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Abstract

Since mathematical morphology is based on complete lattice theory, a vector order-
ing method becomes indispensable for its extension to multivariate images. Among
the several approaches developed with this purpose, lexicographical orderings are
by far the most frequent, as they possess certain desirable theoretical properties.
However, their main drawback consists of the excessive priority attributed to the
first vector dimension. In this paper, the existing solutions to solving this prob-
lem are recalled and two new approaches are presented. First, a generalisation of
α-modulus lexicographical ordering is introduced, making it possible to accommo-
date any quantisation function. Additionally, an input specific method is suggested,
based on the use of a marker image. Comparative application results on colour noise
reduction and texture classification are also provided.

Key words: Multivariate mathematical morphology, lexicographical ordering,
colour morphology, dimension prioritisation.

1 Introduction

With the acceptance of complete lattice theory as the appropriate theoretical
framework for mathematical morphology (MM) [11,22,23], it became possible
to define morphological operators for any type of image data, as long as a com-
plete lattice structure can be introduced on the pixel intensity range. However,
as far as colour, and more generally multivariate images are concerned, the
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ambiguity of ordering vectorial pixels constitutes the main obstacle in this re-
gard. Several vector ordering mechanisms have been reported in the literature
with this purpose, of which none has yet been widely accepted. A comprehen-
sive survey on the different approaches to multivariate MM can be found in
[4].

As confirmed by the last reference, among the rich variety of ordering method-
ologies, lexicographical ordering has been by far the most frequently employed
solution with the end of extending morphological operators to multivariate
image data. Its relative popularity is due mainly to its theoretical properties,
since it makes it possible to totally order the underlying pixel data while also
providing unique extrema. Nevertheless, lexicographical ordering suffers from
a major drawback, which consists of the excessive prioritisation of the first im-
age channel during the lexicographical cascade, hence leading to an inefficient
exploitation of inter-channel relations.

In this paper, we recall the existing solutions, and present two approaches that
aim to counter this inconvenience. First, a generalisation of α-modulus lexi-
cographical ordering is introduced, that makes it possible to quantise the first
vector dimension based on an arbitrary model. Moreover, a colour morphology
related example of this method is provided, using luminance and saturation de-
pendencies. Additionally, an input specific approach is suggested, that orders
the first vector components with respect to a marker image, thus providing
a means of controlling the channel prioritisation of lexicographical ordering
based on topological information. Both approaches are tested in the context
of colour morphology, against state-of-the-art methods, with noise reduction
and texture classification applications, where they provide superior results.

The rest of the paper is organised as follows. Section 2 introduces briefly the
theoretical background of extending morphological operators to multivariate
images as well as the problems related to lexicographical ordering and its
variations. In section 3, a generalisation of α-modulus lexicographical ordering
is presented, along with an application in colour morphology. Then, in section
4, the marker based ordering is introduced and its properties are elaborated.
Next, in section 5, the results of a series of comparative tests are provided.
Finally section 6 is devoted to concluding remarks.

2 Lexicographical ordering in morphological processing

In this section we review briefly the main issues concerning the extension
of MM to multivariate images, and discuss the properties of lexicographical
ordering that contributed to its widespread use, along with its inconveniences
and subsequent variations. For an in-depth study of multivariate MM the
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reader can refer to the fundamental references [11,23].

2.1 Theoretical background

Complete lattice theory [8], is nowadays considered as the right mathemat-
ical framework for morphology [22]. The (minimal) conditions that need to
be satisfied by morphological operators have been formulated by means of
this theory. Specifically, introducing a complete lattice structure on the “grey
levels” or intensity range of an image is sufficient for the definition of valid
morphological operators.

More precisely, given an image f : E → T with E an arbitrary non empty
set, a complete lattice structure is imposed on the intensity range T . In other
words, T must be a non empty set equipped with a partial ordering such that
every non empty subset P ⊆ T has a greatest lower bound

∧

P (infimum)
and a least upper bound

∨

P (supremum). Consequently, the set of images
F(E , T ) is also a complete lattice.

