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Image Sciences, Computer Sciences and Remote Sensing Laboratory,

LSIIT-UMR-7005-CNRS Louis Pasteur University,
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Abstract

The successful application of univariate morphological operators on several domains,
along with the increasing need for processing the plethora of available multivalued
images, have been the main motives behind the efforts concentrated on extending
the mathematical morphology framework to multivariate data. The few theoretical
requirements of this extension, consisting primarily of a ranking scheme as well as
extrema operators for vectorial data, have led to numerous suggestions with diverse
properties. However, none of them has yet been widely accepted. Furthermore, the
comparison research work in the current literature, evaluating the results obtained
from these approaches, is either outdated or limited to a particular application
domain. In this paper, a comprehensive review of the proposed multivariate mor-
phological frameworks is provided. In particular, they are examined mainly with
respect to their data ordering methodologies. Additionally, the results of a brief
series of illustrative application oriented tests of selected vector orderings on colour
and multispectral remote sensing data are also discussed.

Key words: Multivariate mathematical morphology, vector ordering, vectorial
processing, colour images, multispectral images

1 Introduction

The mathematical morphology (MM) theory, founded by G. Matheron [57]
and J. Serra [75,76], is a powerful image analysis framework, nowadays fully
developed for both binary and greyscale images. Its popularity in the image
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processing community is mainly due to its rigorous mathematical foundation
as well as its inherent ability to exploit the spatial relationships of pixels. The
morphological framework provides a rich set of tools able to perform from
the simplest to the most demanding tasks: noise reduction, edge detection,
segmentation, texture and shape analysis, etc. As a methodology, it has been
applied to almost all application areas dealing with digital image processing
[78]. Consequently, it was only a matter of time before attempting to extend
the same concepts to colour and more generally multivalued images.

Unfortunately, this extension is not straightforward. Specifically, the morpho-
logical framework is based on complete lattices, thus in order to accommodate
multivalued images, a way of calculating the extrema of vectorial data is es-
sential. Yet unlike scalars, there is no unambiguous way of ordering vectors.
And besides, most of the known vector ordering schemes have already been
employed for defining multivariate morphological operators. However, none of
them has yet been widely accepted.

A few surveys on the different approaches have appeared occasionally in the
literature [26,33]; although of excellent quality, they have become nevertheless
relatively outdated and miss the newest developments. In the light of these
remarks, the primary contribution of this paper is to provide an up to date
overview of the existing approaches used for extending the fundamental op-
erators of MM to multivariate data; and that is why cases limited only to
specific operators have been omitted (e.g. colour image segmentation). Due to
their rich diversity and overwhelming number, they are examined according
to their methodology of ordering their multivalued input.

The secondary contribution of our work, differentiating it from previous sur-
veys on this topic, is in terms of an application oriented comparative study of
the major approaches. More precisely, the available comparison research work,
is restricted either to a particular application (e.g. noise reduction) or image
type (e.g. colour images) or vector space [26,28,62]. In this paper however, for
the sake of objectivity, we provide the results of three types of tests realised
with two kinds of multivalued data. In particular, we used colour images for
noise reduction and texture classification, as well as multispectral remote sens-
ing image data for pixel classification. The tests were conducted with the end
of both comparing the suitability of different vector ordering schemes as basis
for morphological operators, and for asserting their theoretical properties with
the help of experimental results.

The organisation of the paper is as follows. The next section introduces the
relevant fundamentals of extending morphological operators to multivariate
images, whereas section 3 presents the current implementation variants of
multivariate morphological frameworks. A discussion on the results of a series
of illustrative application oriented tests of selected vector orderings takes place
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in section 4; and finally section 5 is devoted to concluding remarks.

2 Extension of mathematical morphology to multivariate data

In this section, we recall briefly the theoretical concepts behind the extension
of morphological operators to multivariate images. For an in-depth study of
the theory behind multivariate mathematical morphology the reader can refer
to [33,77].

2.1 Orderings

As the concept of order plays a central role in this paper, we start by recalling
the relative definitions. A binary relation R on a set S is called:

• reflexive if xRx, ∀x ∈ S
• anti-symmetric if xR y and yRx ⇒ x = y, ∀x, y ∈ S
• transitive if xR y and yRw ⇒ xRw, ∀x, y, w ∈ S
• total if xR y or yRx, ∀x, y ∈ S

A binary relation < that is reflexive and transitive is called a pre-ordering
(or quasi-ordering); if the anti-symmetry constraint is also met, it becomes an
ordering. If additionally the totality statement holds for <, it is denoted as
total, if not partial.

2.2 Complete lattices and multivariate morphology

The complete lattice theory is widely accepted as the appropriate algebraic
basis for mathematical morphology. Besides unifying the approaches previ-
ously employed in binary and greyscale morphology, it also makes it possible
to generalise the fundamental concepts of morphological operators to a wider
variety of image types and situations. Extensive details on the lattice based
description of the MM theory can be found in [41,43,71,73,76,77]. As a remark,
we should also add that the scope of MM has also been extended to complete
semilattices, that are more general than complete lattices [42,45,46].

Specifically, a complete lattice L is a non empty set equipped with a partial
ordering <, such that every non-empty subset P of L has a greatest lower
bound

∧

P , called infimum, and a least upper bound
∨

P , called supremum.
In this context, images are modelled by functions mapping their domain space
E , an arbitrary non empty set that is an abelian group with respect to +, into
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a complete lattice T , defining the set of possible “grey values”. Moreover, if
F represents the set of functions f : E → T , then for the partial ordering:

f, g : E → T , f < g ⇔ ∀x ∈ E , f(x) < g(x) (1)

F also forms a complete lattice, where “f(x) < g(x)” refers to the partial
ordering in T . In other words a complete lattice structure is imposed on the
pixel intensity range. Usually E (the space of pixels) is taken to be either R

d

(d-dimensional Euclidean space) or Z
d (d-dimensional discrete space), hence F

corresponds respectively to the set of continuous or discrete images. Likewise
various choices are available for T , such as T = R

n
and T = Z

n
. The case

of n > 1 corresponds to the so-called multivalued images [32]. Namely, in
the case of a multivalued image with n components, T = T1 × . . . × Tn is
considered as the cartesian product of n complete lattices, and each mapping
fi : E → Ti, i ∈ {1, . . . , n} is called a channel or band of the multivalued
image.

Within this model, morphological operators are represented by mappings be-
tween complete lattices (i.e. the input and output images) with some ad-
ditional properties such as increasingness and translation invariance. They
are employed in combination with matching patterns, called structuring el-
ements (SE), that are usually subsets of E (i.e. flat SE). Particularly, ero-
sion and dilation constitute the fundamental blocks of MM, from the com-
binations of which several sophisticated operators can be derived. More pre-
cisely, given two complete lattices L and M, from an algebraic point of view,
an operator ε : L → M is called an erosion, if it is distributive over in-
fima, i.e. ε(

∧

i Pi) =
∧

i ε(Pi) for every collection {Pi} of elements of L. Sim-
ilarly, δ : L → M is called a dilation, if it is distributive over suprema, i.e.
δ(

∨

i Pi) =
∨

i δ(Pi) for every collection {Pi} of elements of L. As suggested in
[75], dilation and erosion basically rely on three concepts: a ranking scheme,
the extrema derived from this ranking and finally the possibility of admitting
an infinity of operands. Yet, the first two are missing from multivalued images.

