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THERMAL EFFECTS IN GRAVITATIONAL HARTREE SYSTEMS

GONCA L. AKI, JEAN DOLBEAULT, AND CHRISTOF SPARBER

Abstract. We consider the non-relativistic Hartree model in the gravitational case, i.e. with
attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary
states with non-zero temperature T by minimizing the corresponding free energy functional.
It is proved that minimizers exist if and only if the temperature of the system is below a
certain threshold T ∗ > 0 (possibly infinite), which itself depends on the specific choice of the
entropy functional. We also investigate whether the corresponding minimizers are mixed or
pure quantum states and characterize a critical temperature Tc ∈ (0, T ∗) above which mixed
states appear.

1. Introduction

In this paper we investigate the non-relativistic gravitational Hartree system with temper-
ature. This model can be seen as a mean-field description of a system of self-gravitating
quantum particles. It is used in astrophysics to describe so-called Boson stars. In the present
work, we are particularly interested in thermal effects, i.e. (qualitative) differences to the zero
temperature case.

A physical state of the system will be represented by a density matrix operator ρ ∈
S1(L

2(R3)), i.e. a positive self-adjoint trace class operator acting on L2(R3;C). Such an
operator ρ can be decomposed as

(1.1) ρ =
∑

j∈N

λj |ψj〉〈ψj |

with an associated sequence of eigenvalues (λj)j∈N ∈ ℓ1, λj ≥ 0, usually called occupation
numbers, and a corresponding sequence of eigenfunction (ψj)j∈N, forming a complete or-
thonormal basis of L2(R3), cf. [33]. By evaluating the kernel ρ(x, y) on its diagonal, we
obtain the corresponding particle density

nρ(x) =
∑

j∈N

λj |ψj(x)|2 ∈ L1
+(R

3) .

In the following we shall assume that

(1.2)

∫

R3

nρ(x) dx =M ,
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for a given total mass M > 0. We assume that the particles interact solely via gravitational
forces. The corresponding Hartree energy of the system is then given by

EH [ρ] := Ekin[ρ]− Epot[ρ] = tr(−∆ ρ)− 1

2
tr(Vρ ρ) ,

where Vρ denotes the self-consistent potential

Vρ = nρ ∗
1

| · |
and ‘∗’ is the usual convolution w.r.t. x ∈ R

3. Using the decomposition (1.1) for ρ, the Hartree
energy can be rewritten as

EH [ρ] =
∑

j∈N

λj

∫

R3

|∇ψj(x)|2 dx−
1

2

∫∫

R3×R3

nρ(x)nρ(y)

|x− y| dxdy .

To take into account thermal effects, we consider the associated free energy functional

(1.3) FT [ρ] := EH [ρ]− T S[ρ]
where T ≥ 0 denotes the temperature and S[ρ] is the entropy functional

S[ρ] := − tr β(ρ) .

The entropy generating function β is assumed to be convex, of class C1 and will satisfy some
additional properties to be prescribed later on. The purpose of this paper is to investigate
the existence of minimizers for FT with fixed mass M > 0 and temperature T ≥ 0 and study
their qualitative properties. These minimizers, often called ground states, can be interpreted
as stationary states for the time-dependent system

(1.4) i
d

dt
ρ(t) = [Hρ(t), ρ(t)] , ρ(0) = ρin .

Here [A,B] = AB−BA denotes the usual commutator and Hρ is the mean-field Hamiltonian
operator

(1.5) Hρ := −∆− nρ ∗
1

| · | .

Using again the decomposition (1.1), this can equivalently be rewritten as a system of (at
most) countably many Schrödinger equations coupled through the mean field potential Vρ:

(1.6)

{
i ∂tψj +∆ψj + V (t, x)ψj = 0 , j ∈ N ,

−∆Vρ = 4π
∑

j∈N λj |ψj(t, x)|2 .
This system is a generalization of the gravitational Hartree equation (also known as the
Schrödinger-Newton model, see [5]) to the case of mixed states. Notice that it reduces to a
finite system as soon as only a finite number of λj are non-zero. In such a case, ρ is a finite
rank operator.

Establishing the existence of stationary solutions to nonlinear Schrödinger models by means
of variational methods is a classical idea, cf. for instance [15]. A particular advantage of such
an approach is that in most cases one can directly deduce orbital stability of the stationary
solution w.r.t. the dynamics of (1.4) or, equivalently, (1.6). In the case of repulsive self-
consistent interactions, describing e.g. electrons, this has been successfully carried out in
[6, 7, 8, 24]. In addition, existence of stationary solutions in the repulsive case has been
obtained in [23, 25, 26, 27] using convexity properties of the corresponding energy functional.



