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On the morphological processing of hue

E. Aptoula, S. Lefevre *

LSIIT UMR-7005 CNRS-ULP, Pole API, Blvd Sébastien Brant, PO Box 10413,
67412 Illkirch Cedex, France

Abstract

Although polar colour spaces are being increasingly used in the context of colour
mathematical morphology, mainly due to their intuitiveness, the processing of the
circular hue band continues to be their main drawback. In this paper, we discuss
the two principal problems concerning the morphological processing of hue, first its
lack of a lattice structure, which we propose to introduce by means of a distance
based formulation from multiple representative reference hue points. And second,
the distinction of chromatic from achromatic pixels, since the hue component is
of no significance for “low” saturation levels. For this purpose we present a new
weighting scheme, based on the combination of saturation and luminance channels.
Application results on texture classification, asserting the superior performance of
this approach, are also included.

Key words: Colour mathematical morphology, hue ordering, hue weighting, polar
colour spaces, chromaticity

1 Introduction

The extension of mathematical morphology (MM) to colour, and more gener-
ally to multivariate images is an open problem. Since the formalisation of the
underlying theory [7,17,18], and the acceptance of complete lattices as the ap-
propriate algebraic basis for morphological operators, several approaches have
been proposed to this end, a comprehensive survey of which can be found in
Ref. [4]. Despite the absence of a widely accepted solution, the field of colour
morphology has matured since the 1990s, and certain trends have started to
form. More precisely, the use of polar (or phenomenal) colour spaces has been
steadily spreading within the community [2,3,10,14,20].
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However, their popularity, which is mainly due to the intuitiveness (from the
point of view of human colour vision) of the luminance, hue and saturation
based description of colour, is seriously shadowed by the problems related to
the circular hue band. In particular, the hue, which represents the dominant
wavelength of a colour, presents two major inconveniences as far as MM is
concerned. First, as hues are angular values, they lack a natural lattice struc-
ture, in other words we cannot say for instance that “red is greater than blue”.
That is why, it has become frequent practice to order these angles with respect
to their distances from a predefined reference value, assumed to represent the
“dominant” wavelength of the image at hand. Nevertheless, an image can have
obviously more than one dominant hue group. In this paper, we present a new
way of introducing a lattice on the hue circle, and thus defining morphological
operators, using multiple reference hue values that represent the given image
in a more consistent way with respect to existing approaches.

Moreover, when processing the hue, it is imperative to be able to distinguish
chromatic from achromatic pixels, since the hue value of the latter has no
practical significance, and hence can disrupt eventually the end result. To this
end, most authors have so far preferred to use the saturation levels as a mea-
sure of “colourfulness”. Here we propose a sigmoid based model, making use
of both saturation and luminance, as the “significance” of the first is directly
related to the overall illumination level. The results of a texture classification
test are also included, where the proposed sigmoid based model exhibits a
superior performance compared against state of the art approaches.

The rest of the paper is organised as follows. Section 2 discusses initially the
crucial choice of polar colour space. Then in section 3 the problems related
to the ordering of hue values are elaborated and the proposed solution is
detailed. Next, in section 4, the weighting of hues is studied with the purpose
of distinguishing chromatic pixels, along with the results of comparative tests
on texture classification. Finally section 5 is devoted to concluding remarks.

2 Choice of polar colour space

3D-polar coordinate colour spaces appeared as the result of attempts to de-
scribe the RGB cube in a more intuitive manner, from the point of view of hu-
man interpretation of colour, in terms of luminance, saturation and hue. While
luminance L € [0, 1] accounts for the amount of light, saturation S € [0, 1]
represents the purity of a colour. The values of the periodical hue interval
H € [0,27] ' (or [0,1] if they are normalised) on the other hand, denote the

I Note that for the sake of clarity normalised hue values have been used throughout
this paper



dominant wavelength, with 0 corresponding to red.