For instance, in the case of grey-scale images, where usually T = Z, or T = R

or a finite interval [a, b], the scalar order is employed for ordering the pixel
values in order to obtain the lower and greater bounds. However, this be-
comes a much more challenging task with multivariate images, where usually
T = Z

n
or T = R

n
with n > 1, since there is no natural ordering relation for

multivariate data.

Indeed, given a vector ranking mechanism <, the vectorial versions of the
two fundamental morphological operators, erosion (εb) and dilation (δb) of a
multivalued image f, by a flat structuring element (SE) b, can be immediately
derived by means of the vectorial extrema operators supv and infv based on
the given ordering:

εb(f)(x) = infv
s ∈ b
{f(x + s)} (1)

δb(f)(x) = supv

s ∈ b

{f(x− s)} (2)

Therefore, the main obstacle preventing the extension of morphological op-
erators to multivalued images, consists in defining a vector ordering relation
that will induce a complete lattice structure on the pixel intensity range.
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2.2 Lexicographical ordering

The problem of ordering multivariate data has been extensively studied in
the past, especially in the field of statistics [7]. According to the ordering
categorisation given in the last reference, lexicographical ordering (<L) is a
type of conditional ordering (c-ordering), where the vector components are
ordered conditionally based on some of their marginal components, and is
defined as:

∀ v,v′ ∈ R
n, v <L v′ ⇔ ∃ i ∈ {1, . . . , n} , (∀ j < i, vj = v′

j) ∧ (vi < v′

i) (3)

For vectors in a colour space V WX, where we compare first dimension V ,
then W and finally X, we adopt the notation V → W → X.

Lexicographical ordering is particularly suitable for ordering vectors in the
context of multivariate MM, in combination with image data where a natural
or artificial priority order exists among the different bands, as it possesses
desirable theoretical as well as practical properties. First, as all c-orderings,
it is a total ordering, hence preserving the input vectors, in the contrary of
marginal processing. In other words, it does not introduce any new vectors
within the processing results, and thus prevents the apparition of false colours

in colour morphology [26], as well as the negative effect of mixed pixel sig-
natures during the morphological classification of multispectral images [4]. It
should also be noted however that a total ordering is not always desirable
within the morphological context [25].

Moreover, as it satisfies the anti-symmetry constraint, a property lacking from
most reduced orderings, it makes it possible to compute unique vectorial ex-
trema, hence effectively avoiding ambiguities during vector ordering. Further-
more, by modifying the order of comparison during the lexicographical cas-
cade, one can easily establish different priorities among the image channels.
For instance, if used in the RGB colour space, the red channel would be in-
evitably prioritised, whereas it would be sufficient to permute the bands as
GRB to shift this priority to the green channel (figure 1).

Fig. 1. Original image (left), results of applying a vectorial dilation based on a
lexicographical ordering (R→ G→ B, middle) (G→ R→ B, right) with a 21×21
square SE

In the case of multispectral or even hyperspectral images, where usually no a
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priori priority order exists among the tens or even hundreds of bands, the use
of lexicographical ordering is practically justified only after the application of
a proper transform (e. g. maximum noise fraction transform, principal com-
ponents analysis, discrete cosine transform, etc) which will redistribute the
total variational information contained within the bands with a monotonic or-
der, and thus artificially create the prioritised band environment [4,20]. Hence
making it possible to lexicographically exploit the information concentrated
on the first few bands.

These invaluable properties have led to the widespread use of lexicographical
ordering with the purpose of establishing multivariate morphological opera-
tors, especially in the field of colour morphology [1,4,12,14,21].

