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bstract. In the field of digital image processing, the description of
mage content is one of the most crucial tasks. Indeed, it is a man-
atory step for various applications, such as industrial vision, medi-
al imaging, content-based image retrieval, etc. The description of
he image content is achieved through the computation of some
redefined features, which can be performed at different scales.
mong global features that describe the content of the whole image,

he gray level histogram focuses on the distribution of gray levels
ithin the image, while morphological features (e.g., the pattern
pectrum) measure the distribution of object sizes in the image. De-
pite their broad interest, such morphological size-distribution fea-
ures are limited due to their monodimensional nature. Our goal is to
eview multidimensional extensions of these features able to deal
ith complementary information (such as shape, orientation, spec-

ral, intensity, or spatial information). Moreover, we illustrate each
ultidimensional feature by an illustrative example that shows their

elevance compared to the standard morphological size distribution.
hese features can be seen as relevant solutions when the standard
onodimensional features fail to accurately represent the image

ontent. © 2009 SPIE and IS&T. �DOI: 10.1117/1.3099707�

Introduction
n the field of digital image processing, the description of
mage content is one of the most crucial tasks. Indeed, it is
mandatory step for various applications, such as industrial
ision, medical imaging, content-based image retrieval, etc.
he description of the image content is achieved through

he computation of some predefined features, which can be
erformed at different scales. The most elementary unit is
he pixel itself, and it is possible to extract from a pixel its
ray level �color or spectral signature in the case of multi-
pectral images�. If the neighborhood of the pixel is taken
nto account, its texture can also be measured through tex-
ural features. At an intermediary scale, one can segment
he image into several regions and compute some features
n each region. In this case, some shape or geometric in-
ormation can be extracted, additionally, to average spectral
nd textural properties. Last, at a global level, some fea-
ures can be computed to describe the whole image content.
ome representative and complementary examples of glo-
al features are the gray level histogram and the pattern
pectrum. While the gray level histogram focuses on the
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3, 2009; accepted for publication Feb. 4, 2009; published online Mar. 19,
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distribution of gray levels within the image, the pattern
spectrum measures the distribution of object sizes in the
image.

Measuring the size distribution within an image is usu-
ally achieved by means of mathematical morphology, and
more precisely through the use of morphological filters
such as openings and closings. Granulometry, pattern spec-
trum, and covariance are some illustrative examples of such
morphological-based features related to the size distribution
and will be described in the next section. However, they are
limited by their monodimensional nature �i.e., they measure
only size information� and thus cannot gather complemen-
tary information. So our aim here is to review multidimen-
sional extensions of these features able to deal with other
kinds of information, such as shape, orientation, spectral,
intensity, or spatial information. All these extensions will
be presented next in dedicated sections with some illustra-
tive examples to show their interest over standard size-
distribution features.

2 Measuring the Distribution of Sizes with
Mathematical Morphology

2.1 Mathematical Morphology

Size distribution is usually measured by means of math-
ematical morphology, a theory introduced about 50 years
ago by Georges Matheron and Jean Serra. Basically, it re-
lies on the spatial analysis of images through a pattern
called a structuring element �SE� and consists of a set of
nonlinear operators that are applied on the images consid-
ering this SE.1 These operators are usually defined within
the lattice theory framework.2 Let us note a digital image f:
E→T, where E is the discrete coordinate grid �usually N2

for a 2-D image�, and T is the set of possible image values.
In the case of a binary image, T= �0,1�, where the objects
and the background are respectively represented by values
equal to 1 and 0. In the case of a grayscale image, T can be
defined on R, but it is often defined rather on a subset of Z,
most commonly �0, 255�. In the case of multidimensional
images such as color images or multispectral or multimodal
images, T is defined on Rn or Zn, with n the number of
image channels. We will also denote by p= �x ,y� the pixel
coordinates of an image. A complete lattice is defined from
three elements:
Jan–Mar 2009/Vol. 18(1)1
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• A partially ordered set �T , � �, which could be the set
inclusion order for binary images, the natural order of
scalars for grayscale images, etc.

• An infimum or greatest lower bound ∧, which is most
often computed as the minimum operator. �This choice
will also be made here for the sake of simplicity.�

• A supremum or least upper bound ∨, which is simi-
larly most often computed as the maximum operator.

nce a complete lattice structure has been imposed on the
mage data, it is possible to apply morphological operators
sing a structuring pattern. This is called a structuring func-
ion �SF� or functional structuring element and noted g
hen defined as a function on a subset of T, and called a

tructuring element �SE� and noted b when defined as a set
n E.