Basically, polar colour spaces achieve this transformation by representing
colours with respect to the achromatic axis of RGB. Nevertheless, several im-
plementational variants are available for this single transformation, e. g. HSV,
HSB, HLS, HSI, etc [6]. According to Hanbury and Serra [13], all of the afore-
mentioned colour spaces have been developed primarily for easy numerical
colour specification, while they are ill-suited for image analysis. Specifically,
although they were initially designed as conic or bi-conic shaped spaces, later
on their cylindrical versions were employed in practice, in order to avoid the
computationally expensive (for that period) checking for valid colour coordi-
nates. The passage from conic to cylindrical shape however resulted in many
inconsistencies within these spaces, for instance by allowing fully saturated
colours to be defined in zero luminance. Extensive details on this topic can be
found in Ref. [13].

Luminance
Luminance

Saturation Saturation

Fig. 1. Vertical semi-slice of the cylindrical HLS (left) and bi-conic IHLS (right)
colour spaces.

Here we adopt the suggestion made in Ref. [13], and make our colour space
choice in favour of the improved HLS space (IHLS), which employs the original
bi-conic version of HLS, hence limiting the maximal allowed value for satura-
tion in relation to luminance (Fig. 1). Further advantages of IHLS with respect
to its counterparts include the independence of saturation from luminance,
thus permitting the use of any luminance expression (e. g. RGB average, per-
ceptual luminance, etc) and the comparability of saturation values. Although
the IHLS colour space is chosen as the most appropriate representation of po-
lar colour coordinates, and will be employed during the sequel of this paper,
the hue related problems and solutions that are subsequently elaborated are
by no means specific to [HLS, and can be used with other polar colour spaces
with no or minimal modifications.

3 Ordering hues

In this section, we study the first problem concerning the application of mor-
phological operators on the hue band of images, namely the absence of a lattice



structure.

In order to define morphological operators on an image f : £ — 7, a complete
lattice structure needs to be introduced to its intensity range 7. In other
words, 7 must be a non empty set equipped with at least a partial ordering
such that every non empty subset P C 7 has a greatest lower bound AP
(infimum) and a least upper bound \/ P (supremum).

Consequently, as colour, and more generally multivalued images have vectorial
intensities usually in R” or Z", with n > 1, given a vectorial ordering scheme
“<”, the vectorial versions of the two fundamental morphological operators,
erosion (g) and dilation (d,) of a multivalued image f, by a flat structuring
element (SE) b, can be immediately derived by means of the vectorial extrema
operators sup, and inf, based on the given ordering:

e(B)(x) = inf, {f(x+ 5)} 1)
61()(x) =sup, {f(x —5)} )

Therefore, in order to benefit from the advantages of polar spaces, the order-
ing of IHLS colour vectors is necessary. Although luminance and saturation
possess a ready to use lattice structure due to their natural scalar order, ma-
jor problems arise as far as hue is concerned, since circular data lack such a
structure.

Of course since hue values reside in [0, 1], one can always order them using the
scalar order, but there is no a priori reason for setting red (h = 0) as “less”
than green (h = 0.66). The fixed origin and discontinuity at red, besides being
an important flexibility constraint, also results in undesirable behaviours in
this area of the hue circle. To illustrate this last point, Fig. 2 shows the dilation
based on the scalar hue order, of a colour image containing all the possible
hues. The abrupt discontinuity at red is what causes the edge in the middle
of Fig. 2.
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Fig. 2. From top to bottom, a colour image (500 x 70 pixels) containing fully
saturated hues, its dilation with a 51 pixel wide horizontal line shaped SE based on
the scalar order, the hue ordering (3) and the ordering (5), both with hg = 0.0.



3.1 Mono-reference based hue ordering

Indeed, this situation has led some authors to even ignore this component as
in Ref. [19], whereas the first attempt aiming to counter it was made by Peters
[16], who employed a function D(hg, h) measuring the distance between the
hue of the SE hy and the processed value h, with the aim of ordering them:

Vh,h €[0,1], h<h < D(hg,h) < D(hg, ) (3)

where D(-,-) is defined as:

h—h+1if —1<h-h <-0.5,
Y h,h €[0,1], D(h, k)= h—hif —05<h—h <05, (4)
h—h—1if 05<h-—H <1.