2.3 Variations of lexicographical ordering

However, besides being equipped with several desirable properties, lexico-
graphical ordering also suffers from a serious drawback. More precisely, the
outcome of the vast majority of lexicographical comparisons, is decided based
only on the first few vector components that are compared, while the remain-
ing dimensions’ contribution can be considered negligible. This property is
illustrated in table 1, where the percentages of comparisons determined by
the three channels of the three RGB colour images of figure 2.3, during a
vectorial dilation based on a lexicographical ordering are shown. The channel
occupying the first position of the lexicographical cascade (i. e. red) is obvi-
ously responsible for the vast majority of comparisons.

Fig. 2. The test images, from left to right, Lenna, Macaws and Mandrill.

Table 1
The percentages of comparisons that have led to equalities, and those that have
been determined at each channel, during the dilation of the images of figure 2.3,
with a lexicographical ordering (R → G → B) using a square shaped SE of size
5× 5 pixels.

Images Equalities (%) Red (%) Green (%) Blue (%)

Lenna 0.12 93.02 6.3 0.56

Macaws 8.89 83.3 5.71 2.1

Mandrill 0.54 95.28 3.51 0.67
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Of course this might be a desired behaviour in cases where the fist image chan-
nel contains the majority of the total variational information, for instance after
applying a PCA transform. Nevertheless, most often it leads to an insufficient
exploitation of the image channels and inter-channel relations. This effect is
most aggravated in the case of hyperspectral images, where despite the avail-
ability of hundreds of channels, only at most the first few participate in the
overall process. That is why, variations of expression (3) were reported, with
the end of better tuning the priority as well as degree of influence of each
vector component on the comparison outcome, by means of an user defined
argument α. A list of such extensions follows.

The first attempt aiming to decrease the priority attributed to the first vector
component during lexicographical comparison was made by Ortiz et al. [19],
that proposed the α-lexicographical ordering :

∀ v,v′ ∈ R
n, v < v′ ⇔











v1 + α < v′

1, or

v1 + α ≥ v′

1 and [v2, . . . , vn]T <L [v′

2, . . . , v
′

n]T

(4)
where α ∈ R

+. The α argument is thus used to the end of increasing the occur-
rence of equivalences within the first vector dimension, since a scalar value v1

becomes “equal” to all values contained in the interval [v1 − α, v1 + α], hence
allowing comparisons to reach more frequently the second dimension. Never-
theless, expression (4) is not transitive, and consequently does not represent
an ordering from an algebraic point of view.

A further attempt was made by Aptoula and Lefèvre [6], that introduced
α-trimmed lexicographical extrema. Specifically, it can be considered as an
iterative approach based on the principle of α-trimming, where given a set V
of k vectors, in the case of the maximum, starting from the first dimension, the
contents of V are sorted according to this dimension, and then the ⌈α× k⌉
(α ∈ ]0, 1]) greatest vectors are kept with respect to the sorting order and
considered as the new set V . By repeating this process for each dimension,
at each step the initial set of vectors gets smaller, leading eventually to the
desired extremum. Thus, each dimension can contribute to the computation of
the extrema by means of the trimming step. For the formal description of this
procedure the reader can refer to the original paper [6]. On the other hand,
as this methodology is not based on a binary relation among vectors, but
rather relies on a “collective” extremum computation, it does not constitute
an ordering, hence leading to pseudo-morphological operators.

A theoretically sounder approach was proposed by Angulo and Serra [2] and
was named α-modulus lexicographical ordering :

∀ v,v′ ∈ Z
n, v < v′ ⇔ [⌈v1/α⌉, v2, . . . , vn]T <L [⌈v′

1/α⌉, v
′

2, . . . , v
′

n]
T

(5)
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Fig. 3. Space filling curves in a bi-dimensional space for a lexicographical ordering
(left), where the arrows denote the direction of increasing vectorial coordinates, and
for the α-modulus lexicographical ordering with α = 4 (right).

which aims to create equivalence groups within the first dimension. It relies
on a quantisation through division by a constant α followed by a rounding
off, which reduces the dynamic margin of the first dimension, thus allowing
a greater number of comparisons to reach the second. On the contrary of the
aforementioned two approaches, it is an ordering and leads to valid morpho-
logical operators.