THERMAL EFFECTS IN GRAVITATIONAL HARTREE SYSTEMS 3

In sharp contrast to the repulsive case, the gravitational Hartree system of stellar dynamics,
does not admit a convex energy and thus a more detailed study of minimizing sequences is
required. To this end, we first note that at zero temperature, i.e. T = 0, the free energy
FT [ρ] reduces to the gravitational Hartree energy EH [ρ]. For this model, existence of the
corresponding zero temperature ground states has been studied in [14, 17, 19] and, more
recently, in [5]. Most of these works rely on the so-called concentration-compactness method
introduced by Lions in [18]. According to [14], it is known that for T = 0 the minimum of
the Hartree energy is uniquely achieved by an appropriately normalized pure state, i.e. a rank
one density matrix ρ0 = M |ψ0〉〈ψ0|. The concentration-compactness method has later been
adapted to the setting of density matrices, see for instance [13] for a recent paper written this
framework, in which the authors study a semi-relativistic model of Hartree-Fock type at zero
temperature.

Remark 1.1. In the classical kinetic theory of self-gravitating systems, a variational approach
based on the so-called Casimir functionals has been repeatedly used to prove existence and
orbital stability of stationary states of relativistic and non-relativistic Vlasov-Poisson models:
see for instance [34, 35, 36, 28, 29, 32, 9, 30, 31]. These functionals can be regarded as the
classical counterpart of FT [ρ] and such an analogy between classical and quantum mechanics
has already been used in [24, 7, 8, 6].

In view of the quoted results, the purpose of this paper can be summarized as follows: First,
we shall prove the existence of minimizers for FT , extending the results of [14, 17, 19, 5] to
the case of non-zero temperature. As we shall see, a threshold in temperature arises due to the
competition between the Hartree energy and the entropy term and we find that minimizers of
FT exist only below a certain maximal temperature T ∗ > 0, which depends on the specific form
of the entropy generating function β. One should note that, by using the scaling properties of
the system, the notion of a maximal temperature for a given mass M can be rephrased into
a corresponding threshold for the mass at a given, fixed temperature T . Such a critical mass,
however, has to be clearly distinguished from the well-known Chandrasekhar mass threshold
in semi-relativistic models, cf. [16, 11, 13]. Moreover, depending on the choice of β, it could
happen that T ∗ = +∞, in which case minimizers of FT would exist even if the temperature
is taken arbitrarily large. In a second step, we shall also study the qualitative properties of
the ground states with respect to the temperature T ∈ [0, T ∗). In particular, we will prove
that there exists a certain critical temperature Tc > 0, above which minimizers correspond to
mixed quantum states, i.e. density matrix operators with rank higher than one. If T < Tc,
minimizers are pure states, as in the zero temperature model.

In order to make these statements mathematically precise, we introduce

H :=
{

ρ : L2(R3) → L2(R3) : ρ ≥ 0 , ρ ∈ S1 ,
√
−∆ ρ

√
−∆ ∈ S1

}

and consider the norm

‖ρ‖H := tr ρ+ tr
(√

−∆ ρ
√
−∆

)
.

The set H can be interpreted as the cone of nonnegative density matrix operators with finite
energy. Using the decomposition (1.1), if ρ ∈ H, we obtain that ψj ∈ H1(R3) for all j ∈ N

such that λj > 0. Taking into account the mass constraint (1.2) we define the set of physical
states by

HM := {ρ ∈ H : tr ρ =M} .



4 G.L. AKI, J. DOLBEAULT, AND C. SPARBER

We denote the infimum of the free energy functional FT , defined in (1.3), by

(1.7) iM,T = inf
ρ∈HM

FT [ρ] .

The set of minimizers will be denoted by MM ⊂ HM . As we shall see in the next sec-
tion, iM,T < 0 if MM 6= ∅. This however can be guaranteed only below a certain maximal
temperature T ∗ = T ∗(M) given by

(1.8) T ∗(M) := sup{T > 0 : iM,T < 0} .
This maximal temperature T ∗ will depend on the choice of the entropy generating function
β for which we impose the following assumptions:

(β1) β is strictly convex and of class C1 on [0,∞),

(β2) β ≥ 0 on [0, 1] and β(0) = β′(0) = 0,

(β3) supm∈(0,∞)
mβ′(m)
β(m) ≤ 3.

A typical example for the function β reads

β(s) = sp , p ∈ (1, 3] .

Such a power law nonlinearity is of common use in the classical kinetic theory of self-
gravitating systems known as polytropic gases. One of the main features of such models is to
give rise to orbitally stable stationary states with compact support, cf. [10, 29, 30, 34, 35, 36],
clearly a desirable feature when modeling stars. We shall prove in Section 6, that T ∗ is finite
if p is not too large. The limiting case as p approaches 1 corresponds to β(s) = s ln s but in
that case the free energy functional is not bounded from below, see [21] for a discussion in
the Coulomb repulsive case, which can easily be adapted to our setting.

Up to now, we have made no distinction between pure states, corresponding density matrix
operators with rank one, and mixed states, corresponding to operators with finite or infinite
rank. In [14] Lieb has proved that for T = 0 minimizers are pure states. As we shall see, this is
also the case when T is positive but small and as a consequence we have: iM,T = iM,0+T β(M).
Let us define

(1.9) Tc(M) := max
{
T > 0 : iM,T = iM,0 + τ β(M) ∀ τ ∈ (0, T ]

}
.

With these definitions in hand, we are now in the position to state our main result.