For example, if we apply the preceding notions to the case of continuous
multidimensional greyscale images (f : R

d → R), it suffices to replace the
partial ordering < of T with the usual comparison operator in R, in order to
induce a complete lattice structure on T and subsequently on F by means
of (1), which will make the computation of extrema possible during erosion
and dilation. Likewise, the inclusion operator “⊂” can be used with binary
images (f : R

d → {0, 1}). However, if we now consider multivalued images
(f : R

d → R
n, n > 1), it becomes problematic to find an ordering relation

for the vectors of R
n, due to the fact that there is no universal method for

ordering multivariate data.

In order to remedy this inconvenience, in the classic paper of Goutsias et al.
[33] it is proposed to employ an adequate surjective mapping h to transform
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the image data into a more “suitable” space for morphological operators. More
precisely, the idea of using a surjective mapping h : T → L, where T is a non
empty set and L a complete lattice, constitutes the theoretical support upon
which several of the present multivariate morphological frameworks are based.
Specifically, its importance lies in the fact that T is no longer required to be
a complete lattice, since the ordering of L can be induced upon T by means
of h :

∀ t, t′ ∈ T , t ≤h t′ ⇔ h(t) ≤ h(t′) (2)

hence making it possible to construct h-morphological operators on T . Con-
sequently, one can deal with multivalued images, f : E → R

n ,through the use
of a well chosen mapping h : R

n → L, where L is a new, more suitable space
for lattice based operations [32,33].

Besides, given an adequate vector ranking scheme, the vectorial erosion (εb)
and dilation (δb) of a multivalued image f by a flat SE b, can be expressed
immediately by means of the vectorial extrema operators supv and infv based
on the given ordering:

εb(f)(x) = infv
s ∈ b

{f(x + s)} (3)

δb(f)(x) = supv

s ∈ b

{f(x − s)} (4)

Therefore, the main obstacle preventing the extension of morphological oper-
ators to multivalued images, consists in defining an ordering relation that will
induce a complete lattice structure on the set of vectorial pixel intensities.

2.3 Vector orderings

Especially in the last few decades, a lot of effort has been put in engineering
a way of ordering vectors. Although numerous techniques for ordering mul-
tivariate data can be found in the literature [40,54,67,83,86,87], according to
the classical paper of Barnett (1976) [12], they can be classified into one of
the following groups.

Marginal ordering (M-ordering): Which corresponds to univariate order-
ings realised on every component of the given vectors:

∀v,v′ ∈ R
n, v ≤ v′ ⇔ ∀ i ∈ {1, . . . , n} , vi ≤ v′

i (5)

Data is ordered along each one of its channels independently from others.
Hence also the name componentwise ordering.

Conditional (sequential) ordering (C-ordering): In which vectors are
ordered by means of some of their marginal components, selected sequentially
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according to different conditions. Whereas the components not participating
in the comparison process are listed according to the position of their ranked
counterparts. Hence, the ordering of the vectors is conditioned upon the partic-
ular marginal set of ranked components. Lexicographical ordering constitutes
a widely known example of C-ordering employing potentially all the available
components of the given vectors:

∀v,v′ ∈ R
n, v ≤L v′ ⇔ ∃ i ∈ {1, . . . , n} , (∀ j < i, vj = v′

j) ∧ (vi ≤ v′

i) (6)

But of course one can also restrict the comparison process to use only a subset
of the available components, as in [40]. C-orderings are most suitable for cases
where one can establish a priority among the image channels.

Partial ordering (P-ordering): In this case, “partial” is an abuse of termi-
nology (section 2.1), since there are total orderings belonging to this particular
class (section 3.3). That is why we will use the term P-ordering. P-orderings
consist simply of pre-orderings that partition the given vectors into groups
of equivalence with respect to order, rank or extremeness [84]. They are gen-
erally geometric in nature and account well for the inter-relations between
components.

Group 1

Group 2

D1

D2

Fig. 1. A P-ordering example in a bi-dimensional space, based on the “peeling”
principle.

A simple example of P-ordering is the one based on the “peeling” of a mul-
tivariate sample (figure 1). First the convex hull of the entire sample is cal-
culated. Consequently, the points on the border of the convex hull constitute
the first group. The points belonging to the border of the convex hull of the
interior constitute the second, and so forth. As a result, the entire sample be-
comes partitioned and ranked according to their group number, but of course
no internal distinction is in place for the contents of the groups.

Reduced ordering (R-ordering): In which vectors are first reduced to
scalar values and then ranked according to their natural scalar order. A further
categorisation of R-orderings consists in classifying them as distance orderings
and projection orderings [56]. For instance, a R-ordering on R

n could consist
in defining first a transformation h : R

n → R, and then ordering the vectors
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of R
n with respect to the scalar order of their projection on R by h:

∀v,v′ ∈ R
n, v ≤ v′ ⇔ h(v) ≤ h(v′) (7)

According to the chosen transformation it is possible to obtain a total pre-
ordering (h non-injective) or even a total ordering (h injective) [21]. An addi-
tional advantage of R-orderings lies in the fact that with an adequately chosen
h, they can attribute equal priority to all components, unlike C-orderings.

As the aforementioned ordering groups are not mutually exclusive, their com-
binations as well as numerous implementational variants have led to several
morphological frameworks with diverse properties. The next section will elab-
orate on the different approaches.

3 Approaches to multivariate mathematical morphology

Despite the rich variety of multivariate morphological frameworks, there are in
fact two main variables that are modified at each case, the extrema calculation
method and the transformation (e.g. domain space change, etc) if any, that
takes place on the image data before ranking; undoubtedly both influence the
properties of the resulting operators.

In this section, we review in relative detail the approaches used for imple-
menting multivariate morphological operators, primarily according to their
vector ordering scheme, along with additional comments on their use with dif-
ferent preprocessing methods. However, instead of the conventional ordering
categorisation presented in section 2.3, it was decided to adopt the scheme
employed by Chanussot in [21] where they are classified according to their al-
gebraic properties, as given in section 2.1. This choice was made with the aim
of underlining the effect that these basic properties have on the end result.
Additionally, the vectors of the ordering relations that are mentioned in the
sequel, are considered in R

n, unless otherwise specified.

3.1 Processing strategies

Given a multivalued image, in practice there are two general methods of mor-
phological processing: marginal (or componentwise/scalar) and vectorial.

Marginal Processing: It consists in processing separately each channel of
the image. The inter-channel correlation is totally ignored, along with all in-
formation that could be potentially used in order to improve the quality of
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Fig. 2. Marginal (left) and vectorial processing (right) strategies

the result. Furthermore, the repetition of the processing procedure for each
channel renders it expensive in terms of computational complexity. On the
other hand, the marginal approach makes it possible to employ directly all
methods offered by greyscale morphology (fig. 2 left).