The effect of the operation realised on the first dimension, becomes more
clear by studying the space filling curves (SFC), that travel through points
of multi-dimensional space. Since the search for a total vector ordering can
be formulated as a search for an injective function mapping all the points
of a multi-dimensional space onto an uni-dimensional space, SFC satisfy this
requirement and make it possible to model different solutions, where vectors
are ordered according to the position of their coordinates on the SFC. Since
lexicographical ordering corresponds to a bijection [9], its SFC will pass once
from all points of a bi-dimensional discrete space D1 × D2 as illustrated in
figure 3 (left), where the high priority attributed to the first dimension (D1)
is represented by the high frequency of horizontal curves. Figure 3 (right)
shows the quantised form D1′ of dimension D1 with α = 4, which leads to
the creation of equivalence groups. For instance the points {4, 5, 6, 7} of D1
now belong to the same group 1 of D1′, and thus given two coordinates (4, 1)
and (7, 0) in D1×D2, the first components are considered equal in D1′×D2
and the outcome of the comparison is determined by the second dimension,
in other words (4, 1) > (7, 0).

Nevertheless, special attention is required with the use of this ordering, since
the resulting equivalence groups obviously eliminate the anti-symmetry prop-
erty of lexicographical ordering. Consequently, equivalence between vectors
does not occur in the usual sense within the quantised space:

∀v,v′ ∈ Z
n, v = v′ ⇔ (v ≤ v′) ∧ (v ≥ v′) (6)
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but rather between vectors using their original unquantised values:

∀v,v′ ∈ Z
n, v = v′ ⇔ [v1, v2, . . . , vn]T = [v′

1, v
′

2, . . . , v
′

n]T (7)

In conclusion, among the solutions that have been so far reported with the
purpose of fine-tuning the dimension prioritisation of lexicographical ordering,
only expression (5) satisfies the theoretical requirements of an ordering and
hence leads to valid morphological operators. The practical use of α-modulus
lexicographical ordering however is limited, as it relies on an implicit assump-
tion on the dimension to be quantised. The next sections introduce a gener-
alisation of this approach that makes it possible to employ a wider range of
quantisation functions, as well as a method that relies on the, eventually mor-
phological, smoothing of the first image channel, thus leading to equivalence
groups based on spatial relations.

3 Quantisation based α-lexicographical ordering

As far as its theoretical properties are concerned, α-modulus lexicographical
ordering, appears to be the most pertinent among the variations presented in
section 2.3, as it provides an effective means of shifting priority away from
the first vector dimension, while preserving the desirable characteristics of
lexicographical ordering that have made it popular within the morphological
context [1,4,12,14,21].

However, its practical use relies on an important implicit assumption. More
precisely, as shown in figure 4a, the dimension under consideration is pro-
cessed uniformly, based on the assumption that all of its subsets are equally
“unimportant” with respect to the second dimension in the lexicographical
cascade. In practice, often complicated relations are present among the image
channels, and the need to shift priority to the next dimensions arises only par-
tially. Consider for instance the case of colour morphology in the HSL colour
space, where the importance of saturation is minimised for extreme levels of
luminance.

In the light of these remarks, we propose the generalisation described in algo-
rithm 1, as a replacement for the division followed by rounding off, of expres-
sion (5). Based on a simple principle, this algorithm realises a quantisation of
a given discrete “pixel range” interval, in practice often [0, 255], by associating
to each value, a group of equivalence, the size of which is computed using a
user defined function f , and is limited by the value of α ∈ N

∗. Hence, it is
possible to reformulate expression (5) as:
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Algorithm 1 The algorithm for computing a quantised discrete dimension
based on an arbitrary priority distribution.

