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[1] We determine the elasticity of FeSiO3 perovskite for
various spin configurations using density‐functional theory
calculations. The elastic moduli and the bulk seismic wave
velocities are weakly affected by the spin transition.
However we show that the intrinsic differences in seismic
anisotropy between the high‐spin and low‐spin phases of
Fe‐bearing perovskite coupled with lattice preferred
orientation that can develop due and during the convection
may lead to distinct seismic signatures between the top and
the bottom of the lower mantle. These signatures should
be detectable in observations and they need to be taken
into account in tomographic studies of the Earth’s lower
mantle. Citation: Caracas, R., D. Mainprice, and C. Thomas
(2010), Is the spin transition in Fe2+‐bearing perovskite visible in
seismology?, Geophys. Res. Lett., 37, L13309, doi:10.1029/
2010GL043320.

1. Introduction

[2] It is now well established that the Fe‐bearing minerals
exhibit spin transitions under pressure. Magnesiowustite has
been extensively studied form both experimental and com-
putational points of view and its phase diagram and spin
transition have been thoroughly mapped out [e.g., Lin et al.,
2005; Lin and Tsuchiya, 2008]. In the last years more and
more evidence emerged, from both experimental and theo-
retical sides, that points to a magnetic phase transition also
in Fe2+‐bearing perovskite [Badro et al., 2004; McCammon
et al., 2008; Lin et al., 2007] and post‐perovskite [Lin et al.,
2008] at high‐pressure. The change in Mössbauer signal
[McCammon et al., 2008; Lin et al., 2008] and X‐ray
emission spectra [Badro et al., 2004; Lin et al., 2008] over a
narrow pressure range have been interpreted as the signature
of the spin transition, though there is current disagreement
between the different experimental groups regarding this
interpretation. Other experimental studies observed a con-
tinuous spin transition from high‐spin state to low‐spin state
for ferrous iron for both perovskite [Li et al., 2004, 2006]
and post‐perovskite [Jackson et al., 2009], but ferric iron
might remain in a high‐spin state, while another set of ex-
periments observe the persistence of non‐vanishing spin up
to high pressure in perovskite [Jackson et al., 2005].

[3] First‐principles calculations based on density func-
tional theory (DFT) suggest that Fe‐bearing MgSiO3 perov-
skite undergoes a spin transition from high‐spin state to
low‐spin state [Bengtson et al., 2008; Stackhouse et al., 2007;
Umemoto et al., 2008]. The transition pressure is highly
dependent on the iron content: up to about 25% Fe the tran-
sition pressure remains constant while at iron concentrations
larger than about 25% the transition pressure decreases dra-
matically with increasing iron content [Bengtson et al., 2008].
The spin transition is associated with a structural distortion:
the volume collapse of the iron atoms due to the electron
pairing is accommodated in the structure by a displacement
that breaks the symmetry of the structure and changes the
local coordination environment [Bengtson et al., 2008;
Umemoto et al., 2008]. Non‐randomized structures obtained
only from replacement ofMg by Fe in the Pbnm structure lead
to much higher transition pressures [Stackhouse et al., 2007;
Caracas and Cohen, 2005; Fang and Ahuja, 2008] or to iron
disproportionation [Zhang and Oganov, 2006].
[4] Using a different approach than in the previous the-

oretical studies, recently we investigated the dynamical
stability of Pbnm FeSiO3 perovskite and show the existence
of unstable phonon modes. Following their corresponding
eigendisplacements we found various monoclinic and tri-
clinic configurations with intermediate spin state competitive
to the high‐spin antiferromagnetic structure and eventually a
triclinic low‐spin structure, which is the stable phase above
about 37 GPa. The intermediate spin structures exhibit only
minor displacements relative to the high‐spin orthorhombic
structures, while the triclinic low‐spin structure is strongly
distorted. Consequently we focus in the following only on
the high‐spin ferro‐, antiferro‐magnetic and the low‐spin
structures as most representative for the FeSiO3 perovskite
system at pressures characteristic to the lower mantle.