Vectorial Processing: This main alternative of the marginal approach, as
its name implies, processes all available channels globally and simultaneously.
Given that the vectorial pixels are considered as the new processing units, the
correlation among the different channels is no longer ignored (fig. 2 right).
However, when compared to its marginal counterpart, the most important
inconvenience of the vectorial approach appears to be primarily the need for
adapting the existing algorithms in order to accommodate vectorial data; thus
leading often to slower implementations than their scalar versions. The rest of
this section elaborates on each approach as well as on their variations.

3.2 Partial ordering based approach (Marginal)

The so-called marginal processing strategy, despite being presented usually
as an alternative to vectorial, is as a matter of fact no more than just its
variation, as it employs the partial ordering defined in equation (5). Obviously,
there can be vectors that may not be comparable under this ordering relation,
for instance a = [7, 2]T and b = [3, 4]T . Nevertheless, this does not prevent
the definition of valid morphological operators based on extrema computed
by means of this ordering [77]. Furthermore, it makes it possible to employ
all tools offered by greyscale morphology with no need for special adaptation
steps. For instance, the erosion and dilation expressions given in section 2.2
become equivalent to:

εb(f)(x) = [εb(f1)(x), . . . , εb(fn)(x)]T (8)

δb(f)(x) = [δb(f1)(x), . . . , δb(fn)(x)]T (9)

where εb and δb denote respectively the scalar erosion and dilation operators
with a SE b. For instance, Gu in [34] has employed the marginal approach for
establishing multivalued morphological operators applied to moving object
segmentation and tracking. Another example is given by Aptoula et al. in
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[10], where marginal morphological operators are employed with the purpose
of galaxy detection from multispectral data. Moreover, a generalisation of the
marginal approach was given by the matrix morphology theory of Wilson [97],
which was based on the work of Heijmans and Ronse [43].

Despite its implementational simplicity, marginal ordering suffers mainly from
two disadvantages: not accounting for inter-channel information as well as the
risk of altering the spectral composition of its input. More precisely, as each
component is processed independently, any eventual correlation among them
is totally ignored, hence rendering this approach unsuitable for images with
highly correlated components (e.g. RGB colour images) [11]. A possible solu-
tion to this problem, as proposed in [33], consists in applying a decorrelating
transformation (e.g. maximum noise fraction transform (MNF), principal com-
ponent analysis (PCA), discrete cosine transform, a proper colour space, etc)
prior to ordering.

An application of this idea to the detection of land mines, in combination
with the MNF transform, can be found in [13]. Or in [14], where hyperspec-
tral remote sensing images are classified by means of morphological profiles
computed marginally from the first two principal components of the input.
Nevertheless, these decorrelating transformations also introduce an additional
computational burden.

Furthermore, there is absolutely no guarantee that marginally processed vec-
tors belong to the input image. The lack of vector preservation constitutes an
undesirable effect for several applications. For example, in the case of colour
image processing this would lead to the appearance of new colours (also known
as false colours) and thus deteriorate the visual quality of the result, and in
particular the colour balance and the object boundaries; whereas the effect
near the spatial edges, leads to the so-called edge jitter. Similarly, it can be
harmful for the spectral signature based classification of remote sensing im-
ages, where an altered spectral composition can damage the entire process.

A detailed study of the problem of vector preservation can be found in [44,82].
According to the last reference, the only way to use morphological operators
without generating new vectors is to impose an order on the vector space by
means of an (pre-)ordering verifying the totality constraint; besides, this is
why the majority of the published articles on multivalued morphology deal
with total (pre-)orderings. Yet, vector preserving approaches are in the same
time limited by this property, due to the restriction imposed on their output
(i.e. the output must be a vector from the input set); whereas the marginal
approach has access to a much broader range of output values, an advantage
which becomes most valuable during noise reduction [26].

Of course, there are also situations such as the one presented in [85], where the
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inter-channel correlation level is low (near and mid infra-red bands) and vector
preservation is not a necessity; in which case the marginal operators used for
detecting the dim point targets on maritime backgrounds perform adequately.
Additional attempts motivated by the intuitiveness of the marginal approach
have resulted in improvements. Namely, Serra in [77] presents an intermediate
form between a M-ordering and a C-ordering, while an application of marginal
ordering in the HSV colour space is introduced by Weber and Acton in [95],
where the aforementioned undesirable effects are reduced by shifting the hue
origin. Moreover, Al-Otum in [1], proposes the corrected componentwise mor-
phological algorithm with the end of preventing the appearance of new vectors.
It consists in replacing each new vector of the output with its closest vector
from the original image, chosen with the help of a Mahalanobis distance based
error function.

In brief, either accompanied by additional transformations or not, the marginal
processing strategy uses conventional greyscale operators and pixels are still
treated as scalar values.

3.3 Total pre-ordering based approach

Contrarily to the marginal approach, by means of the additional property
of totality, all vectors become comparable and as a result it is possible to
construct a totally ordered lattice structure. Hence pixels can be manipulated
as whole vectors, and consequently the risk of altering the pixel composition
of the input is eliminated [82].

All pre-orderings however share a common drawback, which is the relaxation
of the anti-symmetry constraint. Thus distinct vectors can eventually end up
being equivalent. That is why additional measures become necessary, in order
to resolve the ambiguity of eventually multiple extrema. For instance a partial,
but considerably useful in practice solution proposed by Comer and Delp in
[25,26] against this problem, consists in selecting the output vector according
to its position in the SE.

Reduced total pre-orderings: Total pre-orderings can be obtained with R-
orderings employing a non-injective reduction transformation [21]. Distance
measures are typical examples of such transformations; in fact they account
for the majority of the proposed R-orderings.

This first variant, ranks a family {vj} of vectors according to their distance
from a reference vector vref :

∀vk,vl ∈ {vj} , vk ≤ vl ⇔ d(vk,vref ) ≤ d(vl,vref ) (10)
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where d(·, ·) represents a distance measure. An example of this type of R-
ordering, as applied to colour images, can be found in [74]. In case the reference
vector is the origin, expression (10) becomes equivalent to using the norms
of the vectors. A variation of expression (10), which eliminates the need for
a reference vector, consists in associating each vector with the sum of its
distances from the other vectors:

∀vk,vl ∈ {vj} , vk ≤ vl ⇔
∑

j

d(vk,vj) ≤
∑

j

d(vl,vj) (11)

This additional advantage however comes at a high cost, in terms of both
computational complexity and theoretical properties. Specifically, although
this approach can be used for computing multivariate extrema, it does not
constitute an ordering in the sense of a binary relation, hence leading to
pseudo-morphological operators. Furthermore, the infimum of a family of vec-
tors calculated in this way, corresponds to the notion of “median vector” and
consequently does not carry the significance of a “minimum” in the numerical
sense. As a remark, we should also add that in situations where the directions
of vectors gain more importance than their magnitude, (10) and (11) may also
be used by replacing the distance d with its angular counterpart, as proposed
in [88].