From these theoretical requirements, one can define the
asic morphological operators known as erosion and dila-
ion:

b�f��p� = ∧
q�b

f�p + q�, p � E , �1�

b�f��p� = ∨
q�b̆

f�p + q�, p � E , �2�

ith b̆= �−q �q�b� the reflexion of b. We will also use the
otations ��n��f�=��1����n−1��f�� and ��n��f�=��1����n−1��f��
o represent the successive applications of morphological
perators. From these two operators, we can build most of
he other morphological operators, in particular the opening
nd closing filters, which respectively remove bright and
ark details:

b�f� = �b̆��b�f�� , �3�

b�f� = �b̆��b�f�� . �4�

Beyond standard morphological filters also called struc-
ural filters, it is possible to build more advanced opening
nd closing filters to ensure a higher robustness to the
hoice of the SE b. Algebraic openings and closings as-
ume a set B= �b�i of SE and are defined by:

B
��f� = ∨

b�B
�b�f� , �5�

B
��f� = ∧

b�B
�b�f� , �6�

nd we will use the shortcut ��
�=��B

� with �B= ��b�i where
b denotes the SE b scaled by a factor �. Attribute opening

s defined as

�
��f� = ∨

b
��b�f��b is connected and ��b,��� , �7�

here ��b ,�� denotes an attribute or criterion to be ful-
lled. We can also cite the filters by reconstruction that rely
n geodesic dilations and erosions; see Ref. 1 for a broad
verview of morphological filters.
ournal of Electronic Imaging 013010-
2.2 Morphological Series and Size-Distribution
Features

Applying a morphological filter such as the opening with
SE b of increasing size � results in a series of successive
filtered images with less and less details. Let us denote by
b� the SE b of size �, and write �� as a shortcut for �b�

. We
can then formulate the series 	��f� of successive openings
� on the input image f:

	��f� = �	�
��f��	�

��f� = ���f��0
�
n, �8�

where �0�f�= f , and n+1 is the length of the series �includ-
ing the original image�. Instead of focusing on filtered im-
ages, one can also emphasize the details removed after each
opening, thus building a differential series. Let us note as
�� this series:

���f� = ���
��f����

��f� = 	�−1
� �f� − 	�

��f��0
�
n, �9�

with the assumption that �0
�=0. In this series, a pixel p will

appear �i.e., have a non-null value� in ��
��f� if it is removed

by the morphological opening �� of size � �or in other
words, if it was present in ��−1�f� but not anymore in
���f��.

From these two series 	 and �, it is possible to compute
the morphological features related to the distribution of ob-
ject sizes within an image. Among these features, granu-
lometry is built by gathering the values of the series 	�

over all pixels p of the filtered image ��f� through a Le-
besgue measure—for instance, a volume or sum operation.
In the particular case of binary images, the image volume
can either be computed as the sum of pixel values or as the
amount of white pixels �or 1-pixels�. The size distribution
is then defined by:

���f� = ���
��f����

��f� = 	
p�E

	�
��f��p�


0
�
n

. �10�

We can observe that �� is monotonically decreasing due to
the extensivity property of the opening, i.e., ��f�
 f . In
order for this measure to be invariant to image size and to
represent cumulative distribution functions, it is worth be-
ing normalized, thus resulting in the new definition:


��f� = �
�
��f��
�

��f� = 1 −
��

��f�
�0

��f�
0
�
n

. �11�

Notice that antigranulometry �also called anti-size distribu-
tion� can similarly be measured using a series of morpho-
logical closings 	�.

Another very interesting morphological global feature is
the pattern spectrum � introduced by Maragos,3 also called
pecstrum.4 It can be seen as the morphological counterpart
of the well–known histogram. Instead of measuring the dis-
tribution of intensities within an image, it aims at measur-
ing the distribution of sizes �and to a lesser extent, of
shapes�. To do so, it gathers values of the differential series
� over all pixels:
Jan–Mar 2009/Vol. 18(1)2
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��f� = ���
��f����

��f� = 	
p�E

��
��f��p�


0
�
n

, �12�

nd the normalization ensures measures independent of the
mage size:

