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Abstract. In the framework of Soil Moisture and Ocean fall estimates as well as the influence that the precipitation
Salinity (SMOS) Calibration/Validation (Cal/Val) activi- events can induce on the modelling of the water content in
ties, this study addresses the use of the PERSIANNZCCSthe soil is depicted by a comparison between different soil
database in hydrological applications to accurately simulatenoisture data. Point-like and spatialized simulated data us-
a whole SMOS pixel by representing the spatial and tem-ing rain gauge observations or PERSIANN — CCS database
poral heterogeneity of the soil moisture fields over a wideas well as ground measurements are used. It is shown that a
area (550 kn?). The study focuses on the Valencia An- good adequacy is reached in most part of the year, the pre-
chor Station (VAS) experimental site, in Spain, which is one cipitation differences having less impact upon the simulated
of the main SMOS Cal/Val sites in Europe. soil moisture. The behaviour of simulated surface soil mois-
A faithful representation of the soil moisture distribution ture at SMOS scale is verified by the use of remote sensing
at SMOS pixel scale (5050 k) requires an accurate es- data from the Advanced Microwave Scanning Radiometer on
timation of the amount and temporal/spatial distribution of Earth observing System (AMSR-E). We show that the PER-
precipitation. To quantify the gain of using the compre- SIANN database provides useful information at temporal and
hensive PERSIANN database instead of sparsely distributegpatial scales in the context of soil moisture retrieval.
rain gauge measurements, comparisons between in situ ob-
servations and satellite rainfall data are done both at point
and areal scale. An overestimation of the satellite rainfall]  |qtroduction
amounts is observed in most of the cases (about 66%) but
the precipitation occurrences are in general retrieved (abougolid knowledge of spatial and temporal soil moisture
67%). dynamics is essential in hydrological and meteorological
To simulate the high variability in space and time of sur- modelling to improve our understanding of land-surface-
face soil moisture, a Soil Vegetation Atmosphere Transferatmosphere interactions. Numerous studies have shown the
(SVAT) model — ISBA (Interactions between Soil Biosphere potential of using satellite data for the assessment of sur-
Atmosphere) is used. The interest of using satellite rain-face soil moisture at global scale. Particularly, passive L-
band microwave radiometry has proven promising to ap-
proach this difficult task due the soil penetration depth, and
Correspondence to: S. Juglea the fact that it is passive and thus rather insensitive to struc-
BY (silvia.juglea@cesbio.cnes.fr) tural features — on top of its ability to go through vegetation
Lprecipitation Estimation from Remotely Sensed Information and atmosphere with much less alterations than longer wave-
using Artificial Neural Networks-Cloud Classification System — lengths and active systems (Wang et al., 1990a; Schmugge
http://chrs.web.uci.edu/persiann et al., 1992; Jackson et al., 1995, 1999). The Soil Moisture
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and Ocean Salinity (SMOS) mission carrying the first spacesainfall observations. The use of satellite-based information
borne passive L-band radiometer on board, has recently beeio improve spatial rainfall estimates has been widely reported
launched by ESA. One of its main objectives is the mapping(Hsu et al., 1999; Sorooshian et al., 2000; Grimes and Diop,
of global surface soil moisture fields with an accuracy bet-2003). However, so far few studies have investigated the ap-
ter than 0.04 im—2 and a temporal resolution of 2—-3 days plication of these data sets in hydrological models. Studies
(Kerr et al., 2001). were conducted to evaluate the performance of hydrological
The validation and calibration of the SMOS measurementanodels using operational satellite rainfall estimates in South-
is a crucial phase of the mission. In this context, repre-ern Africa (Thorne et al., 2001; Hughes et al., 2006; Hughes,
sentative values of soil moisture and brightness temperatur2006; Wilk et al., 2006). Hughes (2006) concluded that the
for an entire SMOS pixel comparable to the satellite prod-satellite rainfall data do not reflect the strong influences on
uct at any overpass time are needed. To achieve a reprgrecipitation of topography in some of the basins. How-
sentative value of SMOS’s footprint, it is essential to char- ever, the preliminary results obtained in four studied areas
acterize and monitor an area slightly larger than the actuatepresenting very different climate regimes within Southern
pixel (3dB footprint) in terms of soil moisture/brightness Africa are encouraging enough to suggest that further inves-
temperature. Considering the antenna pattern of SMOS, atigations are justified. Collischonn et al. (2008) evaluated the
area of 55 km over land (43 km on average over the field ofrainfall estimates of the Tropical Rainfall Measuring Mission
view) is seen by the instrument. However, observing the(TRMM) satellite over the Tapajos river basin in Amazon.
spatial distribution of soil moisture at the catchment (areal) They concluded that it is very unlikely that remote sensing
scale by means of point is situ measurements is a difficuliof precipitation will completely replace ground based mea-
task. Dense sampling is required to achieve a good accusurements, but that it is possible that the best information
racy which is very costly and labour-intensive. To overcomefor hydrological applications will be the combination of re-
these limitations, one issue currently under study is to use anote sensing and ground data. Gottschalck et al. (2005) and
Soil-Vegetation-Atmosphere-Transfer (SVAT) model to ob- Ming et al. (2010) carried out studies over the continental
tain distributed soil moisture fields. Juglea et al. (2010) United State region. Gottschalck et al. (2005) studied the
proved the ability of the SVAT scheme (SURFEX (Exter- impact of different precipitation products on soil state, while
nalized Surface) — module ISBA (Interactions between Soil-Ming et al. (2010) forced a Land Surface Model with both
Biosphere-Atmosphere) (Noilhan and Planton, 1989; Noil-satellite estimates and in situ rainfall measurements to test
han and Mahfouf, 1996) to simulate the high temporal andhow well they can predict hydrologic states and fluxes useful
spatial heterogeneity of soil moisture over the Valencia An-for water resource applications. They confirmed that global
chor Station (VAS) experimental site in Spain by using in precipitation measurement from space offers great value for
situ point measurements for model calibration and validation hydrology and water resource applications, especially for ar-
VAS was selected as a key site providing in situ geophysicaleas with lack of ground measurements. However, depending
measurements over an area as wide as a SMOS pixel (Lopebn the specific purpose of the application, such as drought
Baeza et al., 2005a; Delwart et al., 2007). monitoring or flooding forecasting, continued research is re-
At SMOS pixel scale (5850kn?) soil moisture vari-  quired before satellite rainfall products are skillful enough
ability is mostly driven by atmospheric forcing effects, thus for operational use.
mainly being influenced by climatic conditions at large scale A database with high potential to improve spatial rain-
and precipitation. Since precipitation is considered as arfall estimates and thus modeled soil moisture data at SMOS
important factor in controlling spatial and temporal patternspixel scale especially in areas where rain gauge stations are
of soil moisture, especially in arid and semiarid regions absent or sparse is the PERSIANN-CCS (Precipitation Es-
(Grayson et al., 2006), a good estimation of water content irtimation from Remotely Sensed Information using Artifi-
the soil requires an understanding of the spatial and tempoeial Neural Networks-Cloud Classification System — http://
ral variability of the rainfall. In fact, rainfall data availability —chrs.web.uci.edu/persiann) satellite rainfall data (Hong et al.,
has been highlighted as a major constraint on the effective2004). With 0.040.04 spatial and 1 h temporal resolution
application of water resource models, and it has been argueid belongs to the satellite rainfall databases with currently
that quality of rainfall model inputs is often more important best resolutions, and corresponds well with the high reso-
than the choice of the model itself (Wilk et al., 2006). Spa- lution grid used in the SMOS soil moisture retrieval scheme
tial rainfall estimates derived from rain-gauges are widely (see the ATBD document — www.cesbio.ups-tlse.fr/fr/smos/
used as input to hydrological models and as “ground truth’smosatbd.html). Hughes (2006) found high correlation be-
for satellite rainfall measurements (Seed and Austin, 1990)tween PERSIANN estimates with single point rain gauges
However, again these in situ measurements are often sparseily a number of basins in Southern Africa, while Gottschalck
and irregularly distributed in space which questions their rep-et al. (2005) reported that in the central United States PER-
resentativeness of an area of SMOS pixel size. The incorSIANN suffers from a few deficiencies-most notably an over-
poration of satellite-based rainfall estimates in hydrologicalestimation of summertime precipitation (200-400 mm).
modelling is expected to offer an alternative to ground based
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The objective of this paper is to investigate the benefit
of applying the PERSIANN database to reproduce the high . PERSIANN poiris
temporal and spatial heterogeneity of soil moisture fields at *  Complete meteorological stetions
SMOS pixel scale over the VAS test site compared to using * Fenomae
sparsely and irregularly distributed in situ rain gauge mea- .\ . . ..
surements. For this purpose, the SVAT scheme SURFEX s e s,
— module ISBA originally driven by sparse in situ meteo- e e e e e
rological measurements over VAS (Juglea et al.,, 2010) is ™7 . . . . . . . . . . . e ‘0"
also forced with satellite rainfall data from the PERSIANN R S Rl
database. First, the skill of the PERSIANN products to repli-
cate the variability of gauge rainfall amounts and occurrence
at point and areal scale is tested. Then, the PERSIANN rain- 5., =~ ° "~ "~~~ "> " 7" 7" o
fall data is input to the ISBA model to simulate the spatial e
and temporal heterogeneity of soil moisture fields at point |~~~ =~~~
and spatialized scale. These simulations are compared witt e e e e
in situ soil moisture measurements as well as soil moisture e e e e e e
estimates obtained from simulations using in situ rain gauge |
data again at both scales. The spatialized soil moisture prod:
uct obtained using PERSIANN estimates is compared with s/ ——F————— L —— 20— ——L X
remote sensing soil moisture product available at this time. Longituda
In this framework, the behaviour at the SMOS footprint scale
of the spatialized soil moisture product obtained using PER-_. T I . .
SIANN rainfall was tested by using remote sensing productsFlg' 1..D|str|but|on of the in situ meteorological stations (red dots)