Essentially, since hue values lack an inherent ordering relationship, any arbi-
trarily developed fixed order (e.g. green > yellow > blue, etc) is of limited
practical use. The flexibility of a distance based approach, due to the use of
an arbitrary hue origin, renders it adaptive to varying application needs, and
that is why this type of hue orderings have met with acceptance. A variant has
been later on proposed by Hanbury and Serra [10,11]. Specifically, according
to them, Eq. (3) results in counter-intuitive operators, since for instance ero-
sions would tend to enlarge objects of the reference hg (Fig. 2). Hence, they
proposed using the ordering;:

Vi, W €[0,1], h<h < B +hy<h=hg (5)

where, contrary to Eq. (3), hues closer to hq are considered greater and the
angular distance h =+ hg of h from hg, is modified as:

h—ho| if |h—hol <05
1—|h—holif |h—ho| > 0.5

Vhho €[0,1], h+ho=

Fig. 2 presents the result of a hue dilation based on the ordering of Eq. (5).
As vectors are ordered with respect to their distance from hy = 0.0, the
edge appearing in Fig. 2 is avoided within the red region. Furthermore, when
combined with unsupervised reference hue computation methods [1,9], the
ordering of Eq. (5) can be effectively used for general purpose morphological
hue processing [11]. Let us note however that the term “ordering” is used
loosely in the context of distance based reference hue computations, since
they obviously do not verify the anti-symmetry constraint, as two distinct hue
values can lie at equal distances to the reference hue; hence they constitute
pre-orderings to be exact. One possible approach for satisfying the desired



anti-symmetry property, is to use an arbitrary ordering direction within the
hue circle with the purpose of resolving such conflicts [12]. For instance if
h+hog=h +hgand h # R/, then the hue located first in the chosen ordering
direction is considered smaller.
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Fig. 3. The image Lenna (left, 512 x 512 pixels) and its normalised hue histogram
(right).
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Fig. 4. The image Lenna (left), after the hue channel has been dilated with a square
shaped SE of size 7 x 7 pixels using hop = 0.0 and ordering of Eq. (5), and the
corresponding normalised hue histogram (right). Observe the concentration around
ho.

3.2 Multi-reference based hue ordering

Using a variable hue origin is certainly a practical way of introducing a com-
plete lattice structure on the hue circle. However, as it will be subsequently
detailed, this approach has certain limitations, the effects of which depend on
the image at hand. Here we propose a more flexible new hue ordering based
on distances from multiple origins. For the sake of simplicity, in the sequel all
hue values are normalised to [0, 1].

Let us consider the case of the Lenna image (Fig. 3 (left)). As it can be seen
from its hue histogram (Fig. 3 (right)), there is a high concentration around
the origin of the hue circle. And since reference hues are chosen usually as
the average hue or the most frequent [1,9], it is considered pertinent to choose
ho = 0.0. By accepting a certain wavelength within the red region of the
spectrum as the reference hue, the nuances of red closer to this value increase
their presence within the image by means of a dilation (Fig. 4). In other words
“red > orange and red > magenta”. But how about blue, and green or cyan?



Their relationship to the reference hue is implicitly assumed to be that of their
position on the hue circle. Specifically, red is equidistant to blue and green,
and furthest from cyan, based on the principle of colour complementarity.

This approach however assumes that the input image has at most a single
dominant hue, which in the case of Lenna is red. Hence, in order to make
the connection with binary morphology, the reference hue hy represents the
“foreground” and its complement on the hue circle the “background”. How-
ever, in the general case the presence of more than one not dominant hues is
rather more frequent. Observe the image Cat (Fig. 5 (left)) for instance, where
primarily three colours appear to be frequent: red/orange, green and blue,
corresponding to the three large peaks in its hue histogram (Fig. 5 (right)).
The reference hue that was obtained (hy = 0.34) through averaging, shows
that green-yellow is the dominant wavelength, as it occupies a relatively im-
portant portion of the total image area. Consequently, during the dilation of
the same image (Fig. 6), hues are ordered only based on their distance from
green, even though orange and blue correspond to almost equally important
regions/objects within the image.
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Fig. 5. The image Cat (by Gamze Aktan) (left, 576 x 420 pixels) and its normalised
hue histogram.
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Fig. 6. The image Cat (left), after the hue channel has been dilated with a square
shaped SE of size 7 x 7 pixels using hg = 0.34 and ordering of Eq. (5), and its
corresponding hue histogram (right).