Input: I = [a, . . . , b] ⊆ Z, an array containing
the discrete dimension to have its dynamic margin reduced
α ∈ N

∗, a parameter setting the maximum allowed size
of equivalence groups within I
f : N→ [0, 1], a function modelling the desired priority distribution within
I
Output: J ⊆ N, the array containing the new quantised dimension
tmp← 0
for i← a to b do

k ← ⌈α× f(I[i− a])⌉
for j ← i to i + k do

J [j − a]← tmp
end for

tmp← tmp + 1
i← i + k

end for

∀ v,v′ ∈ Z
n, v < v′ ⇔ [w1, v2, . . . , vn]T <L [w′

1, v
′

2, . . . , v
′

n]
T

(8)

where w1 and w′

1 represent respectively the equivalence group of v1 and v′

1,
obtained through algorithm 1. Of course one is by no means limited with
applying this procedure only to the first dimension. In fact, complicated inter-
channel relations often require the repeated use of such an approach in more
than one dimensions in order to to be effectively modelled.
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Fig. 4. Example of quantisation applied on a dimension D1 using α = 10 and expres-
sion (5) (a), and using the proposed approach with the same α and an exponential
distribution (b).

An example of this algorithm is given in figure 4b, where it is applied on
the integer interval [0, 100] using an exponential priority distribution. In other
words, values close to zero are of high importance and need to be processed
with a fine precision whereas the second dimension may be used with values
approaching 100. The increase in the size of equivalence groups can be easily
observed as the values approach the upper interval bound. Consequently, in
order to obtain the uniform distribution of figure 4a, corresponding to the
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Fig. 5. The probability distribution of dimension D1 (bottom) for an arbitrary
image, general appearance of the space filling curve frequency corresponding to its
lexicographical ordering (A), α-modulus lexicographical ordering with α = 20 (B),
and quantisation based α-lexicographical ordering using the dimension histogram
as priority distribution function (C).

quantisation of α-modulus lexicographical ordering, with this approach, it is
sufficient to employ the constant function ∀n ∈ N, f(n) = 1 within algorithm
1. By means of the function f , once can thus model arbitrary priority distribu-
tions within image channels. Furthermore, image-specific ordering approaches
may be developed using the histogram of the dimension under consideration,
as shown in figure 5, hence leading to adaptive vector orderings.

a)
 0

 0.5
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 0  20  40  60  80  100

f(
L)

Luminance L b)
 0
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 15

 20

 25

 30

 35

 0  20  40  60  80  100

D
1’

D1

Fig. 6. The “importance” of saturation with respect to luminance in the HSL colour
space with a double sigmoidal distribution (a), and the quantised form of the lumi-
nance channel using this relation (b) with α = 10 and algorithm 1.

As a more concrete example, let us return to the aforementioned case of colour
morphology in the HSL colour space. Polar colour spaces exhibit an inherent
prioritisation of channels, as they model the higher levels of human colour vi-
sion, and thus luminance is most often used in the first position of the lexico-
graphical cascade when developing morphological operators [1,4,14,19]. How-
ever, non trivial relations are present among the three channels (luminance,
saturation and hue), that are totally ignored using expression (5). Specifically,
the importance of saturation is maximised for “medium” levels of luminance,
whereas hue is of practical importance only for relatively high levels of satu-
ration.

Since luminance alone is sufficient for the recognition of most objects, it oc-
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a) b) c) d)

Fig. 7. The erosion and dilation results of a part of the macaws image (figure 10a)
with a square shaped SE of size 9×9 pixels, using α-modulus lexicographical ordering
(5) (a,b) and the proposed quantisation based lexicographical ordering (8) along
with the priority distribution illustrated in figure 6a and both with α = 50 (c,d).

cupies almost always the first position of lexicographical cascades during the
comparison of HSL colour vectors. For the sake of simplicity let us limit all
subsequent operations on this colour space to the last two channels (L→ S),
since the hue, being an angular value [13] requires a reference value which
would further parameterise the procedure, and besides most comparisons sel-
dom reach the third dimension. Moreover, the same principles if desired can
also be applied between saturation and hue in a similar way. The standard way
for decreasing the excessive priority attributed to luminance, using α-modulus
lexicographical ordering, would lead to the quantised result shown in figure
4a.