. . . and rain gauges (blue dots) over the<&D kn? VAS area (the four
dgrlved from AMSR-E (Advanced Microwave Scanning Ra- large black dots representing its limits). The PERSIANN points are
diometer of the Earth Observing System). represented in small black dots.

Latitude
w
©
w
T

2 Studied area and data - . S
midity at screen level, atmospheric pressure, precipitation,

wind speed and direction and solar and atmospheric radia-
tion. The atmospheric forcing is used as an input to the SVAT

The Valencia Anchor Station (VAS) is located in Eastern model to obtain the surface soil moisture. According to the
dataset, in the 4 fully equipped meteorological stations lo-

Spain, about 80 km inland to the West of Valencia. The site . h Krr? h
was selected by ESA with the main objective to characterizeCated into the VAS 5850 area, the measured data are

a large-scale reference area. It is dedicated specifically to théeglstered onl a 3|O/60 min Eas_ls: air temperature ar!d h“”?'f'j'
validation and calibration of low spatial resolution Earth Ob- Ity at screen level, atmospheric pressure, precipitation, win

servation data and products. The site, defined within the nat—Speed and direction, and solar and atmospheric radiation. In

ural region of the Utiel-Requena Plateau, represents a reasofiddition, among the rain gauges, some of them are record-

ably homogeneous area of about-Z kn? (Lopez-Baeza ing the weather information daily. In order to run the SVAT

et al., 2008), mainly dedicated to vineyard crops (about 56%models with a suitable temporal resolution, standard diurnal

cover), and other Mediterranean land uses (shrubs, oak$YClES are reconstructed from the daily data.
pine, olive and almond trees, etc). The soil types are Haplic Over the 5650 kn? area in situ soil moisture measure-
and Petrocalcic Calcisols, and Calcaric Cambisols, and aré&ents are available. In this study, soil moisture data recorded
deep with accumulation of carbonates and with low organicduring the Mediterranean Ecosystem L-Band characteriza-
matter content (Lopez-Baeza et al., 2008). Considering thdion Experiment 2 (Melbex 2-39.526 N, 1.288 W) is used.
wavelength of observatior. €21 cm), the area remains as a The campaign was carried out from April 2007 to Decem-
ploughed bare soil for about half a year. ber 2007 to observe the surface emission of vineyards (Cano
VAS is a semiarid environment with low annual precip- €t al., 2008). The soil is characterized as sandy clay loam,
itation (around 400 mm) and is characterized by an extenWith a texture composed of 45% sand and 26% clay. The
sive set of measurements at different levels (both in the atSOil moisture measurements were carried out at 5cm depth
mosphere and in the soil) in order to derive surface energyVithin an area of about 2fnevery 10 min using three ca-
fluxes. Over the VAS area (50 kn?) 22 meteorological ~ Pacitive probes. In the area, the soil was ploughed at least 3
stations, 4 fully equipped and 18 rain gauges, are randomljimes during the growing period of vineyards.
and not uniformly distributed (Fig. 1). The 4 fully equipped  Surface static fields (vegetation fraction, roughness, leaf
stations provide meteorological data: air temperature and huarea index (LAI), soil texture, and others) are accessible.