There is also another property worth mentioning, referenced in [89], concerning
(11) and implementations of (10), if the reference vector is chosen to be “in
the middle” (e.g. the median or the average). It concerns the instability of
the supremum computed by means of these orderings. Despite the remarkable
stability of the infimum under the same conditions, even a slightly varied
input can radically change the least upper bound. Consequently, the dilation
operator that makes use of the supremum becomes unsound from a practical
point of view.

The choice of the distance measure is of course another key topic. Theoreti-
cally, any kind of metric can be used, and so it is in practice. For instance,
in an application of (11) to vector area morphology in [29], the city-block
and Euclidean distances are considered. Whereas, in [68] the same reduction
scheme is employed in combination with spectral angle distances to the end of
creating morphological profiles for hyperspectral images. Moreover, Al-Otum
[1,90] uses (10) coupled with the Mahalanobis distance for ordering the com-
ponents of colour images in different colour spaces, with “black” being the
reference vector. An example of Euclidean norm based ordering can be found
in [26], as applied to RGB colour images.

Moreover, an original approach implemented in the polar version of the C-Y
colour space appears in [2], where a saturation based combination of the hue
and intensity planes is proposed. Specifically, the vectorial pixels contained
within the SE are reduced into scalars by means of a weighted combination
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of vector angle (da) and Euclidean distances (dE) from the vector vc at the
centre of the SE:

h(v) = w(v,vc) · da(v,vc) + (1 − w(v,vc)) · dE(v,vc) (12)

where w(·, ·) denotes the weight computed based on the saturation levels of
the given vectorial pixels. The underlying idea is to favour hue differences (da)
when saturation levels are high, while intensity differences (dE) gain more
importance with achromatic pixels.

Of course the non-injective transformation choices are by no means limited
by these few variants. For instance, in [48], vectors are ordered based on the
number of times they appear in the input image. Nevertheless, distance based
R-orderings hold the potential of accounting for all dimensions without privi-
leging any of them, a property which becomes particularly useful in case there
is no predefined order of importance among the available channels (e.g. RGB
colour images). Otherwise any transformation capable of realising the neces-
sary reduction may be used. For example in [26], an additional R-ordering is
presented, applied to RGB colour images, where vectors are reduced to scalars
with the help of a linear weighted combination:

h(v) = w1 · v1 + . . . + wn · vn (13)

Hence making possible the arbitrary prioritisation of colour channels by means
of the wi ∈ R, i ∈ {1, . . . , n} coefficients. Finally, a more complicated order-
ing scheme takes place in [50], where a new R-ordering based on ordinal first
principal component analysis is introduced and the derived operators are ap-
plied to edge detection on RGB colour images.

Conditional total pre-orderings: As previously mentioned in section 2.3
C-orderings restrict the ordering process to only one or more components
of the given vectors, while the others are conditioned upon them. That is
why C-orderings are suitable for situations where certain channels are more
“privileged” than others. Besides, unless all vector components participate
in the ordering process, the resulting C-ordering is bound to be a total pre-
ordering, thus sharing their aforementioned inconveniences. For example, in
the case where only the first component is employed [40]:

v ≤ v′ ⇔ v1 ≤ v′

1 (14)

Hence, the two distinct vectors a = [7, 2]T and b = [7, 3]T would be consid-
ered equivalent according to (14). The main problem of C-orderings concerns
of course the choice of the ordered components. Obviously, ordering vectors
along only some of their components is practically justifiable only if the given
components represent sufficiently the vectors.

In the general case, this approach attributes far too much significance to the
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selected components, disregarding all others. While usually this constitutes
a severe problem, there are cases where it becomes invaluable. For instance,
when it is a priori known that certain channels are noise free. In fact, C-
orderings are almost always used in combination with a suitable domain space
change, so that the data of interest, in its majority, will lie in only some of
the channels.

An application example can be found in [92], where a C-ordering on the HSV
colour space is employed, ignoring the hue component. In fact, this also consti-
tutes a fine example of a combined ordering; more precisely, the result can also
be considered as a P-ordering where the ordered groups contain the colours of
equal value and saturation with no internal distinction whatsoever as hue is
not taken into account. An application of the same ordering on colour image
skeletonisation can be found in [3].

3.4 Total ordering based approach

Total orderings, from a theoretical point of view, have two main advantages
that render them more suitable for vector ordering, as far as multivariate
MM is concerned. First, thanks to their totality, they are vector preserv-
ing, and contrarily to pre-orderings, as they verify the anti-symmetry con-
straint the computed extrema are unique. That is why the majority of the
attempts concentrated on extending morphological operators to multivalued
images are based on total orderings. In particular, the lexicographical ordering
(C-ordering) along with its variants is among the most implemented choices.

However, the uniqueness of extrema takes a serious toll, since the prioritisation
of certain vector components becomes inevitable [21]. That is why they are
almost always used in combination with a suitable domain transformation (e.g.
HSV, L∗a∗b∗, PCA, etc) that will place the “interesting” part of the data in
the first few channels. Nevertheless, as it will be subsequently presented some
implementations tend to be more “symmetric” than others.

Lexicographical ordering: Lexicographical ordering, introduced in (6), is
undoubtedly the most widely employed total ordering within this context.
As a conditional ordering, it is most suitable to situations where an order of
“importance” exists on the available channels, either inherently or artificially
created by means of an appropriate transformation.

Figure 3 provides an example of the priority attributed to the first component
during lexicographical ordering. More precisely, a vectorial dilation is applied
on a RGB colour image (fig. 3, left) and as red is the head component (dark
grey), it dominates visibly over green (light grey) (fig. 3, middle). Whereas if
we permute the channels as GRB, the effect is reversed in favour of green (fig.
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Fig. 3. original image (left), results of applying a vectorial dilation based on a
lexicographical ordering (RGB - middle) (GRB - right) with a 21×21 square SE

3, right).

Lexicographical ordering has been mostly employed in the domain of colour
MM, where several colour spaces exhibit an inherent prioritisation among
their channels as far as human observers are concerned. Specifically, as the
human vision system is more sensitive to brightness changes than to chro-
matic changes, brightness components tend to be privileged [31]. Hue based
spaces in particular have been extensively studied in the literature as they
are closely related to the way which humans perceive colour. It should be
additionally noted that the hue component poses considerable problems as it
is a 2π periodical value and thus cannot be intuitively ordered simply from
smallest to largest [38,66]. An example of luminance based lexicographical or-
dering on the HSV colour space can be found in [53], whereas [51] and [91] use
the same ordering respectively for median filtering and granulometry calcula-
tion on colour images. Of course there can also be specific situations where
chromatic information is more significant, for instance in [60], hence hue is
compared first in the lexicographical cascade.

Other applications of lexicographical ordering in the HSI space include [61],
where reconstruction based morphological operators are developed with the
end of brightness elimination, using an intensity based ordering scheme. The
same principle is additionally employed in [63] with the purpose of noise elim-
ination. The perceptually uniform L∗a∗b∗ [39] and L∗u∗v∗ [66] spaces have
also been used together with a lexicographical ordering. Moreover, a thorough
study of the potential of this ordering in the HLS space is provided in [37];
while in [7], the use of lexicographical ordering in the improved HLS (IHLS)
space is explored. And finally, the results of a comparative application of this
ordering in different hue based colour spaces can be found in [62].