2. Computational Details

[5] Hereinafter we understand by high‐spin, intermediate‐
spin and low‐spin states the electronic configurations with
a net residual magnetic moment of respectively, 4, 2 and
0 Bohr magnetons for each Fe atom, equivalent to 4, 2 and
0 unpaired d electrons per Fe site. This is quite an artificial
and simplified way of representing magnetization, especially
in metallic systems where orbital hybridization and electron
delocalization due both to the lattice periodicity and the
metallic character of the bonding oftentimes lead to non‐
integer Fermi band occupations and thus to non‐integer
values of the remnant magnetization.
[6] We use density‐functional theory [Hohenberg and

Kohn, 1964; Kohn and Sham, 1965] in the ABINIT imple-
mentation [Gonze et al., 2002, 2005b, 2009], which is based
on planewaves and pseudopotentials. We perform all the
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static calculations using the planar‐augmented wavefunction
(PAW) formalism. Then for the relaxed structures we com-
pute the full elastic constants tensor and the phonons in the
Brillouin zone center in the framework of the density func-
tional perturbation theory (DFPT) [Baroni et al., 1987;
Gonze and Lee, 1997; Baroni et al., 2001; Gonze et al.,
2005a] using standard norm‐conserving Troullier‐Martins
pseudopotentials. Here the elastic constants are expressed as
the derivative of the energy with respect to lattice strains
[Hamann et al., 2005]. The atomic relaxations due to strain
are taken into account from the phonon and dielectric cal-
culations by inverting a matrix containing the interatomic
force constants, the couplings with the strains and the cou-
plings with the electric fields.
[7] We use the local density approximation for the

exchange‐correlation energy both DFT and DFPT calcula-
tions. As usual with planewave basis sets, the numerical
accuracy of the calculation can be improved by increasing
the cut‐off kinetic energy of the planewaves and the density
of the sampling of the Brillouin zone [Payne et al., 1992].
Here we use a 35 Eh cut‐off energy for the kinetic energy of
the planewaves. We sample the reciprocal space using a 6 ×
6 × 6 regular grid of special k points according to the
Monkhorst‐Pack scheme [Monkhorst and Pack, 1976].
These parameters ensure a precision of the calculation better
than 1 mEh per unit cell in energy and better than 1GPa in
pressure.

3. Results and Discussion

[8] Because Fe‐bearing perovskite is the major mineral of
the Earth’s lower mantle it obviously received a particular
attention form both the experimental and computational
community. The elastic constants of MgSiO3 perovskite
have been previously reported in several theoretical [e.g.,
Cohen, 1987; Karki et al., 1998; Oganov et al., 2001;
Wentzcovitch et al., 2004; Caracas and Cohen, 2005, 2007]
and experimental [Yeganeh‐Haeri et al., 1989; Sinelnikov et
al., 1998] studies. The seismic properties of a homogeneous

aggregate of perovskite are close to the values estimated for
PREM though not identical, and corrections due to at least
to temperature, chemical composition, redox state of iron
and iron spin state need to be considered to account for these
discrepancies. However many of these corrections are still
unknown. In this paper we discuss in detail the effect on the
seismic properties of the iron spin transition in perovskite.
[9] The elasticity of the (Mg,Fe)SiO3 perovskite has been

addressed so far considering only the high‐spin state of iron.
Two approaches were used. First is to compute the elastic
tensors of the end member MgSiO3 and FeSiO3 terms and
perform a linear interpolation along the solid solution. These
studies [Li et al., 2005; Caracas and Cohen, 2005, 2007,
2008; Stackhouse et al., 2006] showed that the effect of iron
is to lower both the compressional and the shear seismic
wave velocities. For average pyrolitic compositions (10%
ferrous iron on the Mg site) the decrease in velocities is of
about 0.17 km/s at 120 GPa [Caracas and Cohen, 2005,
2007], which corresponds to reduction with respect to pure
MgSO3. The second approach is to effectively build the
crystal structures with the desired Fe content by replacing
Mg with ferrous iron [Kiefer et al., 2002]. This latter
approach is more correct, but is more computationally
intensive while the departure from linear scaling along the
solid solution might be very small. Here we use the first
approach, computing the elastic constants tensor for the
FeSiO3 term and studying the differences between various
spin states.
[10] MgSiO3 perovskite has an orthorhombic structure

with 20 atoms per unit cell and Pbnm space group. The
structure exhibits a three‐dimensional network of SiO6

octahedra, each two neighboring octahedra sharing one
oxygen atom along each of the cartesian directions, and the
larger Mg cations sitting in the interoctahedral space. It has
9 independent elastic constants: C11, C22, C33, C12, C13, C23,
C44, C55 and C66.
[11] For the FeSiO3 end‐member term we consider both