Theorem 1.1. Let M > 0 and assume that (β1)–(β3) hold. Then, the maximal tempera-
ture T ∗ defined in (1.8) is positive, possibly infinite, and the following properties hold:

(i) For all T < T ∗, there exists a density operator ρ ∈ HM such that FT [ρ] = iM,T .
Moreover ρ solves the self-consistent equation

ρ = (β′)−1
(
(µ−Hρ)/T

)

where Hρ is the mean-field Hamiltonian defined in (1.5) and µ < 0 denotes the La-
grange multiplier associated to the mass constraint.

(ii) The set of all minimizers MM ⊂ HM is orbitally stable under the dynamics of (1.4).
(iii) The critical temperature Tc defined in (1.9) is finite and a minimizer ρ ∈ MM is a

pure state if and only if T ∈ [0, Tc].
(iv) If, in addition, β(s) = sp with p ∈ (1, 7/5), then T ∗ < +∞.
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The proof of this theorem will be a consequence of several more detailed results. We shall
mostly rely on the concentration-compactness method, adapted to the framework of trace
class operators. Our approach is therefore similar to the one of [6] and [13], with differences
due, respectively, to the sign of the interaction potential and to non-zero temperature effects.
Uniqueness of minimizers (up to translations and rotations) is an open question for T > Tc.
For T ∈ [0, Tc], the problem is reduced to the pure state case, for which uniqueness has been
proved in [14] (also see [12]).

This paper is organized as follows: In Section 2 we collect several basic properties of the
free energy. In particular we establish the existence of a maximal temperature T ∗ > 0 and
derive the self-consistent equation for ρ ∈ HM . In Section 3, we derive an important a
priori inequality for minimizers, the so-called binding inequality, which is henceforth used in
proving the existence of minimizers in Section 4. Having done that, we shall prove in Section
5 that minimizers are mixed states for T > Tc, and we shall also characterize Tc in terms
of the eigenvalue problem associated to the case T = 0. In Section 6, we shall prove that
T ∗ is indeed finite in the polytropic case, provided p < 7/5 and furthermore establish some
qualitative properties of the minimizers as T → T ∗ < +∞. Finally, Section 7 is devoted to
some remarks on the sign of the Lagrange multiplier associated to the mass constraint and
related open questions.

2. Basic properties of the free energy

2.1. Boundedness from below and splitting property. As a preliminary step, we ob-
serve that the functional FT introduced in (1.3) is well defined and iM,T > −∞.

Lemma 2.1. Assume that (β1)–(β2) hold. The free energy FT is well-defined on HM and
iM,T is bounded from below. If FT [ρ] is finite, then

√
nρ is bounded in H1(R3).

Proof. In order to establish a bound from below, we shall first show that the potential energy
Epot[ρ] can be bounded in terms of the kinetic energy. To this end, note that for every ρ ∈ H

we have

Epot[ρ] ≤ C ‖nρ‖3/2L1 ‖nρ‖1/2L3

by the Hardy-Littlewood-Sobolev inequality. Next, by Sobolev’s embedding, we know that
‖nρ‖L3 is controlled by ‖∇√

nρ‖2L2 which, using the decomposition (1.1), is bounded by
tr(−∆ ρ). Hence we can conclude that

(2.1) Epot[ρ] ≤ C ‖nρ‖3/2L1 tr(−∆ ρ)1/2

for some generic positive constant C. By conservation of mass, the free energy is therefore
bounded from below on HM according to

FT [ρ] ≥ tr(−∆ ρ)− CM3/2 tr(−∆ ρ)1/2 ≥ −1

4
C2M3

uniformly w.r.t. ρ ∈ HM , thus establishing a lower bound on iM,T . For the entropy term
S[ρ] = − tr β(ρ) we observe that, since β is convex and β(0) = 0, it holds 0 ≤ β(ρ) ≤ β(M) ρ
for all ρ ∈ H and β(ρ) ∈ S1, provided ρ ∈ S1. Hence, all quantities involved in the definition
of FT are well-defined and bounded on HM . �

Throughout this work, we shall use smooth cut-off functions defined as follows. Let χ be
a fixed smooth function on R

3 with values in [0, 1] such that, for any x ∈ R
3, χ(x) = 1 if
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|x| < 1 and χ(x) = 0 if |x| ≥ 2. For any R > 0, we define χR and ξR by

(2.2) χR(x) = χ(x/R) and ξR(x) =
√

1− χ(x/R)2 ∀ x ∈ R
3 .

The motivation for introducing such cut-off functions is that, for any u ∈ H1(R3) and any
potential V , we have the identities
∫

R3

|u|2 dx =

∫

R3

|χR u|2 dx+
∫

R3

|ξR u|2 dx

and

∫

R3

V |u|2 dx =

∫

R3

V |χR u|2 dx+

∫

R3

V |ξR u|2 dx ,

and the IMS truncation identity

(2.3)

∫

R3

|∇(χR u)|2 dx+
∫

R3

|∇(ξR u)|2 dx =

∫

R3

|∇u|2 dx−
∫

R3

|u|2 ∇ · (∇χR +∇ξR)
︸ ︷︷ ︸

=O(R−2) as R→∞

dx .