2.1 Valencia Anchor Station
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A detailed description of the vegetation characteristics islimit in the soil moisture retrieval from AMSR-E data. Thus,
available at 1 km resolution based on ECOCLIMAP, a sur-the polarization ratio is additionally used as it provides a bet-
face parameter database derived from land cover and climatiter agreement (than the soil moisture product from AMSR-E)
maps (Masson et al., 2003). The LAI data comes from thewith simulated soil moisture even in the vegetation growing
MODIS instrument (Moderate Resolution Imaging Spectro- period (Juglea et al., 2010). By means of the 6.9 GHz hor-
radiometer; http://modis.gsfc.nasa.gov/) at 1 km spatial resoizontally (h) and verticaly (v) polarized brightness tempera-
lution provided on a daily and 8-day basis. An accurate mapures we computed the polarization ratio (PR) as following:
representing the spatial distribution of clay and sand (Millan-
Scheiding et al., 2008) at 10 m resolution covering all the
50% 50 knt area is available. PR 12— Tbn B
Thy + Thn

2.2 PERSIANN database ) ) ) )
The advantage of using the PR is that it normalizes out the

The PERSIANN system for rainfall estimation is under de- Surface temperature and leaves a quantity that depends pri-
velopment at The Center for Hydrometeorology and RemoteMarily on soil moisture, vegetation and atmosphere (Kerr
Sensing at The University of California, Irvine. The fun- and Njoku, 1990; Njoku et al., 2003; Owe et al., 2001).
damental algorithm is based on a neural network and card € AMSR-E brightness temperature and soil moisture prod-
therefore be easily adapted to incorporate relevant informaliCts are re-sampled to a global cylindrical 25km Equal-
tion as it becomes available. The original system (Hsu et al.Area Scalable Earth Grid (EASE-Grid) cell spacing (Njoku,
1997) was based on geostationary infrared imagery and latef004). Two AMSR-E pixels are covering the VAS area. The
extended (Hsu et al., 1999) to include the use of both in-average of these two pixels is considered to be representative
frared and daytime visible imagery. Further developmentfor the 50<50 kn? area corresponding to one SMOS pixel.
of PERSIANN has included cloud image segmentation and
classification for rainfall estimation at 0.24.04 resolution
(Hong et al., 2004). Instead of extracting local texture infor-3 Methodology — ISBA modelling
mation in PERSIANN (Hsu et al., 1997, 1999; Sorooshian
etal., 2000), PERSIANN-CCS extracts information from the The model used to generate the temporal behaviour of the
whole cloud patch and provides multiple infrared brightnesssoil moisture from atmospheric forcing and initial condi-
temperature versus rainfall raf€xR) relationships for dif-  tions is called SURFEX (stands for surface exteralis-
ferent cloud classification types. Le Moigne et al., 2009) and was developed at the National
The product used in this study is PERSIANN — CCS, Center for Meteorological Research (CNRM) ateb-
hereafter referenced as PERSIANN. It exhibits 004 France. It gathers all the developments and improve-
spatial and 1 h temporal resolution with complete coveragements made in surface schemes, and contains four differ-
between 60S to 60 N. The VAS area includes 221 PER- ent modules: ISBA (Interactions between Soil-Biosphere-

SIANN grid points (see Fig. 1). Atmosphere), Sea and ocean, TEB (Town Energy Balance)
and Lake. For this work only the ISBA module (Noilhan
2.3 AMSR-E data and Planton, 1989; Noilhan and Mahfouf, 1996) is used. It

simulates the interaction between the low-level atmosphere,
The Advanced Microwave Scanning Radiometer (AMSR) of the vegetation and the soil, by using a physically based
the Earth Observing System (EOS) is a passive microwavenethod that solves the water and energy budgets of the soil-
scanning radiometer, operating in horizontal and vertical po-vegetation system. In this study, the modelling of the heat
larizations at six wavelengths (6.925, 10.65, 18.7, 23.8, 36.5and water transfers into the soil is based on the diffusive
and 89 GHz) with an incidence angle of°s5_.aunched on  scheme — ISBA-DIF (Boone, 2000; Boone et al., 2000). De-
the Aqua satellite in May 2002, it operates in polar sun-tails on the choice of the parametrization can be found in
synchronous orbit with equator crossing at 01:30 p.m. andJuglea et al. (2010). The atmospheric forcing required to run
01:30a.m. local solar time. Global coverage is achieved evthe ISBA model is composed of: air temperature and hu-
ery two days or less depending on the latitude. The meamidity at screen level, atmospheric pressure, precipitation,
spatial resolution at 6.9 GHz is about 56 km. The data usedvind speed and direction and solar and atmospheric radia-
in this study are AMSR-E Level 3 soil moisture and bright- tion. The soil layer discretization was chosen so as to enable
ness temperature at 6.9 GHz (Njoku, 2004), and are providedomparisons of realistic configurations as a function of the
by the National Snow and Ice Data Center (NSIDC). The penetration depth, between ground measurements and/or the
inversion algorithm for the AMSR-E soil moisture uses the remote sensing data, from 1 cm at the surface down to 1.50 m
10.7 GHz and 18.7 GHz brightness temperature data (Njokwf depth (1, 2, 3, 4, 5, 7, 9, 10, 30, 50, 80, 100, 150 cm).
et al., 2003). The increased signal attenuation by vegetatioifhe soil moisture modelling is done in two steps: one con-
and the superficial sensing depth for higher frequencies is aisted in a point modelling, followed by a spatialized one.
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http://modis.gsfc.nasa.gov/