��f� = ���
��f����

��f� =
��

��f�
�0

��f�
0
�
n

. �13�

oreover, Fig. 1 illustrates the relevance of the pattern
pectrum in the case of an image with similar graylevel
istribution. In this figure, negative and positive indices are
espectively related to the use of opening and closing filters
ith increasing size �.
In addition to the granulometry and the pattern spectrum

elying on openings and closings, it is also possible to in-
olve any morphological operator such as the erosion � to
uild a morphological feature able to describe the global
mage content. Thus, the covariance feature K is defined as
morphological counterpart of the autocorrelation operator.
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Fig. 1 Two input images �left� with similar histog
right�.
ournal of Electronic Imaging 013010-
To compute this feature, the SE b under consideration con-
sists of a set of two points p1 and p2 and is defined by both

a size 2�= �p1p2
�� and an orientation v� = p1p2

� / �p1p2
��:

Kv��f� = �K�
v��f��K�

v��f� = 	
p�E

	�,v�
� �f��p�


0
�
n

, �14�

where

��,v��f��p� = f�p − �v�� ∧ f�p + �v�� . �15�

Another definition of the covariance has been given by
Serra,5 where the autocorrelation function is used, thus re-
sulting in the operator �� defined by

��,v�� �f��p� = f�p − �v�� · f�p + �v�� , �16�

where the intersection ∧ is replaced by a product · opera-
tion.

50 100 150 200 250

Gray level

Grayscale Histogram

Target squares
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20
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These features have been widely used to solve various
roblems such as classification, segmentation, and filtering.
oreover, size distribution presents some nice statistical

roperties that help to increase its interest since optimal
eatures can be designed. These issues will not be ad-
ressed here, and the reader is referred to Ref. 6 �Chapter
� for a more complete introduction to granulometries.
owever, even if these global features appear as particu-

arly relevant alternatives to usual image features such as
istograms, wavelets, or other textural features �just to
ention a few�, they still are limited to a single evolution

urve and so cannot consider simultaneously several di-
ensions. More precisely, they deal only with the structural

nformation extracted from morphological filters applied
ith growing SE sizes.
We review here some recent multidimensional exten-

ions that allow us to build a 2-D series of morphological
easures. These extensions help to gather complementary

nformation �e.g., spatial, intensity, spectral, shape, etc.� in
single global morphological representation.

Size-Shape Distribution
n the standard size distribution, a unique parameter � was
onsidered for measuring the size evolution, through the SE
�. This definition assumes a single size varying parameter
and prevents us from performing accurate measurements.

ndeed, it is not adequate to elliptical or rectangular shapes,
or instance, where the two independent axes should be
aken into account. So several attempts have been made to
uild bivariate morphological series, thus allowing us to
btain size-shape measurements.

Lefèvre et al.7 consider structuring elements with two
ifferent size parameters � and � that vary independently.
ore precisely, a way to define the 2-D series of SE b�,� is

iven by b�,�=��̌1

��−1����̌2

��−1��b��=��̌2

��−1����̌1

��−1��b��, with �1

nd �2 denoting the structuring elements used as growing
actors in the two dimensions, and b the initial SE. In the
ase of rectangular SE series, a relevant choice for �1 and
2 consists in 1-D SE such as horizontal and vertical lines,
espectively �with a length proportional to the degree of
oarseness desired�, and an initial rectangular SE b.

The new II series built using the 2-D set of SE b�,� is
hen computed as:

��f� = �	�,�
� �f��	�,�

� �f� = ��,��f��0
�
m
0
�
n

, �17�

here the application of � on f with SE b�,� is noted as
�,��f� and with the convention �0,0�f�= f . Similarly, the �
eries measures the differential in both size dimensions:

��f� = ���,�
� �f����,�

� �f� =
1

2
�2	�−1,�−1

� �f� − 	�−1,�
�

− 	�,�−1
� �f��
0
�
m

0
�
n

, �18�

here ��,0
� =��

�, �0,�
� =��

�, and �0,0
� =0.

Figure 2 illustrates the potential interest of such 2-D
eatures for sample images where standard pattern spectra
re irrelevant.
ournal of Electronic Imaging 013010-
A similar approach has been proposed by Ghosh and
Chanda,8 who introduce conditional parametric morpho-
logical operators and who build a 2-D set of SE with in-
creasing size, on both the horizontal and the vertical dimen-
sions. From this set of SE, they finally compute the
bivariate pattern spectrum for binary images. Bagdanov and
Worring introduce the same feature under the term rectan-
gular granulometry,9 while a slightly different definition has
been given by Barnich et al.10 to limit the SE to the largest
nonredundant rectangles within the analyzed object �in bi-
nary images�. Moreover, a more general expression of
m-parametric SE has been used in Ref. 11 to define multi-
parametric granulometries.