the ferromagnetic (FM) and the antiferromagnetic (AFM)
configurations, even though the latter one is the most stable;
the energy difference between the two is of about 5 mHa per
formula unit and is weakly dependent of the pressure
[Caracas and Cohen, 2005]. This corresponds to roughly
1000K, meaning that at mantle conditions the two config-
urations can coexist. When performing the calculations we
impose a residual magnetic moment of 4 magneton‐Bohrs
for each Fe site in case of the FM configuration. The
magnetic moment for the AFM is allowed to freely relax and
settles to 3.4 magneton‐Bohrs at 90 GPa; it is weakly
varying with pressure. For the low‐spin structure the cal-
culation is non‐spin‐polarized. The FM and AFM magnetic
structures are metallic and have orthorhombic symmetry and
the LS is insulating with triclinic symmetry.
[12] Table 1 lists the elastic constants, the density and the

bulk seismic properties computed for the FM, AFM and the
LS structures of FeSiO3 at 90 GPa. Except for C12, C13 and
C23, all the off‐diagonal elastic constants of the triclinic LS
structure are smaller than 1 GPa. Essentially the triclinic
distortions allow only a rearrangement of the structure to
accommodate the smaller low‐spin Fe ions, but preserves
the quasi‐orthorhombic character of the lattice.
[13] The differences between the FM and AFM elastic

constants tensors are minimal. The largest discrepancies

Table 1. Single‐Crystal Elastic Constants and Bulk Elastic Moduli
and Bulk Seismic Wave Velocities for Homogeneous Aggregates
for FeSiO3 Perovskite in Low‐Spin and Two High‐Spin Magnetic
Configurationsa

FeSiO3 ‐ LS FeSiO3 ‐ FM FeSiO3 ‐ AFM

C11 973 880 914
C22 1041 953 953
C33 1081 936 940
C12 561 494 484
C13 444 443 427
C23 421 471 472
C44 228 296 295
C55 245 233 230
C66 283 214 209
RHO (g/cm3) 6.827 6.560 6.565
K (Gpa) 660 620 619
G (GPa) 259 237 240
Y(GPa) 688 631 638
m 0.31 0.33 0.33
Vp (km/s) 12.14 11.95 11.96
Vs (km/s) 6.16 6.01 6.05

aResults obtained from static calculations at 90 GPa. For the triclinic
structure we only list the non‐zero constants.
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are on the C11 and C13 constants, of respectively −34 and
+16 GPa, while all the others are less than 10 GPa. The
difference of density is on the order of 0.01 g/cm3, of the
elastic moduli less than 3, resulting in quasi‐identical bulk
seismic velocities for homogeneous aggregates. On the other

hand the differences between the high‐spin and the low‐spin
structures are considerable, going as high as 141 GPa for the
C33 elastic constant. The density difference is also significant
with the LS structure denser by 0.26 g/cm3 than the AFM,
namely almost 4%. The change in density is correctly

Figure 1. The predicted seismic anisotropy for Vp and Vs for MgSiO3 and FeSiO3 perovskites with various spin config-
urations for polycrystalline aggregates, based on single crystal elastic constants reported in Table 1 and VPSC predicted
crystal preferred orientations for MgSiO3 in simple shear for a shear strain of 1.73. The Voigt‐Ruess‐Hill average was used
for elastic properties. X, Y and Z are the finite strain axes.
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represented in changes in elastic moduli and seismic wave
velocities, with larger values for LS structure. The absolute
differences are larger for the bulk moduli (K), on the order of
about 41–42 GPa, than for the shear moduli (G), on the order

of 19–22 GPa. The Young modulus, defined as Y = (9KG)/
(3K+G) shows similar values between FM and AFM that
are lower than LS by about 50 GPa. The Poisson ratio, m =
Y/2G − 1, is in the range 0.31–0.33 for all the structures at