S. Juglea et al.: Interest of using the PERSIANN database 1513

The data processed is either in situ data from VAS (meteothese products were aggregated through a spatial mean. Tex-
rological observations and surface state characteristics) aregare maps (sand and clay) are available at 10m resolution. In
either remote sensed data from PERSIANN (rainfall esti-this case, the aggregation to the 4km? was accomplished

mates). The two procedures are illustrated next. by considering the main class of texture into the grid cell.
The ISBA-model was then driven by means of the respective
3.1 Point procedure precipitation data, atmospheric forcing and land surface data

grids for the two scenarios (a) and (b) at an hourly time-step
In the point procedure the ISBA model is forced in different to obtain spatially distributed soil moisture datasets for the
point locations. As the goal of this study is to evaluate theVVAS site. For each scenario the respective soil moisture grid
influence of precipitation on the soil moisture simulations, was averaged to one representative soil moisture value for the
different rainfall data, namely in situ measurements from theentire 50<50 kn¥ area comparable to satellite products reso-
two rain gauges “Caudete de las Fuentes” (CAFL32 W, lution. To check the behaviour of both spatialized soil mois-
39.52 N), and “Caudete de las Fuentes 1" (CA FU1l - ture datasets (simulated by means of in situ observations or
1.28 W, 39.55 N) and the closest PERSIANN point PP148 PERSIANN satellite estimates) a comparison with existing
1.30 W, 39.54 N) (Fig. 3), were input to the model while a products derived from AMSR-E is performed over a 2-year
common set of surface characteristics and atmospheric forgperiod. The soil moisture simulations are extracted for the
ing was used for each of the three model runs. Analysis of thdime steps close to the satellite overpass times. As AMSR-
simulated soil moisture as well as comparisons with groundg penetration depth is about 2 cm, the simulated soil mois-

measurements are presented in Sect. 4.2.1. ture integrated over the first 2 cm is considered. Comparisons
between the simulated soil moisture datasets using different
3.2 Spatialized procedure precipitation input at both point and spatialized scales as well

as comparisons of spatialized soil moisture simulations and
In order to reproduce the high temporal and spatial heteroremote sensing products from AMSR-E are presented in fol-
geneity of soil moisture over the VAS site, in the spatialized lowing paragraphs.
procedure the ISBA model is run over a regular grid cover-
ing the entire area. Thereby, two scenarios were investigated,
(a) using precipitation data from the 22 in situ rain gauges4 Results and discussion
and meteorological stations, and (b) using satellite precipi-
tation data from the 221 PERSIANN points within the VAS In order to test the ability of the PERSIANN satellite rain-
area. For both scenario runs, the input data first had to béalls to be used as an input of a hydrological model so as
prepared by interpolation to a common grid, though with dif- to accurately simulate a whole SMOS pixel, an evaluation
fering grid cell sizes for the two scenarios according to the re-of the product is undertaken. In this chapter results of the
spective spatial availability of the applied precipitation data.conducted analyses are presented and discussed. Firstly, rain
In case of scenario (a) the &80 kn? area was divided into  rates comparisons between in situ rainfall observations and
10x10kn¥ cells. Figure 1 presents the spatial distribution the PERSIANN points are shown at both point and areal
of the available meteorological stations/rain gauges over thacale. Secondly, the ISBA soil moisture simulations over the
VAS. As an irregular distribution of the stations can be no- VAS site at point and spatialized scale using the two scenar-
ticed (for example in the center of the area there is no datajos with (a) in situ meteorological observations and (b) the
an interpolation (Inverse Distance Weighted — IDW) of all PERSIANN database as input are illustrated. Results of the
the available meteorological stations is performed over thewo scenario runs are compared with ground measurements
10x 10 kn? grid as described in Juglea et al., 2010. In case ofas well as with each other. Thirdly, comparisons of the spa-
scenario (b) the 5050 kn? area was divided into %44 kn? tialized soil moisture simulations from the two scenarios with
cells corresponding to the resolution of the PERSIANN grid AMSR-E products over a two-year period are depicted.
(0.04x0.04). Temperature, atmospheric pressure, wind
speed, wind direction and relative humidity data from the 44.1 Rainfall comparison
complete meteorological stations were interpolated over this
grid using IDW. The downwelling shortwave fluxes from the In this section, the skill of the PERSIANN rainfall prod-
Land-SAF radiation product (http://landsaf.meteo.pt/) wereucts to replicate the variability of rainfall amounts and oc-
extracted over the same grid while the longwave fluxes werecurrence as measured by in situ rain gauges within the VAS
calculated using the interpolated data and the formulatiorsite is investigated for 2006 and 2007. Fig@&eresents
from Brutsaert (1975) which uses only inputs of measuredcomparisons of monthly rainfall estimates between all 22
surface air temperature and moisture amount. The roughmeteorological stations within the %0 kn? VAS area and
ness and the fraction of vegetation (ECOCLIMAP) and thetheir nearest PERSIANN points (PP). Although there is a
LAI (MODIS), are at 1 km resolution. Due to their differ- general agreement in rainfall patterns, the precipitation val-
ent spatial resolutions when compared to thet&kn? grid, ues produced by PERSIANN substantially overestimate the
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http://landsaf.meteo.pt/

1514 S. Juglea et al.: Interest of using the PERSIANN database
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Fig. 2. Monthly comparisons between all the meteorological stations/rain gauges (black line) withinx56 66 VAS area and their
nearest PERSIANN points (red lines) for 2006 and 2007.

rainfall amounts in comparison with the gauges. This overesPERSIANN point for the entire VAS site for the years 2006

timation is clearly more distinct in the winter months than in and 2007. It shows that the deviation between the rain gauge
the summer months, and most extreme in September 2008neasurements and the PERSIANN product remains spatially
where the rain gauges record rainfall amounts smaller tharand temporally consistent in most of the considered cases.
50 mm/month whereas the PERSIANN products systematTable 2 shows the differences in terms of rainfall occurrence
ically exceeds 150 mm/month. The same pattern is ob{number of detected rain events) between all meteorological
served in January and February 2007, though to a less prcstations/rain gauges available within the VAS area and their
nounced extent. Table 1 lists both the root-mean square emearest PERSIANN point for the years 2006 and 2007 at a
ror (RMSE) and the mean bias (Mbias) of daily precipitation daily scale. In most cases the PERSIANN points show at
between each corresponding in situ rainfall observation andeast twice the number of rainfall events than the rain gauges.
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Table 1. List of all the meteorological stations/ rain gauges (1st column) and their nearest PERSIANN points (2nd column) available over
the VAS area. The root-mean square error (RMSE) and the mean bias (Mbias) of daily precipitation between each in situ rainfall observation
and PERSIANN point are calculated for 2006 and 2007.