To counter this situation, one could eventually employ a region specific hue
reference, for instance by computing hy independently for each hue region.
And during ordering, the hues of a given region could be ordered according
to their distances from the local reference hue. Nevertheless, this approach is
hard to use in practice as it requires a pertinent segmentation step, that will
provide the necessary region borders. Moreover, the image content may be of



such nature that regions may not even be distinguishable, and furthermore,
how to order hues that belong to different regions? Alternatively, one can also
adopt a pixel specific approach, where the reference hue is constantly updated
according to the pixels under the SE. This use of a variable reference hue
however, undermines several theoretical properties of the resulting operators,
since “distant” pixels become no longer comparable.

The solution we propose here, is to use a hue ordering based on multiple ref-
erences. Specifically, let us assume that we have obtained the k representative
hue values R = {h;},.,-,. In the case of the image Cat (Fig. 5 (left)), the set R
would contain roughly the hues red /orange, green/yellow, blue and magenta.
Given two hue values, we can now order them based on their distances from
each of the k references, and choose as greater the one closer to a representative
hue value. More precisely:

R={hi},cicy» Yh,I' €0,1], h <y b < min{h' =+ h;} <min{h+h;}
(7)
where the binary relation <py denotes the proposed ordering between hue
values.

Consequently, if the set R contains a single reference hue, such as in the
case of the image Lenna, then Eq. (7) becomes obviously equivalent to Eq. (5)
(Fig. 7 (left)). However, if on the contrary R contains multiple references, then
during ordering we favour those hues that are closer to one of the representative
references (Fig. 7 (middle)), hence dividing the hue circle into regions with each
having its own extremum. In the case of the Cat image, given two nuances
of green, the greater would be the one which is closer to the reference hue
situated in the green region of the hue circle, whereas if we compare a nuance
of blue against one of green, the one closer to its respective reference would
be considered greater, hence favouring “representative” hues, in terms of their
distance from their respective reference hues. This can be easily observed by
examining the hue histogram of the image Cat, obtained after having applied
a dilation based on this principle (Fig. 8 (right)). The concentration of hue
values around the four major hues is obvious.

Since it is relatively hard to detect the visual differences among the previous
images, consider the artificial example shown in Fig. 9 (left). It consists of two
uniform blue and yellow regions, containing noise spots of green and magenta.
The “most dominant” hue is evidently blue, hence, a dilation using this single
reference leads to the removal of spots only from the upper area (Fig. 9 (mid-
dle)), since both green and magenta are closer to blue than yellow. On the
other hand, both regions become noise free using the proposed approach in
combination with the two dominant hues, i. e. blue and yellow (Fig. 9 (right)).

Similarly, in the case of an erosion, non-representative hues, in other words
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Fig. 7. From left to right, the hue circle with arrows showing the direction of increas-
ing hues, in the case of a single reference hue (hy = 0.0), with multiple reference
hues (hg = 0.0, h; = 0.33, he = 0.66), and with multiple reference hues weighted
according to arbitrary significances.

0 0.25 0.5 0.75 1

Fig. 8. The image Cat (left), after the hue channel has been dilated with a
square shaped SE of size 7 x 7 pixels using ordering of Eq. (7), references
ho = 0.04,h; = 0.34,hg = 0.56, hg = 0.93, and its corresponding normalised hue
histogram (right).

hues that are distant from the reference points on the hue circle are favoured.
Consequently, the approach based on a single reference erodes the spots in the
yellow region, since both green and magenta are closer to yellow than blue
(Fig. 10 (left)). A more consistent behaviour is achieved with the proposed
ordering (Fig. 10 (right)).

Fig. 9. From left to right, the original image (297 x 252 pixels), its hue dilation
using ordering (5) and hg = 0.66, and the proposed ordering (7) with hy = 0.66,
h1 = 0.33, both with a square shaped SE of size 5 x 5 pixels.