A first application of this truncation method is given by the following splitting lemma.

Lemma 2.2. For ρ ∈ HM , we define ρ
(1)
R = χR ρχR and ρ

(2)
R = ξR ρ ξR. Then it holds:

S[ρ(1)R ] + S[ρ(2)R ] ≥ S[ρ] and Ekin[ρ(1)R ] + Ekin[ρ(2)R ] ≤ Ekin[ρ] +O(R−2) as R→ +∞ .

Proof. The assertion for Ekin[ρ] is a straightforward consequence of (2.3), namely

tr(−∆ ρ
(1)
R ) + tr(−∆ ρ

(2)
R ) = tr(−∆ ρ) +O(R−2) as R→ +∞ .

For the entropy term, we can use the Brown-Kosaki inequality (cf. [2]) as in [6, Lemma 3.4]
to obtain

tr β(ρ
(1)
R ) + tr β(ρ

(2)
R ) ≤ tr β(ρ) .

�

2.2. Sub-additivity and maximal temperature. In order to proceed further, we need
to study the dependence of iM,T with respect to M and T and prove that the maximal
temperature T ∗ as defined in (1.8) is in fact positive. To this end, we rely on the translation
invariance of the model. For a given y ∈ R

3, denote by τy : L2(R3) → L2(R3) the translation
operator given by

(τyf) = f(· − y) ∀ f ∈ L2(R3) .

Proposition 2.3. Let iM,T be given by (1.7) and assume that (β1)–(β2) hold. Then the
following properties hold:

(i) As a function ofM , iM,T is non-positive and sub-additive: for anyM > 0, m ∈ (0,M)
and T > 0, we have

iM,T ≤ iM−m,T + im,T ≤ 0 .

(ii) The function iM,T is a non-increasing function of M and a non-decreasing function
of T . For any T > 0, we have iM,T < 0 if and only if T < T ∗.

(iii) For any M > 0, T ∗(M) > 0 is positive, possibly infinite. As a function of M it is
increasing and satisfies

T ∗(M) ≥ max
0≤m≤M

m3

β(m)
|i1,0| .

As a consequence, T ∗ > 0 and T ∗(M) = +∞ for any M > 0 if lims→0+ β(s)/s
3 = 0.
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Proof. We start with the proof of the sub-additivity inequality. Consider two states ρ ∈ HM−m

and σ ∈ Hm, such that FT [ρ] ≤ iM−m,T + ε and FT [σ] ≤ im,T + ε. By density of finite rank
operators in H and of smooth compactly supported functions in L2, we can assume that

ρ =

J∑

j=1

λj |ψj〉〈ψj | ,

with smooth eigenfunctions (ψj)
J
j=1 having compact support in a ball B(0, R) ⊂ R

3, for some

J ∈ N. After approximating σ analogously, we define σRe := τ∗3Re
σ τ3Re, where e ∈ S

2 ⊂ R
3

is a fixed unit vector and τ is the translation operator defined above. Note that we have
ρ σRe = σRe ρ = 0, hence ρ+σRe ∈ HM and tr β(ρ+σRe) = tr β(ρ)+ tr β(σRe). Thus we have

iM,T ≤ FT [ρ+ σRe] = FT [ρ] + FT [σ] +O(1/R) ≤ iM−m,T + im,T + 2 ε ,

where the O(1/R) term has in fact negative sign so that we can simply drop it. Taking the
limit ε→ 0 yields the desired inequality.

Next, consider a minimizer ρ of EH subject to tr ρ = M . It is given by an appropriate
rescaling of the pure state obtained in [14]. For an arbitrary λ ∈ (0,∞), let (Uλ f)(x) :=

λ3/2f(λx) and observe that ρλ := U∗
λ ρUλ ∈ HM . As a function of λ, the Hartree energy

EH [ρλ] = λ2 Ekin[ρ]− λ Epot[ρ] has a minimum for some λ > 0. Computing d
dλ EH [ρλ] = 0, we

infer that λ = Epot[ρ]/(2 Ekin[ρ]) and moreover

iM,0 ≡ EH [ρ] = −1

4

(Epot[ρ])2
Ekin[ρ]

.

As a consequence, we have iM,0 =M3 i1,0 and

(2.4) FT [ρ] = iM,0 + T β(M) = β(M)

(

T − M3

β(M)
|i1,0|

)

≥ iM,T ,

thus proving that iM,T < 0 for T small enough.
Since β is non-negative function on [0,∞), the map T 7→ FT [ρ] is increasing. By taking

the infimum over all admissible ρ ∈ HM , we infer that T 7→ iM,T is non-decreasing. The
function M 7→ iM,T is non-increasing as a consequence of the sub-additivity property. As a
consequence, T ∗(M) is a non-decreasing function of M , such that

T ∗(M) ≥ lim
M→0+

T ∗(M) .