For illustrational purposes we choose to model the importance of saturation
f(L) with respect to luminance L using a double sigmoidal distribution (figure
6a). Consequently, by means of f(L) combined with the proposed quantisa-
tion scheme, we obtain the corresponding quantised form of luminance as
depicted in figure 6b. Observe the presence of the largest equivalence groups
for medium luminance values. Hence, at this region, the number of compar-
isons determined by the luminance component will be minimised, accordingly
to the given model, and instead will be determined by the following vector
dimension, in other words saturation.

As illustrated by this relatively simple example, the proposed priority reduc-
tion scheme constitutes a generalisation of the quantisation step in expression
(5), that provides a high degree of flexibility, making it possible for the user
to accommodate within the resulting ordering relation practically any partic-
ular model of priority distribution. An application example is given in figure
7, which shows the results obtained after dilation and erosion with orderings
(5) and (8) using the same value of α. The differences between the two ap-
proaches are fairly visible, in particular at the bleak and head region, where
more smoothed variations are obtained.
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4 Marker based lexicographical ordering

Creating artificial equivalence groups within the dimension to have its lexi-
cographical priority reduced, is an effective means of shifting priority to the
remaining vector dimensions. However, this is an operation realised indepen-
dently from the images to be processed (except if the priority distribution
is image specific, e. g. based on its histogram), and no a priori information
is available on where the, eventually abrupt, equivalence group limits cor-
respond within the input image. This undesirable situation is illustrated in
figure 8 where the equivalence groups of an uni-dimensional discrete signal,
obtained with expression (5), lead to artificial edges/value variations during
comparison.

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100

Original signal
Equivalence groups

Fig. 8. Example of an uni-dimensional discrete signal with its corresponding equiv-
alence groups obtained with expression (5) and α = 11.

An alternative way of achieving a priority shift that avoids this inconvenience,
consists in assuming an image specific approach and forming these equivalence
groups based on the content of the image to be processed. Specifically, one
can preprocess the input image’s channel that is to have its priority reduced,
for instance the luminance channel in the example of section 3, so that it
is “flattened”, or in other words heavily smoothed. If we call this image a
“marker” m : Z

2 → R, then the ordering of vectors of image g can be realised
as follows:

∀x, y, s, t ∈ Z, g(x, y) < g(s, t)⇔

[m(x, y), g2(x, y), . . . , gn(x, y)]T <L [m(s, t), g2(s, t), . . . , gn(s, t)]T (9)

In other words, the formation of equivalence groups is now controlled only
by the marker image. If a couple of pixels have the same value in the marker
image, then they are considered equal for the dimension that this marker
image represents, and the comparison outcome is determined by the following
dimensions. Hence equivalence groups are now formed at the flat regions of m
(figure 9). The “flattening” process may be achieved using a variety of filters
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Fig. 9. Example of an uni-dimensional signal and its marker, obtained with an
alternating sequential filter using line shaped SEs of length 5 pixels.

such as large median filters, alternating sequential filters [24], morphological
levelings [17], etc. As an application example, let us return to the HLS colour
space, and consider a lexicographical ordering of type L → S. As such the
luminance component would determine the outcome of the vast majority of
comparisons. Shifting priority to the second dimension (i. e. saturation) can be
achieved using for instance the quantisation example of the previous section.
However, since edge related information is represented in its majority at the
luminance component, it is obviously pertinent to employ this component at
object edges and borders, while using saturation for homogeneous or flat image
regions. This relatively constrained situation can be resolved with expression
(9) as shown in figure 10.