Then again, likewise to Eq. (5), <y is too a pre-ordering, and unfortunately
we can no longer use the arbitrary hue circle direction to resolve equivalences
among distinct hues [12], as described in Sec. 3.1, since now we have multiple
reference hues. That is why an alternative approach is required in order to
satisfy the anti-symmetry property. One way of achieving this goal is to employ
the order of importance among references, so that the hue closer to a “more
important” reference hue is considered greater, and if that does not resolve



Fig. 10. From left to right, the original image, its hue erosion using ordering (5) and
ho = 0.66, and the proposed ordering (7) with hg = 0.66, h;y = 0.33, both with a
square shaped SE of size 5 x 5 pixels.

the ambiguity, comparing the scalar hue values certainly does. Specifically:

min; {A" =+ h;} < min; {h + h;}, or
h<g h' & § min; {#’ + h;} = min; {h + h;} and f(ref(h)) < f(ref(h')), or
min; {h’' + h;} = min; {h + h;} and f(ref(h))

(8)

where ref(h) = argming,ecg {h + h;} is the reference hue closest to a hue value
h and f(-) : [0,1] — R is the function associating to a reference hue its relative
“Importance” (detailed further later in this section).

3.3  Computation of reference hues

Of course, a necessary step for the implementation of the hue ordering in
Eq. (7), consists in obtaining the reference hue(s). Moreover, unless an expert
is available, it needs to be carried out automatically. Finding the “important”
histogram maxima, can be considered as a histogram clustering or segmen-
tation problem. As such, several options can be used with this purpose, for
example any of the known unsupervised clustering techniques (e. g. meanshift),
or even a morphological watershed transform. Through empirical means, the
following method was observed to provide robust results:

(1) Calculate the normalised hue histogram of size n, where bin h; is denoted
by P(h;) and P, = >>; P(h;)/n is the histogram average

(2) Threshold the histogram using its average, i.e. set to 0 all P(h;) such as
P(h]) < PM

(3) Find the m connected histogram sections with non-zero bins, i.e. all pairs
hap = (ha,hg) such as both conditions P(h;) > 0, Vh; € [ha, hg| and
P(hq-1) = P(hg41) = 0 hold

(4) For each section h, g, calculate its maximum, as reference hue:

M = arg hjgl[h?{hﬂ] P(h;) 9)

10

Fref(h)) and h < I/



However, using this reference computation scheme, one can eventually ob-
tain several histogram sections, each with its own maximum, hence resulting
in an excessively subdivided hue circle. To counter this eventual undesirable
situation, one can of course first filter the histogram, using for instance an
opening with a horizontal SE, but a more efficient way consists in weighting
the distance from each reference hue, with the “importance” of its originating
histogram section. To illustrate this idea, consider the histogram of the Cat
image (Fig. 5), which with the proposed reference hue computation method,
results in four sections, representing roughly the hues red /orange, green, blue
and magenta, with the last being of relatively lesser significance. In order to
quantify the “importance” of a section h, g, one can use either its length [, s
or preferably its discrete sum or volume w, g respectively defined by:

laﬂ = ha - hﬂ (10)
wap= >, P(hy) (11)
hje[ha,hﬁ}

For the sake of clarity, we will denote by h; the reference hue related to the
i" hue section (1 < i < m) and use the notations /; and w; instead of I, g and
W, 5. Thus we can modify the ordering of Eq. (7) relying on a set of k reference
hues among n existing hue sections. The new definition accommodates the
significance n; of each reference hue h; depending on the volume w; of its
related section:

R = {(hw ni)}lgigk ,V ha h e [07 1]a
h<h <min{(h+h)x1/n} <min{(h+h;) x1/n;} (12)

where n; is defined as:
W

n, — ———
' 2wy

(13)

By means of the factor n;, we ensure that hues that are moderately close
to a significant reference hue, are considered larger than those much closer
to a reference hue of lesser importance, hence providing increased robustness
against noisy histograms (Fig. 7 (right)). Note that n; may also be used as
the reference importance function in Eq. (8). If we return to our example, this
approach leads to the decrease of magenta hues after dilation (Fig. 11), since
they are much less frequent than the other three major hues.

