts to perform an exact match of the given pattern, it
becomes sensitive to noise, occlusions, and even to the slightest variations of the
shape of the object to detect. Consequently a series of approaches have been
implemented for the binary and grey-level versions of the operator, with the
purpose of countering this drawback and increasing its practical interest. Among
others, rank order filters (Ronse, 1996; Soille, 2002b) and “synthetic” SE (Barat
et al., 2003; Doh et al., 2002) can be mentioned. This section concentrates on
these two methods and studies their use in the case of multivariate images in
combination with VHMT.

Another feature to take into account when considering practical applications
is the computational complexity. It is not specific to the proposed definition but
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Figure 4: In the first row are three images, of which the middle is the sought pattern. The
second row shows the locations where it was detected by Eq. (15) based on a lexicographical
ordering of luminance and saturation.

is rather related to both the standard HMT definition and the vector ordering
into consideration. The reader will find in (Naegel et al., 2007b) and (Aptoula
and Lefèvre, 2007) some comments on these respective issues.

4.1. Rank order based VHMT
A rank order filter of kth rank is a transformation, where given a grey-level

image F and a SE B, the result becomes:

(F¤kB)(p) = kth largest of F (p + x), x ∈ B (18)

with k ∈ {1, . . . , |B|}. Obviously, F¤1B̌ and F¤|B|B with B̌ = {−x|x ∈ B}
the reflection of B, correspond respectively to the dilation and erosion of F by
B. Moreover, always in the context of grey-level data, a rank order filter of kth

rank, is equivalent to the supremum of erosions using all possible SE with k
points, and respectively to the infimum of dilations using all possible SE with
|B| − k + 1 points (Soille, 2002a). Due to this property, the binary HMT of
Eq. (1) has been reformulated in the literature, by replacing the erosion in its
expression with a rank order filter of rank k < |B|, hence making it possible to
detect binary templates even in conditions of partial occlusion.

In order to achieve the same additional robustness in the case of a multi-
variate image F along with a multivariate SF B and a vector ordering ≤v, one
can redefine the rank order filter of kth rank as follows:

ζk
B(F)(p) = kth largest of F(p + x)−B(x), x ∈ supp(B) (19)

θk
B(F)(p) = kth largest of F(p− x) + B(x), x ∈ supp(B) (20)

where k ∈ {1, . . . , | supp(B)|}. Naturally, the vectors are sorted using ≤v. Thus,
εB = ζ

| supp(B)|
B and δB = θ1

B. Consequently, we can now formulate a rank-based
VHMT, following the definition given by Soille (2003) for grey-level images,
capable of detecting the sought template (V,W) even if m and n pixels do not
match respectively the foreground and the background:
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ηI
[V,W],m,n(F)(p) =

{ ‖ζm
V (F)(p)− θn

W∗(F)(p))‖ if ζm
V (F)(p) >v θn

W∗(F)(p)
0 otherwise.

(21)
where m ∈ {1, . . . , | supp(V )|} and n ∈ {1, . . . , | supp(W )|}. It should also be
noted that ηI

[V,W],| supp(V )|,1 = ηI
[V,W]. Fig. 5 contains an example of the result

given by this operator, where the leftmost image is sought under the same
conditions as in Fig. 4. However, this time even though the right example has
a red/brown stripe, it is still succesfully detected. This is due to the use of
the 750th rank, a number equal to the amount of different pixels between the
two images. Thus the rank based operator can allow a flexibility margin large
enough to realise the detection in case of pixel value variations, due to reasons
such as noise.

Figure 5: On the left is a couple of images, of which the leftmost is the sought pattern, and
on the right is the output of ηI

[V,W],750,750
, Eq. (21).

Figure 6: In the first row, from left to right the two images to detect, and the corresponding
lower and upper synthetic SF computed through Eqs. (22) and (23); the second row contains
the result of VHMT, Eq. (15).

4.2. Synthetic structuring functions
Although multivariate rank order filters make it possible to detect partial

matches, Eq. (21) still hardly satisfies practical needs, since the objects corre-
sponding to the sought template may vary considerably. Consider for instance
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the case illustrated in Fig. 6 (top-left). This situation is of course present in
the context of detection from grey-level images as well. One way of countering
it, as explained in (Barat et al., 2003; Doh et al., 2002), is to employ a set of
example images, from which a common “synthetic” template is formed.

More precisely, the foreground is represented by the minimum and the back-
ground by the maximum of the given set of examples ({Vi} , {Wj}). Thus, in
the multivariate case the same technique may be employed merely by using the
chosen vector ordering ≤v:

V(x) = infv
i
{Vi(x)} (22)

W(x) = supv
j
{Wj(x)} (23)

Returning to Fig. 6, it suffices to compute the templates corresponding to the
images at the top-left by means of this operation, and the VHMT of Eq. (15)
detects both successfully.

5. Conclusion

A vectorial HMT definition is proposed, which allows for the use of vectorial
structuring functions, making it possible to detect multivariate templates within
multivariate data such as colour images. The additional parameter of choosing
a vector ordering, opens up new combination possibilities, allowing to refine
the detection properties of the resulting operator. Furthermore, two classical
techniques for enhancing the flexibility of HMT have been studied in combina-
tion with multivariate images. Future work will concentrate on the study of the
effects of the vector ordering choice on VHMT, as well as on ways of rendering
the resulting operators rotation and scale invariant. Additional perspectives
could include the definition of multivariate morphological operators based on
the HMT, such as thinnings, thickenings and skeletons.
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