Station Name PERSIANN 2006 2007

point RMSE Mbias RMSE Mbias

mm/day mm/day mm/day mm/day

CASAS DE VES 28 5.69 0.80 6.04 0.90
CASAS IBANEZ 42 6.96 0.90 6.95 111
VILLAMALEA 56 6.13 0.77 6.57 1.02
REQUENA LA PORTERA COOP. 102 6.04 0.82 6.43 1.11
REQUENA CAMPO ARCIS 100 4.79 0.77 5.82 1.06
DEL MORO CHJ 130 5.82 0.76 5.92 0.94
REQUENA 136 5.31 0.81 6.31 1.19
CAUDETE DE LAS FUENTES 148 5.58 0.73 5.95 1.03
MINGLANILLA 141 5.70 0.34 5.98 0.79
PRESA DE CONTRERAS 143 6.15 1.08 6.72 0.76
UTIEL CHJ 167 5.83 0.76 6.92 1.59
UTIEL 167 6.03 0.69 6.93 1.55
UTIEL (LA CUBERA) 166 5.61 0.71 6.38 1.69
CAMPORROBLES COOPERATIVA 196 5.86 0.75 5.53 0.70
CAMPO ARCIS 100 4.75 0.77 5.22 1.00
CERRITO REQUENA 119 5.55 0.78 5.53 1.08
VAS 165 5.71 0.91 5.26 1.02
GRAJA DE INIESTA 122 4.54 0.62 5.43 0.80
CONTRERAS 143 6.03 0.86 6.53 0.82
CAUDETE DE LAS FUENTES 1 149 5.52 0.68 5.93 1.23
VILLAMALEA 1 72 4.80 0.75 6.20 1.01
CERRO 24 4.87 0.76 5.48 1.01

In order to investigate the spatial and temporal variabil-
ity of the PERSIANN product, a more in-depth compari- . g;ﬁﬁ;igomrs
son between a representative rain gauge called Caudete d ®  Raingauges
las Fuentes 1 (CA FU1) and its 9 neighbouring PERSIANN
points (PP) was conducted on a daily basis. Figure 3 de-
picts the location of the selected rain gauge and the surround:
ing PERSIANN points, while Table 3 summarizes the differ-
ences in daily rainfall amounts in terms of RMSE and Mbias
for the years 2006 and 2007. Again, substantial differences
in terms of range are observed and in terms of spatial vari-
ability an homogeneous rainfall distribution is encountered °
around the CA FU1 point. In general, PERSIANN over- %[ “AUCFTE el FLENTES
estimates rainfall compared to the gauges, especially in the

396

39531 e PP 165 e PP 166 e FPPI167

3956

Latitude

@ CAUDETE delas FUENTES 1
3954 e PP 148 e PP 148 « PP150

rainy seasons, which was also found over IndiaBspwn wer s . PP o P
(2006) and across Australia, the Pacific, parts of Asia by
Sorooshian et al. (2000). The most significant difference in %5 =5 % % o= awm gz e

rainfall amount between CA FU1 and its surrounding PER- Longituce
SIANN points is again observed in September 2006 — while

:hﬁ ?ﬁhFU;gggg‘?qu[\?e rgcordsponlz a S“g.ht amountg)f ralnd- Fig. 3. Positions of Caudete de las Fuentes (CA FU) and Caudete
all all the points (PP) show rainy events beyon de las Fuentes 1 rain gauges (blue dots), PERSIANN neighboring

20mm/day. During the summer season, the rain gauge anints (black dots with number of reference), and the Melbex 2 soil
the PERSIANN points show better agreement with CA FU1 moisture campaign site (green dot).

rainfall amounts around 45 mm/day and rainfall amounts of
the PERSIANN points of about 70 mm/day in the months of
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Table 2. Contingency table illustrating the number of rain events measured by the satellite but not measured by the rain gauges and vice
versa (R stands for “rain” and NR stands for “non rain”). The comparison was done between all the meteorological stations/ rain gauges and

their nearest PERSIANN points available over the VAS area for 2006 and 2007.

Station Name/PERSIANN point 2006 2007

R/R R/NR NR/R NR/NR R/R R/NR NR/R NR/NR
CASAS DE VES/ PP 28 63 44 51 208 75 45 40 205
CASA IBANEZ / PP 42 21 19 86 240 26 11 83 245
VILLAMALEA / PP 56 38 28 71 229 48 12 60 245
REQUANA PORTERA / PP 102 17 10 96 243 19 7 85 254
REQUENA CAMPO ARCIS /PP 100 39 23 71 233 37 17 67 244
DEL MORO CHJ/ PP 130 30 12 84 240 34 3 81 247
REQUENA / PP 136 35 20 84 227 39 7 74 245
CAUDETE DE LAS FUENTES / PP 148 26 11 90 239 35 5 78 247
MINGLANILLA / PP 141 33 17 78 238 34 8 74 249
PRESA DE CONTRERAS / PP 143 44 33 69 220 50 23 67 225
UTIEL C.H.J./ PP 167 38 21 81 226 36 9 79 241
UTIEL / PP 167 36 17 83 230 38 5 77 245
UTIEL (LA CUBERA) / PP 166 51 44 66 205 51 42 64 208
CAMPORROBLES COOPERATIVA/PP 196 30 13 84 239 31 6 77 251
CAMPO ARCIS /PP 100 56 52 54 204 45 56 59 205
CERRITO REQUENA /PP 119 54 47 63 202 57 37 49 222
VAS / PP 165 38 41 78 209 62 60 53 190
GRAJA DE INIESTA/ PP 122 52 38 69 207 55 24 58 228
CONTRERAS / PP 143 49 41 64 212 53 33 64 215
CAUDETE DE LAS FUENTES 1/ PP 149 51 46 68 201 52 26 62 225
VILLAMALEA 1/ PP 72 45 40 58 223 57 25 53 230
CERRO/PP 24 46 40 58 222 47 32 68 218

Table 3. Statistical analysis between Caudete de las Fuentesl (CA FU1) rain gauge and of its nine PERSIANN neighbours (PP) for 2006
and 2007.