As the majority of lexicographical comparisons are determined by the first
components [39], variations of the classical lexicographical ordering were pro-
posed, with the end of better tuning the priority as well as degree of influence
of each component. A non exhaustive list of such extensions follows. A first
group of variations is based on the use of additional components during com-
parison. Rivest in [69,70] has exploited the symmetrical nature of a norm based
R-ordering by placing it to the first position of the lexicographical cascade,
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with the end of developing morphological operators for complex signals:

v ≤ v′ ⇔ [‖v‖, v1, . . . , vn]T ≤L [‖v′‖, v′

1, . . . , v
′

n]T (15)

where ≤L is the lexicographical ordering. Similar variants to (15) have been
proposed in [5,74], with the difference of placing a reference vector based
distance measure in the position of the first component. Of course, there is
no limit to the number or type of functions that can be used according to
this principle. Other examples include the use of the maximum and minimum
of the compared components in the case of RGB colour images, as well as
their weighted combinations [8]. Another type of extension to the classical
lexicographical ordering consists in using of a user defined parameter α in
such a way that it can modify the degree of influence of the first component.
For instance, the α-modulus lexicographical ordering, introduced by Angulo
[4,6]:

∀ v,v′ ∈ Z
n, v ≤ v′ ⇔ [⌈v1/α⌉, v2, . . . , vn]T ≤L [⌈v′

1/α⌉, v
′

2, . . . , v
′

n]T (16)

was implemented on a variation of the HLS colour space. Specifically, by di-
viding the first component with a parameter α, and then rounding it off to the
next closest integer, a sub-quantisation of the first vector dimension is realised,
hence forming larger equality groups within this dimension. Consequently, a
higher number of comparisons is expected to reach the second dimension.

Bit mixing based ordering: Bit interlacing (or mixing) constitutes an in-
novative R-ordering, aiming mainly to eliminate the unavoidable asymmetry,
which results from the application of total orderings. Specifically it employs
an injective transformation exploiting the binary representation of each com-
ponent in order to impose a total order on the vector space [21,22,24].

Given a vector v, with each component coded in k bits, the corresponding
reduction transformation h : Z

n → Z is formulated as:

h(v) =
k

∑

m=1

{

2n·(k−m) ·
n

∑

i=1

2n−i · vi,m

}

(17)

where vi,m denotes the mth bit of the ith component of v. Hence, the resulting
binary representation of h(v) becomes:

v1,1v2,1 . . . vn,1v1,2v2,2 . . . vn,2 . . . v1,kv2,k . . . vn,k (18)

Besides being endowed with all the qualities of a total ordering, bit mixing
provides a more symmetrical approach than its lexicographical counterpart as
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dimensions are mixed in bit level. Of course some dimensions continue to be
more privileged than others, with the degree of that privilege being propor-
tional to the significance of the bit position that they occupy. Furthermore, a
finer grained symmetry can be obtained by modifying the original mix order
[21]. Then again, there are several situations where data channels need to be
processed with a certain priority. Bit mixing can easily respond to this re-
quirement by placing the important vector components to more significant bit
positions. Additionally, bit interlacing can also be used as a means of fusing the
channels, hence allowing for instance the use of the watershed transformation
on colour images [23].

From a theoretical point of view, this approach aims to fill a given multi-
dimensional space using a “balanced” space filling curve (SFC) with respect to
the available dimensions. In the case of total orderings, these curves (e.g. Peano
curve) pass through all vector coordinates of the space under consideration,
hence vectors can be ordered according to their position on it. An additional
approach developed based on SFC can be found in [81]. On the other hand,
according to [80] the main inconvenience of a total ordering obtained in this
fashion is its lack of physical interpretation.

3.5 Other approaches

Besides the previously presented ordering methodologies, there have been also
some rather “unconventional” orderings or extremum calculation approaches,
in the sense that they either do not consist in simply using a standard vector
ordering scheme, or they are developed for a particular form of image data,
or even combine additional theories with the end of achieving an efficient
solution.

For example, following the relatively recent success of fuzzy morphology with
greyscale images [16,27], a couple of attempts to apply the fuzziness concepts
to multivariate images have already been carried out. Köppen et al. in [47], in-
troduced fuzzy Pareto morphology, a means of computing multivariate extrema
based on the notion of Pareto sets, a concept belonging to the field of multi-
criteria optimisation, combined with fuzzy subsethood. However, since there
is no underlying binary ordering relation, it results in pseudo-morphological
operators. A second attempt was made by Louverdis et al. [52], who employ
a direct fuzzification of the vectorial pixels in the HSV colour space, that
are subsequently ranked according to a lexicographical ordering scheme. The
morphological operators based on this total pre-ordering have been compared
in the original article with their counterparts in [53] resulting from the use
of a similar lexicographic ordering also in the HSV space. According to their
experiments, the fuzzy version has slightly better noise reduction capabilities
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as well as less sensitivity to distortions.

Moreover, the domain of medical imaging has recently introduced matrix-
valued images, where a positive definite matrix is associated to each voxel.
Pioneering work on the application of MM theory to this type of images has
been made by Burgeth et al. [17–19], using both analytic (i.e. Loewner order-
ing) and geometric approaches (i.e. modelling matrices with ellipsoids).

Some further original approaches aiming to compute multivariate extrema,
include the one proposed in [96], developed with the purpose of colour object
detection using vector projection measures in combination with vectorial SEs,
as well as the graph based methodology introduced by Lezoray et al. [49], em-
ploying the minimum spanning tree algorithm among the pixels under the SE,
which however leads to pseudo-morphological operators. An ordering based
on labels has been additionally proposed by Ronse and Agnus [72]. Moreover,
Zaharescu et al. have explored in [98] the potential of the triangle representa-
tion of colours, which leads to a R-ordering, while Mojsilovic and Soljanin [58]
have employed a method based on a quantization using Fibonacci lattices, in
order to obtain a partial ordering. And finally Gibson et al. [30] have relied
on local convex hull computations for locating multivariate extrema, whereas
Busch and Eberle [20] have proposed a conditional ordering based on semantic
principles.

3.6 Synopsis

This section presented the different approaches that have appeared so far in the
literature, with the end of extending morphological operators to multivalued
images. A summary of the related references is given in table 1.

4 Experiment results

Having provided an insight into several multivariate morphological frame-
works, in this section a brief series of comparative tests will be carried out
with the aim of measuring their relative performances in three image process-
ing tasks.