Batman et al.12,13 propose an alternative definition of
this series using Euclidean series 	��

�f� with the set of SE
B= �−1, �1�, where � and � denote, respectively, elementary
horizontal and vertical SE. Moreover, they also introduce a
univariate series by combining through the sum operations
two series of SE b� and c� built from initial SE b and c:

	��f� = �	�,�
� �f��	�,�

� �f� = �b�
�f� + �c�

�f��0
�
m
0
�
n

. �19�

Urbach et al.14 also propose to combine size and shape
information in a single 2-D granulometry. They rely on
attribute filters15 �� and use a max-tree representation16 of
the image for computational reasons. Their 2-D series can
be defined as:

	��1,�2�f� = �	�,�
� �f��	�,�

� �f� = ��
�1�f� ∧ ��

�2�f��0
�
m
0
�
n

, �20�

where the two criteria �1 and �2 are respectively related to
the area �i.e., defining size� and the ratio of the moment of
inertia to the square of the area �i.e., defining shape�.

4 Size-Orientation Distribution
Besides the size or shape of the SE, one can also vary its
orientation.17 Naturally, this is relevant only with aniso-
tropic structuring elements. Let us note as b�,� an SE of size
� and orientation �. This SE is built from a rotation of the
initial SE b� with an angle �, i.e., ��b� ,b�,��=�, with
��b1 ,b2� the measured angle between orientations of b1

and b2.
Based on this principle, the morphological series is then

defined as:

	��f� = �	�,�
� �f��	�,�

� �f� = ��,��f�� 0
�
n
�0
�
�m

, �21�

where ��0 , . . . ,�m� represents the set �of cardinality m+1�
of orientations considered, and ��,� is a shortcut for �b�,�.
Figure 3 illustrates the interest of such size-orientation fea-
tures when the standard granulometry is useless.

Apart from the most simple angles �i.e., �=k� /4�, one
has to tackle very carefully the problem of discretization
for rotated SE. Accurate approximations can be obtained by
periodic lines �see the work of Jones and Soille18� and re-
quire the use of several SEs to get an accurate discrete
representation of a continuous segment.19 It is also possible
to retain for each pixel at a given size only the maximum or
minimum value from the results returned by the morpho-
logical filter with the various orientations.3 In this case,
Jan–Mar 2009/Vol. 18(1)4
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owever, the result is a 1-D series similar to the one that
ould be obtained by means of radial filters.1 Last, from
hese size-orientation measures, other features can be ex-
racted such as orientation maps proposed by Soille and
albot.19

Size-Spectral or Size-Color Distribution
ince digital images contain very often spectral or color

nformation, it is worth involving the spectral signature or
olor of each pixel in the computation of the morphological
epresentation.

To do so, it is possible to first compute a morphological
ignature for each of the k spectral components �or bands�
nd then to combine these k signatures into a single one.
ith this two-step approach, the morphological series 	

an be expressed as:

��f� = �	�,�
� �f��	�,�

� �f� = ���f���1
�
k
0
�
n

, �22�

here f� is a grayscale image representing the �’th spectral
omponent of the multispectral or colour image
= �f��1
�
k. In this definition, morphological filters are
pplied independently on each image band, and thus the
arginal strategy is used and the correlation among the
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Fig. 2 Three input images �top� and their res
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line SE �bottom right� are also given.
ournal of Electronic Imaging 013010-
different spectral channels is completely ignored. More-
over, this can result in new spectral signatures or colors in
the filtered images.

To avoid these limitations, it is possible to rather con-
sider a vectorial ordering when applying the morphological
operators on the multispectral input image f.20 The purpose
of a vectorial ordering is to give a way to order vectors and
thus to compute vectorial extrema by means of the two
operators supv and infv. Assuming a given vectorial order-
ing, the fundamental dilation and erosion operators are
written:

�b
v�f��p� = inf

q�b

v f�p + q�, p � E , �23�

�b
v�f��p� = sup

q�b

v f�p − q�, p � E , �24�

and from these operators, it is possible to write all vectorial
versions of the morphological operators described previ-
ously.