A further example demonstrating the effect of the proposed orderings, as well
as the difference between Egs. (7) and (12) is shown in Fig. 12. The original
image (Fig. 12 (left)), contains a uniform hue gradient between a central cyan
square and a larger surrounding blue area. Using the aforementioned reference
computation scheme based on the hue histogram, we obtain as references the
two values representing cyan and blue. For the sake of clarity, Fig. 13 shows

11
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Fig. 11. The hue histograms of image Cat, after applying a dilation using orderings
(7) and (12) along with references hy = 0.04,hy = 0.34, hy = 0.56, hs = 0.93, both
with a square shaped SE of size 11 x 11 pixels.

additionally the uni-dimensional version of the hue gradient and the effect of
the erosion and dilation operators, both with and without the use of weights.
A relatively large SE has been used, in order to amplify the effect of each
operator.

The dilation operator, applied based on Eq. (7) (Fig. 13 (left)), results in the
discretisation of the gradient, by increasing each representative hue’s influence
range, hence creating the steep edge in the middle, showing the limit of each
reference hue’s attraction range (Fig. 7 middle). In other words, “representa-
tive” hues are favoured while the intermediate values are eliminated. Erosion
on the other hand, favours the intermediate hue values between the two ref-
erences, thus leading to the creation of a “middle” flat zone, and forcing the
two gradient extremes edges to shrink.

Fig. 12. From left to right, the original image (418 x 418 pixels), its hue erosion
(b,d) and dilation (c,e) using orderings of Eqgs. (7) and (12), both with references
ho = 0.66, h;1 = 0.5 and their respective weights n; = 0.8 and ng = 0.2 along with
a square shaped SE of size 25 x 25 pixels.

By taking into account the much smaller size of the central cyan area with
respect to the outer blue, we obtain the results depicted in Fig. 13 (right).
While dilation and erosion behave identically as in the unweighted case, the
influence range of each reference hue is radically modified in favour of the ob-
viously more dominant blue. Consequently, given a noisy hue channel which
could lead to the eventual unsupervised detection of unimportant hue refer-
ences, the weights incorporated within the ordering of Eq. (12) can decrease
substantially their influence on the end result.

12
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Fig. 13. The uni-dimensional gradient of Fig. 12, along with its dilated and eroded
versions with (right) and without (left) using weights.

Prior to any practical use however, one last point that remains is the distur-
bance caused within the histogram by hue values corresponding to achromatic
pixels. This problem may be resolved by using a function making it possible to
distinguish pixels of chromatic value from those that are achromatic. Of course
this is no deterministic procedure, and a continuous model is necessary. We
choose to employ a trivial linear model, where the value of saturation provides
a direct indication on the importance of hue. Specifically, given a coefficient
c(x,y) € [0,1] (i.e. the saturation at z,y) indicating the colourfulness level of
a colour pixel at position x, ¥y, the histogram can be constructed by increment-
ing the corresponding bin by c¢ instead of 1. In other words, the total value in
bin h; of the hue histogram, is calculated as:

P(hi) =3 c(x,y)onn., (14)

x?y

where the sum is over all the pixels at x,y, h,, is the hue value at this position
and ¢;; denotes the Kronecker delta function.

4 Weighting of hue

In this section, we review the distinction of chromatic from achromatic pix-
els and propose a solution subsequently tested with a texture classification
application against state of the art approaches.

Although no predefined order among wavelengths exists, by shifting the ori-
gin of the hue circle with arbitrary reference hues and using distance measure-
ments, one can effectively introduce a complete lattice structure, thus resolving
the first of the two problems linked with morphological hue processing. The
second is not limited with the domain of MM, and concerns the distinction of
chromatic from achromatic pixels. In particular, since the significance of the
notion of colour depends directly on its “colourfulness” or saturation level,

13



it becomes necessary to be able to detect achromatic pixels, as they do not
carry any information about colour, and hence need to be ignored during the
processing of the hue band. Of course, since a simple discrete model based
on a threshold is obviously impractical, a continuous relationship model is
required, in order to determine the “importance” of each pixel’s hue.