So far, the comparative studies of multivalued morphological processing ap-
proaches [26,28,62,93,94] have been restricted to a particular application do-
main (e.g. colour morphology) or vector space. The reason of these restrictions
is the overwhelming number of crucial variables that need to be taken into ac-
count in order to achieve a fully objective performance measure (e.g. number
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Table 1
Synoptic table of references developing multivariate morphological operators, or-
ganised according to the properties of the employed ordering scheme and its corre-
sponding implementation space (VP: vector preserving, PB: prioritisation of bands)

Data space
Properties

¬VP VP ∧ PB VP ∧ ¬PB

Generic [26,33,34,58] [5,20,22,24,30,58,72] [1,5,26,29,47–50,68,81,98]

HSV [95] [3,35,51–53,60,91,92]

L∗a∗b∗ [39]

L∗u∗v∗ [66]

(I)HLS [6–8,37,96]

HSI [61,63,64]

C-Y [2,74]

Complex [69,70] [96]

Matrix [17–19]

of images, type of images, number of channels, correlation of channels, vec-
tor space transformations, etc). That is why the aim of this section is not to
realise a “benchmark” of the different approaches, but rather to provide indi-
cations on their suitability for particular input properties, as well as to assert
the remarks made in the previous sections with experimental results.

For the sake of simplicity only certain approaches have been considered during
the tests, chosen subjectively as representative members of the classification
given in section 2.1. More precisely, the ordering schemes participating in the
tests are: marginal (M), bit mixing (B), lexicographical (L), a variation of
lexicographical ordering (rL), equation (15), reference vector based distance
orderings using the median (R) and the origin (N) as reference vectors, as
well as the method based on cumulative distances (C), although it does not
qualify as an ordering from an algebraic point of view. The Euclidean distance
and L2 norm are used where necessary. As far as their implementation is con-
cerned, vector comparisons were hard coded without the use of any indexes
[82], within a generic Java based framework. The subjects are chosen from
the two primary application areas of multivariate morphology, colour and re-
mote sensing imagery. In particular, noise reduction and texture classification
tests are realised with the first, while the latter are used for a pixel based
classification.
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4.1 Noise reduction

During this first test, the relative performances of the vector ordering schemes
are examined in terms of noise reduction quality. As a quantitative measure,
the normalised mean squared error (NMSE) is used:

NMSE =

∑N
i=1

∑M
j=1 ‖f(i, j) − f′(i, j)‖

2

∑N
i=1

∑M
j=1 ‖f(i, j)‖

2 (19)

where N and M represent the image dimensions while f(i, j) and f′(i, j) denote
respectively the vectorial pixels at position (i, j) for the original and filtered
images. The tests have been repeated with a number of RGB colour images of
various content, however here we exhibit the results obtained for the “Lenna”
image (fig. 4). The subjects, of size 512×512 pixels and 24 bits per pixel, are
first contaminated with zero-mean additive Gaussian noise, σ = 32 and corre-
lation factor ρ = 0.0 (table 2) and ρ = 0.9 (table 3). Other noise distributions
that have also been tested, include double-exponential and uniform, however
as the influence of the type of noise distribution on the resulting performances
was observed to be minimal, they were omitted from tables 2 and 3 for the
sake of clarity.

Fig. 4. From left to right: the original image “Lenna”, corrupted with uncorre-
lated Gaussian noise (σ = 32, ρ = 0.0) and corrupted with correlated Gaussian
noise (σ = 32, ρ = 0.9). The white square represents the enlarged results in fig-
ure 5

The filter employed for smoothing is open-close close-open (OCCO). More
precisely, let first γb and φb denote respectively the vectorial opening and
closing operators:

γb(f)(x, y) = δb(εb(f))(x, y) (20)

φb(f)(x, y) = εb(δb(f))(x, y) (21)

In which case, OCCO is defined as the pixelwise average of open-close and
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close-open:

OCCOb(f)(x, y) =
1

2
γb(φb(f))(x, y) +

1

2
φb(γb(f))(x, y) (22)

given the size of the input, the SE b is chosen as a cross of size 3×3. Larger
sizes have been also tested but the relative performances remained almost the
same. The OCCO filter is chosen primarily due to its effective combination
of the basic morphological operators as well as for its suitability against the
chosen noise type. On the other hand, taking the average of the intermediate
results, obviously prevents the preservation of the initial vectors. Neverthe-
less, this is a desired property in the context of noise reduction as it makes it
possible to better approximate the original noise free values. Different colour
spaces have been also employed during smoothing for mainly two reasons; first
in order to simulate various correlation levels among the channels as well as
for testing the effect that uneven distributions of the intensity information
among the channels have on the underlying ordering schemes. Moreover, as
hue based colour spaces usually require a reference value, they have been ex-
cluded from the experimentation process with the end of avoiding any further
parametrisation.

Table 2
NMSE×100 values for the “Lenna” image obtained against uncorrelated Gaussian
noise

Colour
spaces

Vector Orderings

M L N B C R rL

RGB 0.78 2.29 2.10 2.21 3.10 3.07 2.10

GBR 0.78 2.33 2.10 2.19 3.10 3.07 2.10

L∗a∗b∗
0.92 2.23 2.50 2.05 3.13 3.02 2.50

YUV 0.79 2.09 2.12 2.03 2.64 2.59 2.12

Table 2 shows the NMSE results of the orderings within four colour spaces
against uncorrelated Gaussian noise. The entries corresponding to the best
performance of their row (colour space) are in bold. According to the obtained
values, the overall superiority of the marginal approach over its vectorial coun-
terparts is remarkable.

As stated earlier the reduced smoothing capacity of vectorial approaches is
part of the trade-off between noise reduction capability and vector preserva-
tion. In brief, even with a maximized processing symmetry among the available
channels the final result of vectorial openings and closings in equation (22) will
necessarily be one of the input vectors. And as such it is natural for the mar-
ginal strategy to outperform, by having access to a much broader range of
output values, that are not necessarily included however in the original image.
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A second remark concerns the relatively high error rates of the total order-
ings in the highly correlated RGB space, which is simply due to the fact that
both bit mixing and lexicographical orderings inevitably prioritise the vector
components. Consequently, the green and especially blue channels influence
the outcome of vector comparisons much less that red, thus resulting in poor
smoothing quality in the last two channels. The effect of prioritisation is par-
ticularly visible with lexicographical ordering. An exception to this remark is
rL, which although total, results always in a NMSE value identical to norm
based reduced ordering (N), due to the vector norm that occupies the first
position, as indicated in equation (15), during the lexicographical comparison
of vectors. Therefore, as the vast majority of comparisons is decided by means
of the first vector component, from a practical point view it appears to behave
exactly as a norm based R-ordering.

As fas as the three distance based approaches are concerned (R, C, N), the
norm based ordering takes the lead while its distance based counterparts pro-
vide quite unsatisfactory results. Thanks to the non-injective scalarisation that
takes place, no distinction is made among the channels during comparison.
This last important property becomes more evident within the GBR space, a
permutation of RGB, where they achieve the exact same performances thus
underlining their robustness against situations where it is not a priori known
in which channel takes place the majority of the “important” information or
even which channel is the most corrupted.

Furthermore, the L∗a∗b∗ colour space causes significant changes in the results
as it is less correlated than RGB and the brightness information is moved
exclusively to the first channel. As expected, the bit mixing and lexicographical
orderings improve their smoothing rates substantially, since their prioritisation
works this time in their favour by rendering the brightness dimension more
“exploitable”. It is also presumed that the finer grained symmetry of the vector
components during comparison is what makes it possible for the bit mixing
ordering to surpass its lexicographical counterpart. Nevertheless, the marginal
ordering still provides the best results.