The new size-spectral morphological series is finally
computed as:
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��f� = �	�,�
� �f��	�,�

� �f� = ���
v�f����1
�
k

0
�
n

, �25�

here the values of ��
v�f� are relying on a given vectorial

rdering. Let us note, however, that we have ���
v�f���

���f�� in the specific case of a marginal ordering �thus,
q. �22� is a particular case of the general formulation
iven in Eq. �25��. A comparison of marginal and vectorial
trategies is given in Fig. 4, considering a similar size dis-
ribution but a different spatial distribution in each color
and.

For a comprehensive review of vectorial orderings and
ultivariate mathematical morphology, the reader can refer

o the survey from Aptoula and Lefèvre.20 An example of
olor pattern spectrum can be found in Ref. 21, while a
omparison between several vectorial orderings has also
een proposed recently by Gimenez and Evans.22 In Ref.
3, Nes and d’Ornellas consider color pattern spectra with
inear SE of variable directions. �At each scale �, the maxi-

um pattern spectrum among the various orientations is
elected.� In Ref. 24, Rivest deals with radar signals and
ropose adequate granulometry and power spectrum by in-
roducing a vector ordering dedicated to complex data.

Size-Intensity Distribution
n grayscale images, the pixel intensity values are gathered
ith the sum operator. So the distribution of intensity val-
es in the image is not taken into account with standard
orphological features, which can be a real issue since

ntensity distribution �usually measured by a histogram� is a
ey feature to represent image content.
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Fig. 3 Two input images �left�, their respective �
and their 2-D size-orientation granulometric cur
ournal of Electronic Imaging 013010-
Computing the histogram on morphological scale-spaces
has been proposed by Lefèvre25 to take into account both
size and intensity distributions. To do so, let us use the
Kronecker delta function:

�i,j = �1 if i = j

0 if i � j

 , �26�

and the histogram function hf :T→Z:

hf��� = 	
p�E

��,f�p�, �27�

which measures the number of occurrences of each gray
level � in the image f . Alternatively, we can also use the
normalized histogram function hf� :T→ �0,1�, where

hf���� =
hf���

�supp�f��
, �28�

with �supp�f�� the cardinality of the support of f , i.e., the
number of pixels in f .

The formulation of the 2-D size-intensity morphological
feature is then given by the following 	 series:

	��f� = �	�,�
� �f��	�,�

� �f� = h���f������0
�
�m
0
�
n

, �29�

where ��0 , . . . ,�m� represents the different gray levels or
bins in the histogram.
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Figure 5 shows the relevance of size-intensity morpho-
ogical features when both granulometry and histogram are
rrelevant. For the sake of clarity, graylevel 0 �i.e., black
ixels� has been omitted in the plots.

The derivative counterpart of the size-intensity morpho-
ogical feature defined in Eq. �29� can be given by the
ollowing � series:

��f� = ���,�
� �f����,�

� �f� = h���f�−��−1�f������0
�
�m
0
�
n

. �30�

his feature can be seen as a morphological alternative to
he very effective multiresolution histograms computed
rom Gaussian linear scale-spaces.26

Spatial and intensity information can also be gathered by
he use of structuring functions �SF� as proposed by Lotufo
nd Trettel.27 More precisely, let us define the SF g�,� as a
onplanar cylinder of radius � and amplitude �. A size-
ntensity feature is then built using various � and � values:

��f� = �	�,�
� �f��	�,�

� �f� = ��,��f���0
�
�m
0
�
n

, �31�

here ��,� is here a shortcut for �g�,�
. It has been noted in

ef. 27 that both the classic histogram and the pattern spec-
rum can be derived from this measure by considering, re-
pectively, �=0 �i.e., a single pixel� and �=0 �i.e., a flat,
isk-shaped SE�.

A similar feature called a granold has been proposed by
ones and Jackway28 by first decomposing the grayscale
mage into a stack of binary images and then computing the
ranulometry for each binary image �i.e. at each grayscale
hreshold�, thus resulting in the following series:

��f� = �	�,�
� �f��	�,�

� �f� = ���T��f����0
�
�m
0
�
n

, �32�

here T� denotes the thresholding function:

��f��p� = �1 if f�p� � �

0 if f�p� � �

 . �33�

Despite their different definitions, both Refs. 27 and 28
ead to similar measures.