Multiple models have been reported in the literature for describing the rela-
tionship between the importance of hue and its saturation, using some sort
of transition function. After briefly presenting some of these models, here we
introduce a sigmoid based transition function based on both saturation as well
as luminance. Although the IHLS space is assumed for all expressions, they
can be trivially modified to accommodate other conic polar colour spaces as
well.

4.1 Saturation based weighting models

One way of favouring saturated pixels during hue extrema computation has
been proposed by Hanbury and Serra [8], and consists in replacing the original
hue values with their weighted versions as follows:

sup[h;, 0.25(1 — s;)] if 0 < h; < 0.25,
inflhy;, 0.25(1 + s;)] if  0.25 < hy < 0.5,

h = (15)
sup[h;, 0.25(3 — s;)] if 0.5 < h; <0.75,

where hues h; € [0, 1], saturations s; € [0, 1]; and for an arbitrary reference
hue hg in the previous expression, h; must be replaced with:

h; — hg if h;—ho>0
hy — (16)

This weighting scheme works so that highly saturated pixels keep their initial
hue, while pixels with lower saturation values have their hues moved to posi-
tions closer to hg + 0.25 and hy — 0.25, in order to reduce their probability of
being chosen as extrema.

Another, more general-purpose model has been proposed by Carron in [5]:

1 T

s€[0,1], y(s)=—"- <2 + arctan((3(s — so))) (17)

™

where s denotes saturation, and  and sy are fine tuning parameters of the
resulting sigmoid. More precisely, their suggested values are § = 0.7 and sy =
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0.196. Consequently, this transition function provides a “smoother” alternative
to carrying out a discrete discrimination by means of a threshold.

However, the drawback of these aforementioned approaches is that they as-
sume saturation to be an absolute measure of “colourfulness”, whereas from
the point of view of human colour vision, the perception of colour and hence
the importance of hue, is strongly related to the luminance levels. This can
be trivially observed in the cylindrical HLS colour space (Fig. 1 (left)), where
extreme saturation values lose totally their importance at low and high lumi-
nance levels. And that is one of the reasons why the widely employed HLS
colour space is inadequate for quantitative colour image processing. An ex-
tensive study on this topic can be found in [13], where the bi-conic IHLS
space is proposed in order to counter this problem. Specifically, within the
[HLS colour space, as it can be observed from Fig. 1 (right), the maximum
allowed saturation value (.S,,4;) depends linearly on the luminance (L) level:
Smaz = 2 (0.5 —|L —0.5]).

Consequently, in order to avoid the pitfall of ignoring luminance, one needs
to employ either an adequate colour space such as IHLS or take luminance
into account during the weighting of hue. Furthermore, even if the IHLS space
is used, one can still wonder if the linear dependence between S,,., and L is
optimal for the task under consideration.

4.2 Proposed model

In the light of the previous remarks, we propose a combined weighting model
for hue, which takes into account both saturation and luminance by means
of a double sigmoid function. As far as saturation is concerned, we use the
following sigmoid:

1

s € [07 1]7 g(s) - 14+ exp(—k(s - 30))

(18)

where the parameter s is the offset controlling the point for which g(s) = 0.5,
and k controls the slope. As shown by the plot of g(s) in Fig. 14 (left), for
large values of k, the sigmoid becomes equivalent to a threshold function at
the offset sy, which “brutally” designates the hues having saturations s <
so as achromatic, and they are totally ignored, whereas for £k = 1, all hues
are treated almost linearly with respect to their saturation, thus attributing
a relatively high significance to hues of lower saturation levels. Similarly to
Carron [5], we find it more pertinent to employ an intermediate form with
k = 10, which results in smoother transitions, between the chromatic and
achromatic classes. As far as the offset is concerned, it was empirically set as
So = 0.5.
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Fig. 14. Plots of weighting functions for the importance of colour in relation to

saturation (left) and in relation to luminance (right).