By the sub-additivity inequality and (2.4), we obtain

iM,T ≤ n iM/n,T ≤ nβ
(
M
n

)
T − M3

n2
|i1,0| = nβ

(
M
n

)

(

T − M3

n3 β
(
M
n

) |i1,0|
)

for any n ∈ N
∗. Since lims→0+ β(s)/s = 0, we find that iM,T ≤ 0 by passing to the limit as

n → ∞. In the particular case lims→0+ β(s)/s
3 = 0, we conclude that T ∗(M) = +∞ for any

M > 0. Similarly, using again the sub-additivity inequality and (2.4), we infer

iM,T ≤ im,T ≤ β(m)

(

T − m3

β(m)
|i1,0|

)

∀ m ∈ (0,M ] ,

which provides the lower bound on T ∗(M) in assertion (iii). By definition of T ∗(M), we also
know that iM,T is negative for any T < T ∗(M). From the monotonicity of T 7→ iM,T , we obtain
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that iM,T = 0 if T > T ∗ and T ∗ <∞. Because of the estimate iM,T ≤ iM,T0 + (T − T0)β(M)
for any T > T0, we also find that iM,T ∗ = 0 if T ∗ <∞. �

2.3. Euler-Lagrange equations and Lagrange multipliers. As in [8, 6], we obtain the
following characterization of ρ ∈ MM .

Proposition 2.4. Let M > 0, T ∈ (0, T ∗(M)] and assume that (β1)–(β2) hold. Consider a
density matrix operator ρ ∈ HM which minimizes FT . Then ρ is such that

(2.5) tr(Vρ ρ) = 4 tr(−∆ ρ)

and satisfies the self-consistent equation

(2.6) ρ = (β′)−1
(
(µ−Hρ)/T

)
,

where Hρ is the mean-field Hamiltonian defined in (1.5) and µ ≤ 0 denotes the Lagrange
multiplier associated to the mass constraint tr ρ =M . Explicitly, µ is given by

(2.7) µ =
1

M
tr
(
(Hρ + T β′(ρ)) ρ

)
.

Proof. Let ρ ∈ MM be a minimizer of FT . Consider the decomposition given by (1.1). If we
denote by ρλ the density operator in HM given by

ρλ = λ3
∑

j∈N

λj |ψj(λ·)〉〈ψj(λ·)| ,

then, as in the proof of Proposition 2.3, we find that EH [ρλ] = λ2 Ekin[ρ] − λ Epot[ρ] while
S[ρλ] = S[ρ] for any λ > 0. Hence the condition d

dλ EH [ρλ]|λ=1 = 0 exactly amounts to
Epot[ρ] = 2 Ekin[ρ]. Next, let σ ∈ HM . Then (1− t) ρ+ t σ ∈ HM and

t 7→ FT [(1 − t) ρ+ t σ]

has a minimum at t = 0. Computing its derivative at t = 0 and arguing by contradiction
implies that ρ also solves the linearized problem

inf
σ∈HM

tr
(
(Hρ + T β′(ρ))(σ − ρ)

)
.

Computing the corresponding Euler-Lagrange equations shows that the minimizer of this
problem is ρ = (β′)−1

(
(µ − Hρ)/T

)
where µ denotes the Lagrange multiplier associated to

the constraint tr ρ =M . Since the essential spectrum of Hρ is [0,∞), we also get that µ ≤ 0
since ρ is trace class and (β′)−1 > 0 on (0,∞). �

Using the decomposition (1.1) we can rewrite the stationary Hartree model in terms of (at
most) countably many eigenvalue problems coupled through a nonlinear Poisson equation

{
∆ψj + Vρ ψj + µj ψj = 0 , j ∈ N ,

−∆Vρ = 4π
∑

j∈N λj |ψj |2 ,
where (µj)j∈N ∈ R denotes the sequence of the eigenvalues of Hρ and 〈ψj , ψk〉L2 = δj,k.
The self-consistent equation (2.6) consequently implies the following relation between the
occupation numbers (λj)j∈N and the eigenvalues (µj)j∈N:

(2.8) λj = (β′)−1 ((µ − µj)/T )+ ,

where s+ = (s + |s|)/2 denotes the positive part of s. Upon reverting the relation (2.8) we
obtain µj = µ− T β′(λj) for any µj ≤ µ.
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The Lagrange multiplier µ is usually referred to as the chemical potential. In the existence
proof given below, it will be essential, that µ < 0. In order to show that this is indeed the

case, let p(M) := supm∈(0,M ]
mβ′(m)
β(m) . If ρ ∈ HM , then

tr(β′(ρ) ρ) ≤ p(M) tr β(ρ) .

Notice that if (β3) holds, then p(M) ≤ 3.

Lemma 2.5. Let M > 0 and T < T ∗(M). Assume that ρ ∈ HM is a minimizer of FT and
let µ be the corresponding Lagrange multiplier. With the above notations, if p(M) ≤ 3, then
M µ ≤ p(M) iM,T < 0.

Proof. By definition of iM,T and according to (2.7), we know that

iM,T = tr
(
−∆ ρ− 1

2 Vρ ρ+ T β(ρ)
)
,

M µ = tr
(
−∆ ρ− Vρ ρ+ T β′(ρ) ρ

)
.