2006 2007
Rain gauge CA FU1/PERSIANN point RMSE Mbias RMSE Mbias
mm/day mm/day mm/day mm/day

CA FU1/PP131 5.64 0.71 5.19 1.02
CA FU1/PP132 5.44 0.69 5.70 1.06
CA FU1/PP133 5.79 0.84 5.79 1.25
CA FU1/PP148 5.60 0.69 5.36 1.04
CA FU1/PP149 5.53 0.68 5.93 1.24
CA FU1/PP150 5.61 0.74 6.35 1.45
CA FU1/PP165 5.66 0.71 5.31 1.09
CA FU1l/PP166 5.62 0.74 6.12 1.35
CA FU1/PP167 5.64 0.79 6.42 1.61

June, July and August (2006 and 2007). The fact that thepoints. The analysis is done for 2007 at a daily scale, and
satellite data represents areal rainfall, while the gauge dateesults are presented in Fig. 4. It shows that a slight improve-
represents point rainfall can also induce precipitation differ-ment in terms of RMSE and correlatioRY) is obtained

ences. In order to test this, rainfall amounts of one grid cellwhen comparing data at the same spatial scale: while no
of the interpolated 1010 kn? rainfall grid derived from all  correlation is observed between the interpolated rainfall and
in situ observations within VAS are compared with rainfall each nearest PP individually and the RMSE value is above
estimates at each of the 12 PERSIANN points located within6.73 mm/day in most cases, the comparison between the
this cell as well as with the spatial mean of all 12 PERSIANN spatial mean of the 12 PP and the interpolated rainfall reveals
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Fig. 4. Comparison between interpolated rainfall produeakis) and PERSIANN pointsfaxis). The interpolated rainfall is representative

over a 1010 kn? area and is obtained using in situ observations over VAS. The mean PP represents the spatial average of the 12 PERSIANN
points available within the same grid as the interpolated rainfall. The top left figure provides a map (longéxide latitudey-axis)
representing the interpolated rainfall and the PERSIANN points, while the top right figure represents the comparison between the interpolated
rainfall and the PERSIANN mean. The 2nd, 3rd and 4th rows present comparisons of the interpolatedxaanfa)l¢nd each PERSIANN

point (y-axis). The analysis is done for 2007 at a daily scale.

anR? of 0.23—/— and an RMSE of about 5.32 mm/day. Fig- rainfall estimates also contributes to the disagreement of the
ure 5 finally shows a comparison of the daily rainfall rates two datasets. This is underlined by the fact that the corre-
(2006 and 2007) of the rain gauges CA FUL1 and CA FUlation is improved when comparing the two datasets at the
which are located about 4 km apart (see Fig. 3). Despite theisame spatial scale, clearly highlighting the importance of
proximity, the recorded rainfall at the two stations for 2006 scaling issues. The still existing discrepancy could for ex-
is not highly correlated §2=0.36 —/—). This low correla-  ample be caused by uncertainty in the spatialized rainfall es-
tion indicates a high small-scale spatial rainfall variability timate from in situ data introduced through interpolation of
over the VAS area, and demonstrates that the missing corthe sparse and irregularly distributed rain gauge data, which
relation between rain gauges and PPs — not exactly locateflirther emphasizes the high importance of the scaling prob-
at the same points — could at least partly be explained byem when comparing datasets. Another explanation for the
this phenomenon. However, most likely the issue of com-remaining disagreement between the two datasets even when
paring point rain gauge data with spatialized PERSIANN compared at equal spatial scale could also be the fact that
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Fig. 5. Precipitation events at Caudete de las Fuente(s) versus Caudete de las Fuentes-aXis) rain gauges for 2006 (left hand figure)
and 2007 (right hand figure). See Fig. 3 for gauge positions.

the PERSIANN system does not involve local calibration in total rainfall amounts recorded for the entire period are in
producing its rainfall estimates. It is suggested that the prodcomparable range with 189.85 mm and 172.08 mm at CA FU
uct could be improved through calibration by means of inand CA FU1, respectively, the precipitation occurrence reg-
situ observations. Finally, the rain gauge measurements anstered at CA FU is more widely spread in time, causing a
quite error-prone as well through shelter effects/undercatchonger period of dry soil moisture values. The PP148 runs
and sometimes are very difficult to access in a timely fashionindicate generally a much wetter soil than the measured one,
to drive a model. These issues has to be considered as thespecially in the second half of the investigated time period.

can induce additional uncertainties. This pattern is consistent with the overestimation of late fall
) ) and winter precipitation by the satellite products. A total
4.2 Soil moisture rainfall amount of 314.12 mm within the considered period

is encountered in the PERSIANN data, almost twice than the

4.2.1 Pointto point comparison between soil total rain gauge amounts.

moisture data
Figure7 shows a more detailed comparison of soil mois-

The objective of this comparison is to assess whether théure simulated with the three different precipitation inputs at
satellite data can be used instead of gauge data as inputs the top 5cm of the soil at an hourly time step for the years
a hydrological model. For the point scale soil moisture sim-2006 and 2007. The statistical analysis of the comparison is
ulations the SVAT model was driven by precipitation input summarized in Table 4. The analysis indicates a wide range
from three different point datasets, namely from the CA FU of accuracies with a noticeable season-dependency. As in
and CA FUL1 rain gauges and the PERSIANN point PP148the case of rainfall amounts largest disagreements are gen-
The simulated soil moisture and in situ point soil moisture erally observed during the late fall and early winter seasons.
measurements recorded during the Melbex 2 campaign wer&/hen soil moisture simulated by means of CA FU 1 and
compared at an hourly scale from June to December 2007CA FU rainfall records is compared with soil moisture es-
The comparisons were conducted over the top 5cm of soitimated from PP148 data for the year 2006, RMSE values
and are illustrated in Fig. 6. Results indicate that there isof 0.07 m? m~2 and 0.06 Mm~3 are obtained, respectively.
a considerable impact on soil moisture when using differ-When only considering the period from January to the end
ent precipitation forcing for the SVAT simulations. All three of August 2006 a notable improvement of the results is ob-
simulations show deviations from the observed in situ soilserved with RMSE values of 0.0372m~2 for both com-
moisture with RMSE values ranging from 0.02 m~2 for parisons, CA FU/PP148 and CA FU1/ PP148. The corre-
CA FU1 to 0.06 M m~2 for CA FU and PP148, though with lation values R?) are also better, reaching values of 0.70
considerably different patterns. The CA FU1 simulation fol- —/— and 0.64—/— for the period from January to August
lows the observed soil moisture trend most closely over the2006 compared to 0.52/— and 0.50-/— for the entire year
entire studied time interval. Meanwhile the CA FU simu- 2006 in case of CA FU/ PP148 and CA FU1/ PP148, re-
lation generally depicts dryer soil moisture values than thespectively. To better understand these discrepancies obtained
measured ones. This can be explained by the observed rait the end of the year, a more detailed analysis is done for
fall patterns at the two different gauge stations. While theSeptember 2006 (day of year 244 to 273). For the PP148
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Fig. 6. Simulated soil moisture integrated over top 5 cm of soil using Caudete de las Fuentes rain gauge, Caudete de las Fuentes 1 rain gaug
and the PERSIANN point 148 compared to Melbex 2 in situ soil moisture from 1 June to 31 December 2007.