On the other hand, table 3 shows the NMSE results obtained against highly
correlated Gaussian noise. Although the relative performances of vectorial
approaches have stayed the same, this time they are clearly much closer to
that of marginal processing.

As far as the computation times are concerned, table 4 illustrates the relative
duration of a single application of the OCCO filter for each ordering. Appar-
ently the lexicographical ordering is the fastest among them, closely followed
by the marginal approach, while the R-orderings suffer from the extensive
distance calculations.
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Fig. 5. Enlarged results of the area contained within the white square of figure 4,
obtained on the RGB colour space against uncorrelated Gaussian noise (column 1),
on the RGB colour space against correlated Gaussian noise (column 2), and on the
YUV colour space against correlated Gaussian noise (column 3)
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Table 3
NMSE×100 values for the “Lenna” image obtained against highly correlated
Gaussian noise

Colour
spaces

Vector Orderings

M L N B C R rL

RGB 0.79 0.97 0.87 0.97 1.35 1.34 0.87

L∗a∗b∗
0.85 0.92 1.34 0.88 1.43 1.38 1.34

YUV 0.79 0.89 0.90 0.88 1.65 1.67 0.90

Table 4
Relative durations for the application of the OCCO filter on the Lenna image with
a 3×3 cross shaped SE

M L N B C R rL

1.36 1.00 1.49 1.79 2.03 2.22 1.54

In conclusion, the main points of this discussion include the overall superi-
ority of the marginal approach, particularly against uncorrelated noise. On
the other hand both marginal and vectorial approaches exhibit similar perfor-
mances in the case of correlated noise (fig. 5). Although vectorial approaches
tend to be more complex from an implementational point of view, they offer
the possibility of smoothing without the risk of introducing new vectors. Ad-
ditionally, the results have also underlined the importance of the colour space,
as it highly influences the performance of the employed ordering.

Fig. 6. Examples of the 68 textures of Outex 13 [55].

4.2 Texture classification

As far as texture classification is concerned, here we employ the colour textures
of Outex13 (figure 6) [59]. The question whether colour should be processed
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separately or jointly from texture is still an open problem [55], and vector-
ial morphological feature extraction operators represent in their majority the
latter case [9,36]. As colour texture descriptor we employ the morphological
version of the autocorrelation operator, namely morphological covariance. The
vectorial version of morphological covariance K ′ of an image f , is defined as
the volume Vol of the image (i.e. sum of pixel values), eroded by a pair of
points P2,v separated by a vector v:

K ′(f ; P2,v) = Vol
(

εP2,v
(f)

)

(23)

In practice, K ′ is computed for varying lengths of v, and most often as also
here the normalised version K is used for measurements:

K(f) = Vol
(

εP2,v
(f)

)

/ Vol (f) (24)

Given the resulting K series, one can gain insight into the structure of a
texture [79]. In particular, the periodic nature of covariance is strongly related
to that of its input, whereas the thinness and coarseness of the textures can
be evaluated by studying the sharpness of the periodic patterns within this
series. Additional information concerning the anisotropy of the textures can be
obtained by plotting against not only different lengths of v, but orientations
as well.

Since the SE contains only 2 pixels, the use of R and C approaches is of no
practical interest. The covariance based feature vectors have been calculated
using four directions for the point pairs (0◦, 45◦, 90◦, 135◦), each along with
distances ranging from 1 to 49 pixels in steps of size two. Consequently 25
values are available for each direction, making a total of 100 values for every
image channel after concatenation. Furthermore, as far as the conversion from
RGB to L∗a∗b∗ is concerned, the proper transformation matrix calibrated to
the CIE A white point of the acquisition apparatus has been used [55]. The
classification process is realised using a kNN classifier with k = 1.

Table 5
Classification rates in % for the textures of Outex13, using vectorial erosion based
covariance.

Colour
spaces

Vector Orderings

M L N B rL

RGB 77.65 70.74 71.62 70.86 71.85

L∗a∗b∗ 77.76 80.03 77.89 80.13 78.02

YUV 77.66 79.23 77.75 79.43 77.36
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Table 5 contains the accuracy rates that have been obtained. In general, the
relative performances can be considered similar to those obtained during noise
reduction. More precisely, marginal processing continues to outperform its al-
ternatives in RGB, once more followed by norm based ordering. Since all
channels are equally important in this colour space, both prioritisation at-
tempts with L and B fail to surpass it. However, the situation is radically
modified with the other two colour spaces, where all approaches increase their
performances, a result showing the effect of the colour space choice on their
behaviour. Specifically, lexicographical and bitmixing orderings take the lead,
though with a small margin, while they provide the overall best results in
L∗a∗b∗.

Since luminance/luminosity alone is considered sufficient for the recognition
of most image variations, its prioritisation by means of total orderings has
a positive impact on the end results. Contrarily to the previous experiment
however, luminosity (L∗) provides better results with respect to luminance
(Y), possibly due to the use of camera specific conversion matrices. Further
improvements are probably possible by decreasing the perturbations caused
by the last two channels (i.e. a∗, b∗ and U, V ), for instance by processing the
last two marginally, since vector preservation is of no particular interest in
this case.

4.3 Pixel classification

In this section we compare the different vector orderings in terms of their effect
on the pertinence of features extracted from high resolution spatial data. As
to the subject of the experiment, it is a multispectral image of an urban area
of Strasbourg, France (fig. 7, left). It comprises mainly dense residential and
commercial areas along with a few open areas as well. The image has a spatial
resolution of 1.3m and a size of 1100×900 pixels with 3 channels (green, red
and near infra-red) common to most commercial satellites (e.g. LANDSAT,
IKONOS, Quickbird, etc). Its high multispectral resolution, equivalent to the
spatial resolution of panchromatic data, is due to the use of SPOT 5 sensors
during a simulation flight. As a result, several small scale details and objects
(e.g. cars) are present as well as long shadows, rendering the image relatively
hard to classify.

Feature extraction is realised with the help of differential morphological pro-
files (DMP), an approach employed successfully in the field of remote sensing
[65] for classifying panchromatic urban data. Its consists of a granulometry
(opening profile) and of an antigranulometry (closing profile) [79]. Thus, if we
extend this principle to vectorial pixels, for each f(x) = [x1, x2, x3]

T , two bidi-
mensional ((n + 1)× 3) series are obtained, respectively the vectorial opening
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and closing profiles :

Πγ(f)(x) =
{

Πγλ
(f)(x) | Πγλ

(f)(x) = γλ(f)(x), ∀λ ∈ {0, . . . , n}
}

(25)

Πφ(f)(x) =
{

Πφλ
(f)(x) | Πφλ

(f)(x) = φλ(f)(x), ∀λ ∈ {0, . . . , n}
}

(26)

where γ0(f)(x, y) = φ0(f)(x, y) = f(x, y) and λ denotes the size of the SE,
chosen as a square of 2λ + 1 pixels wide, whereas n being odd represents the
size of the profile. Next the derivatives of each profile are calculated by means
of componentwise subtractions for every vectorial pixel. Thus the resulting
multiscale feature set represents the slopes of each profile for every step of the
monotonically varying SE size series.