Using (2.5), we end up with the identity

p(M) iM,T −M µ = (3− p(M)) tr(−∆ ρ) + T tr
(
p(M)β(ρ) − β′(ρ) ρ

)
≥ 0 ,

which concludes the proof. �

The negativity of the Lagrange multiplier µ, is straightforward in the zero temperature
case. In our situation it holds under Assumption (β3), but has not been established for
instance for β(s) = sp with p > 3. In fact, it might even be false in some cases, see Section 7
for more details.

Corollary 2.6. Let T > 0. Then M 7→ iM,T is monotone decreasing as long as T < T ∗(M)
and p(M) ≤ 3.

Proof. Let ρ ∈ HM be such that FT [ρ] ≤ iM,T + ε, for some ε > 0 to be chosen. With no

restriction, we can assume that Epot[ρ] = 2 Ekin[ρ] and define µ[ρ] := d
dλ FT [λ ρ]|λ=1. The same

computation as in the proof of Lemma 2.5 shows that

p(M) (iM,T + ε)−M µ ≥ (3− p(M)) tr(−∆ ρ) + T tr
(
p(M)β(ρ) − β′(ρ) ρ

)
≥ 0 ,

since, by assumption, p(M) ≤ 3. This proves that M µ[ρ] < iM,T /2 < 0 for any ε ∈
(0, |iM,T |/2), if p(M) ≤ 3. This bound being uniform with respect to ρ, monotonicity easily
follows. �

Remark 2.7. Under the assumptions of Lemma 2.5, we observe that

d

dλ
FT [λ ρ]|λ=1 = µM < 0,

provided p(M) ≤ 3 and ρ ∈ HM , which proves the strict monotonicity ofM 7→ iM,T . However,
at this stage, the existence of a minimizer is not granted and we thus had to argue differently.

3. The binding inequality

In this section we shall strengthen the result of Proposition 2.3 (i) and infer a strict sub-
additivity property of iM,T , which is usually called the binding inequality ; see e.g. [13]. This
will appear as a consequence of the following a priori estimate for the spatial density of the
minimizers.
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Proposition 3.1. Let ρ ∈ HM be a minimizer of FT . There exists a positive constant C such
that, for all R > 0 sufficiently large,

∫

|x|>R
nρ(x) dx ≤ C

R2
.

This result is the analog of [13, Lemma 5.2]. For completeness, we shall give the details of
the proof, which requires µ < 0, in the appendix. The following elementary estimate will be
useful in the sequel.

Lemma 3.2. There exists a positive constant C such that, for any ρ ∈ HM ,
∫

R3

nρ(x)

|x| dx ≤ CM3/2 (tr(−∆ ρ))1/2 .

Proof. Up to a translation, we have to estimate
∫

R3 |x|−1 nρ(x) dx and it is convenient to split
the integral into two integrals corresponding to |x| ≤ R and |x| > R. By Hölder’s inequality,
we know that, for any p > 3/2,

∫

BR

nρ(x)

|x| dx ≤
(

4π p−1
2p−3

)(p−1)/p
‖nρ‖Lp R

2p−3
p−1 ,

where BR denotes the centered ball of radius R. Similarly, for any p < 3/2,
∫

Bc
R

nρ(x)

|x| dx ≤
(

4π p−1
3−2p

)(p−1)/p
‖nρ‖Lp R− 2p−3

p−1 .

Applying these two estimates with, for instance, p = 3 and p = 6/5 and optimizing w.r.t. R >
0, we obtain a limiting case for the Hardy-Littlewood-Sobolev inequalities after using again
Hölder’s inequality to estimate ‖nρ‖L6/5 in terms of ‖nρ‖L1 and ‖nρ‖L3 :

∫

R3

nρ(x)

|x| dx ≤ C ‖nρ‖3/2L1 ‖nρ‖1/2L3 .

We conclude as in (2.1) using Sobolev’s inequality to control ‖nρ‖L3 by tr(−∆ ρ). �

As a consequence of Proposition 3.1 and Lemma 3.2, we obtain the following result.

Corollary 3.3 (Binding inequality). Let M (1) > 0 and M (2) > 0. If there are minimizers
for iM (1),T and iM (2),T , then

iM (1)+M (2),T < iM (1),T + iM (2),T .

Proof. Consider two minimizers ρ(1) and ρ(2) for iM (1),T and iM (2),T respectively and let χR

be the cut-off function given in (2.2). By Lemma 2.2 we have

tr(−∆(χR ρ
(ℓ) χR)) ≤ tr(−∆ ρ(ℓ)) +O(R−2) and tr β(χR ρ

(ℓ) χR) ≤ tr β(ρ(ℓ)) .