Table 4. Statistical analysis between simulated point soil moisture integrated over the top 5 cm of soil using Caudete de las Fuentes (CA FU),
Caudete de las Fuentesl (CA FU1) and the PERSIANN point PP148 for 2006 and 2007.

CAFU/PP148 CAFU1l/PP148 CAFUL/CAFU

2006 RMSE mm—3 0.07 0.06 0.03
RZ /- 0.52 0.50 0.87
Mbias msm—3 0.04 0.02 -0.02
Eff —/— -0.92 0.01 0.74

2007 RMSE mm—3 0.09 0.06 0.05
RZ —/- 0.54 0.62 0.81
Mbias mPm—3 0.07 0.04 —0.04
Eff —/— —2.26 0.18 0.50

simulation a monthly precipitation average of 5.30 mm/day0.53 —/— and 0.40—/— for CA FU1/ PP148 and CA FU/
results in a monthly soil moisture mean of 0.28mm 3, PP148, respectively. It is most likely that the discrepan-
while in the case of the two rain gauge model runs a monthlycies in soil moisture obtained by means of the three different
precipitation average of 0.89 mm/day results in a monthlyrainfall input datasets are associated with the observed dif-
soil moisture mean of 0.12%m~3. From September to De- ferences in rainfall estimates between the gauges and PER-
cember 2006 RMSE of 0.10fm~3 and 0.11mMm=23 and  SIANN satellite data as shown in the previous section. We
correlation values of 0.46-/— and 0.40—/— are found for  conclude that one of the factors responsible for these devia-
CA FU1/PP148 and CA FU/ PP148. For 2007, the differ- tions could be the scale issue between the areal satellite data
ence in simulated soil moisture between the PP148 and raiand the gauge point measurements. However, the differences
gauge model runs is slightly higher than for 2006. How- in soil moisture are much lesser than the differences in pre-
ever, from September to December 2007, the impact of thecipitation forcing. Thus, in the following section results of
precipitation is less significant than for 2006, with RMSE the comparison of products at equivalent scale representative
of 0.07m*m=23 and 0.11mMm~2 and correlation values of for the 50<50 kn? VAS site are presented.
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Fig. 7. Comparison between simulated soil moisture integrated over top 5cm of soil using Caudete de las Fuentes rain gauge (blue line),
Caudete de las Fuentes 1 rain gauge (red line) and the PERSIANN point PP148 (black line). The comparison is made for 2006 (upper figure)
and 2007 (bottom figure).
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Fig. 8. Comparison between spatialized soil moisture databases obtained using in situ rain gauge observations from VAS area (red line) and
the PERSIANN satellite rainfall estimates (black line) for 2006 (upper figure) and 2007 (bottom figure).

4.2.2 Spatialized soil moisture over VAS area and 2007 on a daily basis. Results are presented in Fig. 8.
Amplitude and variation of the two simulated soil mois-
ture datasets remain similar throughout the two investigated
years. In 2006 a good statistical agreement between the two
datasets with RMSE of 0.03%m 2 and R? of 0.83—/— is
maintained from the beginning of the year until the end of the
summer. Dividing this time span into two shorter intervals
reveals an RMSE of 0.03%m~2 and R? of 0.74 —/— from
nuary to May, and an even lower RMSE of 0.G1mn3

The average values of the two spatialized soil moisture sim-
ulations of the top 5cm of soil over the VAS site are com-

pared: one spatialized soil moisture (VAS) obtained us-
ing the gauge data combined through an areal interpola-
tion approach (IDW) and another spatialized soil moisture
data (PERSIANN) obtained using the satellite rainfall esti-
mates. The comparison between both data is made for 200%‘3l
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Table 5. Statistical analysis between SM VAS (spatialized soil moisture obtained using in situ observations), SM PERSIANN (spatialized
soil moisture data obtained using PERSIANN satellite rainfall estimates), SM AMSR-E (AMSR-E soil moisture product) and PR AMSR-E
(AMSR-E polarization ratio 6.9 GHz) for 2006 and 2007.

RMSE—/— R2—/—

2006 SM VAS/SM AMSR-E 0.24 0.07
SM PERSIANN/SM AMSR-E 0.26 0.01
SM VAS/PR AMSR-E 6.9 GHz 0.17 0.50
SM PERSIANN/PR AMSR-E 6.9 GHz 0.17 0.41
2007 SM VAS/SM AMSR-E 0.19 0.38
SM PERSIANN/SM AMSR-E 0.20 0.24
SM VAS/PR AMSR-E 6.9 GHz 0.13 0.67
SM PERSIANN/PR AMSR-E 6.9 GHz 0.14 0.53

though with an also loweR? of 0.60—/— from June to Au-  rain gauge and PERSIANN datasets. This can be explained
gust. From September until the end of the year the RMSEby the perturbance of the AMSR-E signal by the growing
increases to 0.08%m—2 while R? is lowered to 0.56-/—. vegetation. However, the spatialized soil moisture products
In 2007 RMSE andk? values are 0.06 Aim—2and 0.68-/—  are found to be in better agreement with the polarization ra-
from January to May, 0.04#m~3 and 0.82—/—from June  tio. While significant deviations between the AMSR-E soil
to August, and 0.06 Am—2 and 0.65—/— from September moisture product and the simulated data commence around
to December, respectively. The discrepancy between the twday of year (DOY) 100/120 for 2006/2007, respectively, in
datasets is in comparable range for the two years, only at thease of the polarization ratio the drift starts only around DOY
end of the year it is slightly smaller in the year 2007, indicat- 150/190 and with a much smaller amplitude. This shows that
ing that less error is introduced in the simulated soil moisture the sensitivity of the polarization ratio to vegetation becomes
While point to point comparisons between soil moisture datasignificant at a remarkably later stage in the growing period
are influenced by the high small-scale variability of rainfall where larger amounts of vegetation biomass are present on
events and occurrence, the use of spatialized data (averadbe ground for which reason the polarization ratio represents
of several simulated grid points) attenuates these influenceshe dynamic behaviour of the soil moisture content much bet-