More precisely, the priority shift towards saturation can be effectively limited
with only the relatively homogeneous regions of the input, by flattening them
using a morphological levelling applied to the luminance component. The “pri-
ority map” shown in figure 10d asserts this statement. Specifically, this map
associates to each pixel the percentage of comparisons within the SE that
have been determined using the first dimension (i. e. luminance). Hence dark

a) b) c) d)

Fig. 10. The original image (a), its erosion (b) and dilation (c) results with a square
shaped SE of size 9× 9 pixels, using the marker based ordering (9) along as marker
its morphological levelling. The marker of the levelling has been obtained by means
of alternating sequential filters using the same SE. And rightmost, is the priority
map (d).
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areas correspond to pixels were the outcome of vector comparisons has been
determined using the saturation component, whereas bright areas represent
pixels were luminance, the first vector dimension, has been used to order the
vectors.

Consequently, although the creation of equivalence groups is image specific,
and needs to be realised independently for each image to be processed, marker
based ordering provides nonetheless a means of avoiding the artificial edge re-
lated pitfalls of the aforementioned approaches, by taking into account the
spatial relationships of pixels, thus making it possible to accommodate topo-
logical restrictions during ordering.

5 Applications

In this section, the proposed ordering approaches (8) (QuantLex) and (9)
(MarkerLex) are compared against the α-modulus (AmodLex) (5) as well as
the standard lexicographical ordering (Lexico) (3). For the sake of objectivity
two different applications are employed, both using colour images, noise re-
duction and texture classification. The other variations (i. e. α-trimmed and
α-lexicographical) were omitted since they are not orderings and hence do not
verify fundamental theoretical requirements. Both AmodLex and QuantLex
are set with α = 10, the image data being in the HSL colour space and in
the integer interval [0, 255]. Once more, for the reasons given in section 3 an
ordering ignoring the hue (L → S) is employed. Specifically, the priority dis-
tribution depicted in figure 6a is used for QuantLex. As to MarkerLex, the
marker image is obtained by levelling (λ = 3) the opening-closing result of the
luminance band employing a square shaped SE of size 7× 7 pixels.

5.1 Colour noise reduction

For the first application the 100 test images of the Berkeley segmentation
dataset have been employed [16]. The image data has been corrupted in the
RGB colour space with uncorrelated (σ = 32, ρ = 0.0) zero-mean Gaussian
noise, and in order to quantify the relative performances, the relative normal-
ized mean squared error (RNMSE) has been calculated, also in RGB:

RNMSE =

∑

x,y ‖f(x, y)− ff (x, y)‖2

∑

x,y ‖f(x, y)− fn(x, y)‖2
(10)

where f(x, y), fn(x, y), ff (x, y) denote the vector pixels at position (x,y) re-
spectively of the original, the noisy and filtered images, while ‖·‖ represents
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the Euclidean norm. The images have been filtered using a square shaped SE
of size 3× 3 pixels and the open-close close-open filter (OCCO):

OCCO(f) =
1

2
φ(γ(f)) +

1

2
γ(φ(f)) (11)

where φ and γ denote respectively the vectorial closing and opening operators.

Table 2
The average 1000 × RNMSE errors against uncorrelated Gaussian noise (σ =
32, ρ = 0.0) using the test images of the Berkeley segmentation dataset.

Luminance Lexico AmodLex QuantLex MarkerLex

565.63 565.59 568.65 564.19 651.47

The average error rates are given in table 2. One can easily remark the ex-
tremely similar values obtained by using only the luminance channel for com-
parisons and the standard lexicographical ordering. A result which asserts
the highly asymmetrical priority attributed to the first vector component.
Moreover, the transition of this priority to the saturation band by means of
the AmodLex ordering does not result in an improvement, leading us to as-
sume that the luminance channel is more pertinent for this task. However, the
proposed QuantLex approach gives the overall best error ratio, though only
slightly superior than its lexicographical counterpart, by exploiting the inner
relationships among luminance and saturation. As to MarkerLex, it is obvi-
ously not suitable for the task of noise reduction, since its highly smoothed
marker image prevents it from accessing the fine differences among the cor-
rupted pixels of the luminance band.