To handle the potential energies, we observe that

∣
∣
∣ Epot[χR ρ

(ℓ) χR]− Epot[ρ(ℓ)]
∣
∣
∣ ≤

∫∫

R3×R3

(1− χ2
R(x)χ

2
R(y))nρ(ℓ)(x)nρ(ℓ)(y)

|x− y| dxdy

≤
∫∫

{|x|≥R}×{|y|≥R}

nρ(ℓ)(x)nρ(ℓ)(y)

|x− y| dxdy .
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Using Lemma 3.1 and Lemma 3.2, we obtain
∣
∣
∣ Epot[χR ρ

(ℓ) χR]− Epot[ρ(ℓ)]
∣
∣
∣ ≤ C

[

tr(−∆ ρ(ℓ))
]1/2

∫

|x|≥R
nρ(ℓ)(x) dx ≤ O(R−2)

for R > 0 large enough. This shows that, for any R > 0 sufficiently large

FT [χR ρ
(ℓ) χR] ≤ iM (ℓ),T +O(R−2) for ℓ = 1, 2.

Consider now the test state

ρR := χR ρ
(1) χR + τ∗5Re

χR ρ
(2) χR τ5Re

for some unit vector e ∈ S
2. Since ‖nρR‖L1 ≤ M (1) +M (2), by monotonicity of M 7→ iM,T

(see Proposition 2.3 (ii)), we get

iM (1)+M (2),T ≤ FT [ρR] ≤ FT [χR ρ
(1) χR] + FT [χR ρ

(2) χR]−
M (1)M (2)

9R

≤ iM (1),T + iM (2),T +
C

R2
− M (1)M (2)

9R
for some positive constant C, which yields the desired result for R sufficiently large. �

4. Existence of minimizers below T ∗

By a classical result, see e.g. [13, Corollary 4.1], conservation of mass along a weakly
convergent minimizing sequence implies that the sequence strongly converges. More precisely,
we have the following statement.

Lemma 4.1. Let (ρk)k∈N ∈ HM be a minimizing sequence for FT , such that ρk ⇀ ρ weak−∗
in H and nρk → nρ almost everywhere as k → ∞. Then ρk → ρ strongly in H if and only if
tr ρ =M .

Proof. The proof relies on a characterization of the compactness due to Brezis and Lieb (see [1]
and [15, Theorem 1.9]) from which it follows that

lim
k→∞

(∫

R3

nρk dx−
∫

R3

|nρ − nρk | dx
)

=

∫

R3

nρ dx

and lim
k→∞

(

tr(−∆ ρ)− tr
(
−∆(ρ− ρk)

))

= tr(−∆ ρ) .

By semi-continuity of FT , monotonicity of M 7→ iM,T according to Proposition 2.3 (ii) and
compactness of the quadratic term in EH , we conclude that limk→∞ tr(−∆(ρ − ρk)) = 0 if
and only if tr ρ =M . �

With the results of Section 2 in hand, we can now state an existence result for minimizers
of FT . To this end, consider a minimizing sequence (ρn)n∈N for FT and recall that (ρn)n∈N is
said to be relatively compact up to translations if there is a sequence (an)n∈N of points in R

3

such that τ∗an ρn τan strongly converges as n→ ∞, up to the extraction of subsequences.
Clearly, the sub-additivity inequality given in Lemma 2.3 (i) is not sufficient to prove the

compactness up to translations for (ρn)n∈N. More precisely, if equality holds, then, as in the
proof of Lemma 2.3, one can construct a minimizing sequence that is not relatively compact in
H up to translations. This obstruction is usually referred to as dichotomy, cf. [18]. To overcome
this difficulty, we shall rely on the strict sub-additivity of Corollary 3.3, which, however, only
holds for minimizers. This is the main difference with previous works on Hartree-Fock models.
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As we shall see, the main issue will therefore be to prove the convergence of two subsequences
towards minimizers of mass smaller than M .

Proposition 4.2. Assume that (β1)–(β3) hold. LetM > 0 and consider T ∗ = T ∗(M) defined
by (1.8). For all T < T ∗, there exists an operator ρ in HM such that FT [ρ] = iM,T . Moreover,
every minimizing sequence (ρn)n∈N for iM,T is relatively compact in H up to translations.

Proof. The proof is based on the concentration-compactness method as in [13]. Compared to
previous results (see for instance [20, 21, 22, 13]), the main difficulty arises in the splitting
case, as we shall see below.

Step 1: Non-vanishing. We split

Epot[ρn] =
∫∫

R6

nρn(x)nρn(y)

|x− y| dxdy

into three integrals I1, I2 and I3 corresponding respectively to the domains |x − y| < 1/R,
1/R < |x − y| < R and |x − y| > R, for some R > 1 to be fixed later. Since nρn is bounded

in L1(R3) ∩ L3 ⊂ L7/5(R3) by Lemma 2.1, by Young’s inequality we can estimate I1 by

I1 ≤ ‖nρn‖2L7/5 ‖ | · |−1‖L7/4(B1/R) ≤
C

R5/7
,

and directly get bounds on I2 and I3 by computing

I2 ≤ R

∫∫

|x−y|<R
nρn(x)nρn(y) dxdy ≤ RM sup

y∈R3

∫

y+BR

nρn(x) dx ,

I3 ≤
1

R

∫∫

R6

nρn(x)nρn(y) dxdy ≤ M2

R
.