leading to more consistent soil moisture results. ter than the AMSR-E soil moisture product. This is under-
lined by the correlation coefficients which are significantly
4.2.3 Comparison with AMSR-E data higher between the simulated datasets VAS and PERSIANN

and the polarization ratio than between simulated datasets
The average values of the two spatialized soil mois-and thg AMSR-E soil moisture product for both years with
ture datasets (VAS and PERSIANN) representative for thevalues inthe range from 0.41/— t0 0.67—/— and from 0.01
50x50 ki VAS site were compared with the soil moisture —/— 10 0.38 —/—, respectively. Around DOY 200/230 the
product (Njoku L3) and the polarization ratio at 6.7 GHz de- AMSR-E soil moisture and polarization radio level at a sig-
rived from remotely sensed AMSR-E data for the years 20oghificantly higher value than the two simulated soil moisture
and 2007. As the penetration depth of AMSR-E is apprc,Xi_estimates, while from around DOY 290 to 320/290 to 340
mately 2 cm, the simulated soil moisture integrated over theh® AMSR-E products follow the simulations more closely
first 2cm depth is considered, and since the AMSR-E soil@gain. From that point on there is again good agreement be-
moisture product shows biases and very small amplitudedWeen the VAS simulation and the polarization ratio (and also
(Rudiger et al., 2009; Gruhier et al., 2010), the simulated soilth® AMSR-E soil maisture in 2007), while the high soil mois-
moisture datasets and the AMSR-E data are normalized belre values of the PERSIANN simulation induced by rain-
tween [0, 1]. Results are shown in Fig. 9 and summarized iffall overestimation of the satellite product are clearly stand-
Table 5. All presented statistics are calculated for the normaling out in both years. The fact that the simulated datasets
ized soil moisture values and are therefore dimensionless. |@nd the polarization ratio compare well during the spring
general we can observe that the dynamics of the soil mois@nd summer seasons (apart from late summer/early autumn
ture are well captured by the simulated data for both 2006With full-grown vegetation) in both 2006 and 2007 is impor-
and 2007. In the beginning of both years, the AMSR-E proo|_tant because it shows that although the PERSIANN products
ucts and average spatialized soil moisture simulations are ifverestimate the total rainfall during the year, during this pe-
comparable range. In the middle of the year the AMSR-Efiod precipitation seems to be accurately represented by these
soil moisture product shows only low correlations with the Satellite estimates.
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Polarization ratio 6 9GHz AMSR-E Spatialized soil moisture using in situ WAS data Spatialized soil moisture using PERSIANN databaze

MNormalized data [--]

0 50 100 150 200 250 300 350
Day of year 2006

Polarization ratio 6 9GHz AMSR-E Spatialized =oil moisture using in situ VAS data Spatialized soil moisture using PERSIANN database

MNormalized datal-+]

Day of year 2007

Fig. 9. Comparison between spatialized soil moisture using in situ rain gauge observations(red line) and PERSIANN datadase (black line),
AMSR-E soil moisture product (green line) and AMSR-E polarization ratio at 6.9 GHz (blue line) for 2006 (upper figure) and 2007 (bottom
figure). The data are normalized between [0, 1].

5 Conclusions ever, during late fall and winter substantial differences be-
tween the different rainfall data in terms of range and tem-
o o o poral variability are observed. This can be explained by the

the Soil Moisture and Ocean Salinity (SMOS) mission, ob-yg|| as by the scale difference of the databases. Whereas
taining a brightness temperature comparable with the instrup5ip gauges record the rainfall at a point, the PERSIANN
ment measurements is an important issue. For that purposgteliite estimates integrate the amount of rain over a wider
a good knowledge of soil moisture over a large area is neCyrea. Although important local differences exist, averages at
essary as the spatial resolution of SMOS is in the order ofyqujvalent scale show results in better agreement. Used as
50x50 kn?. SVAT models can be used to simulate soil mois- input to a SVAT model — ISBA — the PERSIANN product
ture fields over such large areas. However, they require inf35 an important impact when it is used in point-like mod-
put data at the same scale, amongst others precipitation datg"ng_ However, the differences in soil moisture are much
Precipitation amounts and occurrence are considered as 38gser than the differences in precipitation forcing. Never-
important factor in controlling spatial and temporal patternsiheless there are periods (late fall and winter) when the soil
of the soil moisture. Due to its high variability in space and ypisture differences are of equivalent magnitude to that of
time as well as its highly intermittent occurrence, measur-ine precipitation forcing. A wide range of accuracies when
ing precipitation requires dense spatial sampling to achieve,omparing several soil moisture data obtained using differ-
a good accuracy. This study is performed over the Valen-gnt precipitation estimates is observed. These differences
cia Anchor Station (2006—2007) which provides in situ datadepend on the season, being marked especially at the end
at large scale. Meanwhile, the sparse distribution of thesf the year, when, as in the case of the rainfall, an impor-
rain gauges within the area can be a limit to our approachiant gisagreement is observed. Two spatialized soil mois-
In this context, this paper investigates the benefit of apply-t,re information representative over thexd kn? are ob-

ing the PERSIANN database to reproduce the high tempoysined using ISBA coupled to a set of forcings and a good
ral and spatial heterogeneity of soil moisture fields at SMOSknowIedge of soil types and land use. One spatialized soil
pixel scale compared to using sparsely and irregularly disyhgjsture is obtained using the gauge data combined through
tributed in snu_ rain gauge measurements. An evaluation ok, greal interpolation approach (IDW) and another spatial-
PERSIANN rainfall amount and occurrence was undertakenizeq soil moisture data obtained using PERSIANN satellite
Local meteorological station/gauge data and the PERSIANN 3infall estimates. The simulated soil moisture using satel-
estimates do not compare very well. During the summer seajjte estimates generally performs well, both amplitude and

son, when the precipitation occurrence and amounts are lesgyriation being retrieved. However, at the end of the year
important, patterns in rainfall are better reproduced. How-
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(from September), when the precipitation amounts are the
most different, the RMSE value is higher than the rest of the
year. This spatialized approach significantly improves the re-
sults. To check the validity of both spatialized soil moisture
data, a comparison with AMSR-E product is performed. Due
to several launching delays SMOS data was not available at

the point this study was conducted. Although AMSR-E sur-The publication of this article is financed by CNRS-INSU.
face soil moisture product is not able to capture the absolute

value, it provides reliable information on surface soil mois-
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