As to luminance, in an attempt to further benefit from the smooth transition of
the sigmoid function, we use it with the aim of detecting the luminance levels
for which saturation is important. Specifically, we use the following form with
this purpose:

1 .
1€[0,1], f(I)= ey 1 1 =05
y if 1>0.5

1
1+exp(kr (I-1u)

(19)

where the slope k;, = 10, and the lower and upper offsets are respectively
[, = 0.25 and [, = 0.75. Its plot is given in Fig. 14 (right). The arguments
of f(l) were set empirically, and divide the luminance range roughly in three
regions, with the middle corresponding to important saturation levels.

Weight of hue

1
0.8
0.6
0.4
0.2

0

Luminance

Fig. 15. The proposed combined luminance and saturation weight for hue.

The final weight « of hue is derived based on both saturation and luminance,
as:

l,s€0,1], a= f(l) x g(s) (20)

Fig. 15 shows its general allure. Consequently, hue values are considered as
“important” or as corresponding to chromatic pixels, only when both satu-
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ration is relatively high and luminance is at medium levels, hence making
it possible for saturation to reach its maximal range. In order to show the
practical interest of the proposed weighting scheme, application results follow.

4.8 Application results

In this section we present the results that have been obtained from a texture
classification test, employing the aforementioned hue weighting methodologies.

The Outex13 colour texture database has been used with this purpose. It
consists of 68 types of textures (Fig. 16) [15], with 20 examples from each,
making a total of 1360 images acquired under identical illumination conditions.
The test and training sets contain both 680 images while the classification is
realised by means of a kNN classifier employing the closest neighbour (k = 1),
computed with the Euclidean distance. As to the hue weighting models, we
compare the proposed double sigmoid of equation (20) (COMBINED), against
the absence of any weighting mechanism (NOWEIGHT), the scheme presented
in equations (15) and (16) (HANBR), the direct use of saturation (LINEAR),
the single sigmoid of saturation (18) (SIGMOID) as well as the model of
equation (17) (CARR), with their parameters tuned to their aforementioned
values. The textures of Outex13 are described by a single 360-dimensional
feature vector consisting of their hue histogram. The histogram is constructed
using equation (14), where ¢(x,y) is replaced with the corresponding value
provided by the weighting model in use.

Fig. 16. Examples of the 68 textures of Outex [15].

The classification accuracies that have been obtained are shown in table 1. In
general, the performances are relatively close, with the exception of HANBR
which deviates largely from the average. The most probable explication would
be the fact that this weighting scheme has been designed specifically for ex-
trema computation, hence is not suitable for general purpose distinction of
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Table 1
Classification accuracies (%) for outex13, using hue histograms calculated with dif-
ferent weight models.

Method || NOWEIGHT | HANBR | LINEAR | CARR | SIGMOID | COMBINED

Accuracy 82.35 70.59 83.53 83.62 83.82 84.85

chromatic pixels. Moreover, as expected the lack of any weighting mechanism
is the second worst among them, while even the linear use of saturation is
sufficient for improving this result. The sigmoid based models however have
outperformed their linear counterpart, even though with an almost negligible
difference. The additional participation of luminance, along with saturation,
in determining the importance of hues has had a minimal but positive effect
on the results.

5 Conclusion

The two main problems concerning the processing of colour images’ hue band
have been studied and solutions have been presented. The lack of a lattice
structure within the hue circle as well as the absence of an inherent order
among colours has made dynamic reference based hue orderings adaptive and
efficient solutions in this regard. However, they make use of a single reference
value, which is implicitly assumed to represent their input.

We have presented a more general solution, employing multiple references,
capable of taking into account images with arbitrary hue distributions. The
resulting morphological operators, were shown to be equivalent to their mono-
reference based versions, in the case of images dominated by a single hue
group, whereas with multiple hue groups, a more frequent case in practice, the
proposed approach has exhibited a more consistent performance, as asserted
by application examples.

Furthermore, another hue related problem, the distinction of chromatic pix-
els from achromatic ones has also been examined and a new sigmoid based
weighting model has been presented. Contrarily to previous approaches that
make exclusive use of the saturation component, it was chosen to exploit ad-
ditionally the luminance component, since the perception of colourfulness is
directly related to the luminance levels. This double sigmoid was compared
against multiple alternative approaches in the context of texture classification,
were it has achieved the overall best accuracy rate.
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