Figure 2. The predicted seismic anisotropy for various spin configurations in pure FeSiO3 and MgSiO3 perovskite coupled
with lattice preferred orientation. We use the computed elastic constants from Table 1 for FeSiO3 at 90 GPa and 0 K and the
experimental measurements at room temperature and 90 GPa for MgSiO3. The LS configuration has distinctively low values
(red) along the normal (Z direction) to the flow (XY) plane and in the flow plane (XY).
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90 GPa, larger than most ceramics, but usual for Fe‐bearing
perovskites at high pressure [Caracas and Cohen, 2007].
[14] In terms of seismic wave velocities for homogeneous

bulk aggregates the FM and AFM are hardly distinguishable
with differences on the order of 0.01 km/s for compressional
wave velocities (Vp) and 0.04 km/s for shear wave velocities
(Vs). The differences are more important with respect to the
LS structure, through which the Vp travel with 0.18 km/s
faster than in AFM and the Vs travel 0.12 km/s faster than in
AFM. These absolute velocity differences correspond to
respectively only 1.5% and 1.8% relative difference.
[15] If we assume a linear dependence of the seismic

properties along the (Mg,Fe)SiO3 solid solution, then for a
pyrolitic mantle with an average 8 at. % ferrous iron in
perovskite [Kesson et al., 1998] the difference in seismic
wave velocities between the high‐spin and low‐spin con-
figurations will be of only 0.12% for Vp and 0.15% for Vs.
Even considering a larger iron content, like 15 at. %, which
is closer to the upper acceptable limit for pyrolite, these
differences go up to only 0.23% and 0.29% respectively for
Vp and Vs. These values are definitely too low to be
detectable using current seismological techniques and body
waves, as they would only lead to very small travel time dif-
ferences in waves bottoming at different depths. Also, since
the transition takes place over a large pressure range it will
not produce any reflectors detectable with seismic body
waves. It was shown based on thermodynamical con-
siderations and later observed in experimental measure-
ments that during the spin transitions an elastic anomaly
develops that leads to a considerable reduction in wave
velocities [Speziale et al., 2007]. However it is also highly
temperature‐dependent such that at lower mantle tempera-
tures where the iron spin transition takes place in perovskite
the variation of the seismic properties will be smooth and
undetectable seismically.
[16] If the bulk seismic wave velocities are not strongly

affected by the spin transition in Fe‐bearing perovskite,
things are different when one looks at the seismic anisotropy
(Figure 1). The MgSiO3 and the orthorhombic high‐spin
FeSiO3 perovskites, show similar anisotropy patterns. The
minimum velocities are along the normal to the X direction
and the maximum velocities are along the X direction. The
amount of Vp anisotropy is on the order of 5–7% for both
MgSiO3 and FeSiO3. The Vs anisotropy is different between
the two compositions, and more importantly between the
high‐spin and the low‐spin phases of iron‐bearing silicate.
The HS FeSiO3 structures have Vs anisotropies up to 1.08%
(AFM) and 1.28% (FM); the low‐spin FeSiO3 and MgSiO3

have Vs anisotropy up to respectively 2.75% and 2.56%.
Consequently alloying Mg‐perovksite with the HS Fe or
with LS Fe has opposite effects: HS tends to decrease the
anisotropy relative to pure MgSiO3 while LS enhances this
anisotropy.
[17] Moreover, the patterns of anisotropy for both Vp and

Vs between the high‐spin and the low‐spin Fe phases are
significantly different. The bulk of the lower mantle is
highly isotropic, with deviations of only about 0.5%, though
there are regions where a certain seismic anisotropy is
observed, like at the top, close to the transition zone
[Wookey et al., 2002] and at the bottom, close to the
boundary with the D″ layer [Cornier, 1999; Kendall and
Silver, 1998; Karato and Karki, 2001; Kustowski et al.,
2008] with values going up to about 1%. In these settings

lattice preferred orientation could develop because of the
convection cells and would align a majority of Fe‐bearing
perovskite crystals. Differences in spin state would induce
differences in the seismic anisotropy pattern between the top
and the bottom parts of the lower mantle. Therefore, a
pattern like this should be detectable in observations of
anisotropy at the base of the transition zone and into the
lower mantle [e.g., Wookey et al., 2002] and the D″ region
for waves with different turning depths, even for pyrolitic Fe
concentrations. Due to the pattern of fast and slow velocities
(Figure 2) it could also introduce larger travel time differ-
ences for waves with different turning depths than suggested
above. That then needs to be taken into account as correc-
tions in tomographic studies. Moreover our results show that
lateral heterogeneities that induce these fluctuations of the
anisotropy visible in tomographic studies can be due not
only to mineralogical and chemical variations but also to
iron spin variations (induced by differences in temperature
and/or iron distribution and concentration) coupled with
lattice preferred orientation.

[18] Acknowledgments. The work was facilitated by the PROCOPE
exchange program. The calculations were performed on the jade machine at
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