Size-Spatial Distribution
ll the previous features were considering the spatial infor-
ation through the successive applications of morphologi-

al operators that rely on a spatial neighborhood. But they
id not retain any information about the spatial distribution
f the pixels at a given scale �. A first attempt to deal with
his problem was made by Wilkinson,29 who proposed to
ompute spatial moments on the filtered binary images,
hus resulting in spatial pattern spectra:

��f� = ���
��f����

��f� = mij���
��f��� mij

0
�
n

, �34�

here mij denotes the moment of order �i , j�, computed on
n image f as:

ij�f� = 	
�x,y��E

xiyjf�x,y� . �35�
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This idea was later followed by Aptoula and Lefèvre,30

where a normalized spatial covariance involving normal-
ized unscaled central moments �ij is proposed to ensure
scale and translation invariance:

Kv��f� = �K�
v� �K�

v� = �ij�	�,v�
� �f��p��/�ij�f�� �ij

0
�
n

, �36�

with �ij defined by:

�ij�f� =
	�x,y��E�x − x̄�i�y − ȳ� j f�x,y�

�m00�f���

with � =
i + j

2
+ 1, ∀ i + j � 2, �37�

and x̄=m10�f� /m00�f�, ȳ=m01�f� /m00�f�.
Alternatively, Ayala and Domingo proposed spatial size

distributions,31 where filtered images of the morphological
series are replaced by their intersection with filtered trans-
lated images, intersection being computed in a linear way
with a product rather than in a nonlinear way with a mini-
mum. Thus, their feature can be obtained by comparing the
linear covariances applied on both initial and filtered im-
ages, for all possible vectors in a set defined by �b, with
increasing � values:

��f� = ���,����,� =
1

�	p�Ef�p��2 	
q��b

K1�
q��f�

− K1�
q��	��f��


0
�
k
0
�
n

, �38�

where q� is a shortcut for the vector oq� , with o the center or
origin of the SE b, and q any neighbor belonging to the SE.
Here, we have used the notation K� to denote the autocor-
relation function. The size-spatial distribution can last be
computed as a 2-D differential measure, in a way similar to
the computation of the � measure from the associated 	
one. Zingman et al.32 propose the pattern density spectrum
with a rather similar definition but relying on some con-
cepts of fuzzy sets. �Actually, their density opening opera-
tor is similar to a rank-max opening1� Combined with the
standard pattern spectrum, they obtain the 2-D size-density
spectrum.

Last, Aptoula and Lefèvre33 consider a composite SE
built from two different SE and introduce two parameters �
and � to deal with both the size of the two SEs and the shift
between them. Their new operator combines the filtering
properties of the granulometry and the covariance, thus re-
sulting in a series:

	�,v��f� = �	�,�
�,v��f��	�,�

�,v��f� = ��,�v��f��0
�
k
0
�
n

, �39�

with ��,�v� a shortcut for �b�,�v�
, and the composite SE being

defined as b�,�v� =b�� �b�+�v��, i.e., a pair of SEs b of size
� separated by a vector �v� . The following normalized mea-
sure can then be computed from the previous series:
Jan–Mar 2009/Vol. 18(1)8
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�,v��f� = �
�,�
�,v��f��
�,�

�,v��f� =
	p�E	�,�

�,v��f��p�
	p�Ef�p� 


0
�
k
0
�
n

. �40�

Figure 6 illustrates the relevance of such size-spatial fea-
ures, considering the spatial covariance defined in Eq. �36�
ith vertical information taken into account.

Conclusion
espite their broad interest in image description, the size-
istribution morphological features—namely, the granu-
ometry, pattern spectrum, and covariance—are limited by
heir monodimensional nature. Thus, these features may not
e relevant in many applications where other information
as to be taken into account. In this paper, we review some
xtensions of the size distribution that combine size and
ther information in a single multidimensional feature, thus
nsuring effective descriptions of the image content when
ize distribution is insufficient. The presented features deal
espectively with shape, orientation, spectral, intensity, and
patial information.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

SE size

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

SE size

Covariance with vertic

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

SE size

Covariance with vertic

Fig. 6 Three input images �left�, their respectiv
size-spatial granulometric curve �right� consider
ournal of Electronic Imaging 013010-
In this paper, only 2-D features �i.e., features combining
size with a single other characteristic� have been presented.
However, one can design by induction any extension to the
n-D case and thus easily build more expressive features.

We have given in this paper some illustrative examples
to illustrate the relevance of the more than only size–
distribution features. We are now considering how to com-
pare and evaluate these features in a real-life scenario, such
as texture or object recognition. Moreover, future work will
focus on implementation issues to avoid the brute force
approach when computing these features and to ensure
some efficient computation schemes.
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