∆γ(f)(x) =
{

∆γλ
(f)(x) |

∆γλ
(f)(x) =

∣

∣

∣Πγλ
(f)(x) − Πγλ−1

(f)(x)
∣

∣

∣ , ∀λ ∈ {1, . . . , n}
}

(27)

∆φ(f)(x) =
{

∆φλ
(f)(x) |

∆φλ
(f)(x) =

∣

∣

∣Πφλ
(f)(x) − Πφλ−1

(f)(x)
∣

∣

∣ , ∀λ ∈ {1, . . . , n}
}

(28)

As a last step, the result is transformed into a uni-dimensional series by sep-
arating the channel components in order to form the vectorial DMP of size
6n:

DMP(f)(x) = {∆c(f)(x) |

∆c(f)(x) =







∆i
φλ=n(1−2i)−c+1

(f)(x), ∀c ∈ {2ni + 1, 2ni + n} , ∀i ∈ {0, 1, 2}

∆i
γλ=c−n(2i+1)

(f)(x), ∀c ∈ {n(2i + 1) + 1, 2n(1 + i)} , ∀i ∈ {0, 1, 2}







(29)

where ∆i
γλ

and ∆i
φλ

represent respectively the ith component of ∆γλ
and ∆φλ

.
The size of the profile was fixed as n = 5 thus providing 6n = 30 features per
vectorial pixel.

For the classification process a naive Bayes classifier is employed, which de-
spite its extended independence assumptions, is known for its robustness. Ap-
proximately 1% of the total number of pixels is included in the training set,
composed of the following five classes: buildings, roads, water, vegetation and
shadows. The feature sets are extracted independently and with the exact
same arguments for each ordering while the evaluation step is realised as a
10-fold cross-validation. Table 6 shows the resulting classification accuracies
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Fig. 7. The original multispectral image of Strasbourg, France in false colours (left),
and the classification result using the bit mixing ordering based DMP features
(right)

Table 6
Average and overall accuracies in percentage computed by means of a 10-fold cross
validation

Class
Vector Orderings

M L N B C R rL

Roads 83.3 82.4 85.5 82.5 85.5 85.4 85.6

Buildings 69.3 72.3 68.6 72.4 68.0 68.3 68.4

Water 91.3 96.8 89.5 97.2 89.7 90.1 89.8

Vegetation 94.0 94.4 93.1 94.4 93.0 92.8 93.4

Shadow 94.2 92.9 95.1 92.7 94.7 94.6 95.2

Average 86.4 87.8 86.4 87.8 86.2 86.2 86.5

Overall 87.0 88.2 86.9 88.3 86.8 86.9 87.0

for each class; as before the entries corresponding to the best performance of
their row (pixel class) are in bold.

Given the values of table 6, the overall accuracies appear to be in the magni-
tude of other reported uses of DMP for classification of panchromatic (monospec-
tral) data. (≈78% for IRS-1C and ≈95% for IKONOS in [15]). Possible jus-
tifications of the difference include primarily the large size of the feature set.
In addition, the components of the resulting vectorial features could have
been combined in more sophisticated ways. Other influential factors include
of course the complexity of the image as well as the efficiency of the classifier.
Nevertheless, these choices were made arbitrarily because they do not bear
importance in the context of this experiment as it focuses only on the relative
performances of the approaches with respect to each other.
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Moreover, the overall accuracies are remarkably close (L and B at ≈88% and
M, R, C and rL at ≈87%). In other words the total orderings have a slight ad-
vantage, with the exception of rL, which once more behaves almost identically
to N as the outcome of most comparisons is determined by the first compo-
nents. The order of the channels (green, red, near infra-red) apparently works
in favour of total orderings, with the chosen classes. This remark becomes
more evident if we study the classification rates of each class individually,
where contrarily to the overall rates, differences of more than 7% take place.

For instance, it is widely known that clear water appears dark-bluish (i.e.
higher green band reflectance), which when combined with the prioritisation
attributed by L and B to the first channel (i.e. green) results in more per-
tinent features, equivalent to visibly higher classification rates for the same
two orderings with the class “water”. The same logic can also be applied to
the class “vegetation” which has high reflectance rates in green and in near
infra-red. On the other hand, shadows, roads and buildings may appear in var-
ious shades of blue or grey, depending on their composition, hence orderings
taking into account all components equally (i.e. N, C, R, M and partially rL)
are more effective in obtaining discriminating features, as asserted by table 6.

In brief, despite the expectation that the restricted output of vectorial opera-
tors would damage the pertinence of the extracted features, the results show
that this deficiency is compensated by their capacity to exploit the correlation
of channels and thus they perform at least as well as the marginal approach.
Additionally, pixel classes with distinctive spectral signatures, are more effi-
ciently processed by orderings prioritising the corresponding channels, hence
surpassing the accuracy rates of marginal ordering.

5 Conclusion

In this paper, we have presented an exhaustive and up to date review of the
methods proposed in the literature with the end of extending the MM frame-
work to multivalued images. We aimed especially to obtain a panorama of
the existing approaches that, besides the MM community, is also accessible
to those interested in multivalued image processing but not yet acquainted
with the potential of multivariate MM. That is why the presentation of the
theoretical foundation of the subject, that has been hardly modified since the
milestone work of Goutsias et al. [33], was limited with the essential points,
whereas abundant references to applications from various domains of multi-
valued morphological processing (i.e. colour, remote sensing, radar data, etc)
were provided.

The key point of constructing morphological operators for multivalued images
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consists in defining an ordering scheme for vectorial data. Several ordering
methods as well as other specialised approaches were examined in this con-
text, with each of them equipped with their own properties (e.g. channel pri-
oritisation, vector preservation, etc), thus rendering them suitable for certain
tasks and unsuitable for others. In conclusion, there is still no single ordering
scheme appropriate for all kinds of multivalued input, since their suitability
is directly related to not only the overall semantic meaning of the individual
channels but to the particular task under consideration as well.

The experiments that have been carried out in the second part aimed to as-
sert the remarks concerning the theoretical properties of each ordering, and
although not exhaustive, provided some interesting results. First the selected
approaches have been tested in terms of noise reduction quality, where the
overall superiority of the marginal processing strategy became clear, especially
against uncorrelated noise, while in the case of correlated noise both marginal
and vectorial orderings have produced similar smoothing rates, hence asserting
the results of Comer and Delp [26]. Moreover, the same orderings have been
also employed to the end of colour texture classification by means of the mor-
phological covariance operator, where total orderings were shown to surpass
their marginal counterpart in combination with a suitable colour space.

In the last experiment, multispectral remote sensing data has been used with
the purpose of pixel classification. Although the so far reported cases in the
literature of morphologically extracted features from this kind of images make
exclusive use of the marginal approach, in this process we have showed that
vector orderings chosen in relation to the properties of the desired classes hold
the potential of improving the classification rates.
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