Fig. 11. Examples of the 68 colour textures of Outex13 [15].

5.2 Colour texture classification

As to texture classification, it has been chosen to employ the publicly available
Outex13 colour texture database (figure 11) [15,18]. The descriptors have been
obtained by means of the morphological version of the autocorrelation oper-
ator, namely morphological covariance, which represents the family of joint
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methods for the processing of colour and textural information [3,10]. The vec-
torial version of morphological covariance K ′ of an image f , is defined as the
volume Vol of the image (i. e. sum of pixel values), eroded by a pair of points
P2,v separated by a vector v:

K ′(f ; P2,v) = Vol
(

εP2,v
(f)

)

(12)

In practice, K ′ is computed for varying lengths of v, and most often as also
here the normalised version K is used for measurements:

K(f) = Vol
(

εP2,v
(f)

)

/ Vol (f) (13)

The resulting K series provides information on the periodicity and coarseness
of its input [5,24]. Whereas additional information concerning the anisotropy
of the textures can be obtained by plotting against not only different lengths
of v, but orientations as well.

The covariance based feature vectors have been calculated using four direc-
tions for the point pairs (0◦, 45◦, 90◦, 135◦), each along with distances ranging
from 1 to 49 pixels in steps of size two. Consequently 25 values are available
for each direction, making a total of 100 values for every image channel af-
ter concatenation. The classification process has been realised using a kNN
classifier (k = 1) along with the Euclidean distance.

Table 3
Classification rates in % for the textures of Outex13, using vectorial erosion based
covariance.

Luminance Lexico AmodLex QuantLex MarkerLex

76.03 76.05 76.16 77.17 79.86

The classification rates are shown in table 3. As before, one can immedi-
ately remark the almost identical results of Lexico and Luminance. Once more
the quantisation based lexicographical ordering leads to an improvement over
AmodLex, as it controls the transitions among the image channels in a finer
fashion, the difference being however almost negligible (1.01 points). Contrar-
ily to noise reduction, the marker based approach provides the best results
in this case, and outperforms the α-modulus lexicographical ordering by 3.7
points. Apparently, the use of saturation with relatively “flat” regions, and
that of luminance with transitions within the image, lead to more pertinent
descriptors by better combining colour and textural information.
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6 Conclusion

Lexicographical ordering has proven to be an invaluable vector ordering method-
ology for MM, as it possesses multiple desirable theoretical properties and
makes it possible to easily customize the order of comparison among image
channels. Its widespread use however is mostly hindered by the usually ex-
cessive priority attributed to the first vector dimension. Among the existing
approaches countering this problem that have been recalled, α-modulus lexi-
cographical ordering stands out as the most theoretically viable solution.

In this paper, two additional solutions have been presented. First, a gener-
alisation to α-modulus lexicographical ordering has been proposed, avoiding
the implicit assumption of a constant priority distribution, hence making it
possible to model arbitrarily complicated inter-channel priority relations. The
inconvenience of quantisation based approaches however, is the introduction
of artificial edges at equivalence group borders, as shown in section 4. One
possible way of avoiding this effect is to follow an image specific approach,
where the priority shift occurs according to topological and spatial criteria.

The interest of the proposed approaches has been illustrated by means of com-
parative applications in the context of colour morphology. The quantisation
based ordering has systematically outperformed α-modulus lexicographical or-
dering in noise reduction, by using a finer tuned priority transition among the
image channels. As to the marker based ordering, it has provided the overall
best results in terms of texture classification accuracy by limiting the use of
saturation to homogeneous image regions while using luminance for edges and
object transitions, hence leading to more pertinent descriptors.

Future work will concentrate on the study of the theoretical properties of the
proposed approaches as well as on their more application oriented use.
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