Keeping in mind that iM,T < 0, we have

FT [ρn] ≥ iM,T > −I1 − I2 − I3

for any n large enough, which proves the non-vanishing property:

lim
n→∞

∫

an+BR

nρn(x) dx ≥ 1

RM

(

− iM,T − M2

R
− C

R5/7

)

> 0

for R big enough and for some sequence (an)n∈N of points in R
3. Replacing ρn by τ∗an ρn τan

and denoting by ρ(1) the weak limit of (ρn)n∈N (up to the extraction of a subsequence), we
have proved that M (1) =

∫

R3 nρ(1) dx > 0.

Step 2: Dichotomy. Either M (1) = M and ρn strongly converges to ρ in H by Lemma 4.1,
or M (1) ∈ (0,M). Let us choose Rn such that

∫

R3 nρ(1)n
dx = M (1) + (M −M (1))/n where

ρ
(1)
n := χRn ρn χRn . Let ρ

(2)
n := ξRn ρn ξRn . By definition of Rn, limn→∞Rn = ∞. By Step 1,

we know that ρ
(1)
n strongly converges to ρ(1). By Identity (2.3) and Lemma 2.2, we find that

FT [ρn] ≥ FT [ρ
(1)
n ] + FT [ρ

(2)
n ] +O(R−2

n )−
∫∫

R3×R3

n
ρ
(1)
n
(x)n

ρ
(2)
n
(y)

|x− y| dxdy ,

thus showing that

iM,T = lim
n→∞

FT [ρn] ≥ FT [ρ
(1)] + lim

n→∞
FT [ρ

(2)
n ] .
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By step 1, limn→∞

∫

R3 nρ(2)n
dx = M −M (1). By sub-additivity, according to Lemma 2.3 (i),

ρ(1) is a minimizer for iM (1),T , (ρ
(2)
n )n∈N is a minimizing sequence for iM−M (1),T and

iM,T = iM (1),T + iM−M (1),T .

Either iM−M (1),T = 0 and then iM,T = iM−M (1),T , which contradicts Corollary 2.6, and the
assumption T < T ∗, or iM−M (1),T < 0. In this case, we can reapply the previous analysis

to (ρ
(2)
n )n∈N and get that for some M (2) > 0, (ρ

(2)
n )n∈N converges up to a translation to a

minimizer ρ(2) for iM (2),T and

iM,T = iM (1),T + iM (2),T + iM−M (1)−M (2),T .

From Corollary 3.3 and 2.3 (i), we get respectively iM (1)+M (2),T < iM (1),T + iM (2),T and
iM (1)+M (2),T + iM−M (1)−M (2),T ≤ iM,T , a contradiction. �

As a direct consequence of the variational approach, the set of minimizers MM is orbitally
stable under the dynamics of (1.4). To quantify this stability, define

distMM
(σ) := inf

ρ∈MM

‖ρ− σ‖H .

Corollary 4.3. Assume that (β1)–(β3) hold. For any given M > 0, let T ∈ (0, T ∗(M)). For
any ε > 0, there exists δ > 0 such that, for all ρin ∈ HM with distMM

(ρin) ≤ δ,

sup
t∈R+

distMM
(ρ(t)) ≤ ε

where ρ(t) is the solution of (1.4) with initial data ρin ∈ HM .

Similar results have been established in many earlier papers like, for instance in [24] in
the case of repulsive Coulomb interactions. As in [4, 24], the result is a direct consequence
of the conservation of the free energy along the flow and the compactness of all minimizing
sequences. According to [14], for T ∈ (0, Tc], the minimizer corresponding to iM,T is unique
up to translations (see next Section). A much stronger stability result can easily be achieved.
Details are left to the reader.

5. Critical Temperature for mixed states

In this subsection, we shall deduce the existence a critical temperature Tc ∈ (0, T ∗), above
which minimizers ρ ∈ MM become true mixed states, i.e. density matrix operators with rank
higher than one.

Lemma 5.1. For all M > 0, the map T 7→ iM,T is concave.

Proof. Fix some T0 > 0 and write

FT [ρ] = FT0 [ρ] + (T − T0) |S[ρ]| .
Denoting by ρT0 the minimizer for FT0 , we obtain

iM,T ≤ iM,T0 + (T − T0) |S[ρT0 ]|
which means that |S[ρT0 ]| lies in the cone tangent to T 7→ iM,T and iM,T lies below it,
i.e. T 7→ iM,T is concave. �
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Consider Tc defined by (1.9), i.e. the largest possible Tc such that iM,T = iM,0 + T β(M)
for T ∈ [0, Tc] and recall some results concerning the zero temperature case. Lieb in [14]
proved that FT=0 = EH has a unique radial minimizer ρ0 = M |ψ0〉〈ψ0|. The corresponding
Hamiltonian operator

(5.1) H0 := −∆− |ψ0|2 ∗ | · |−1 = Hρ0

admits countably many negative eigenvalues (µ0j )j∈N, which accumulate at zero. We shall
use these eigenvalues to characterize the critical temperature Tc. To this end we need the
following lemma.

Lemma 5.2. Assume that (β1)–(β3) hold. With Tc defined by (1.9), Tc(M) is positive for
any M > 0.

Proof. Consider a sequence (Tn)n∈N ∈ R+ such that lim→∞ Tn = 0. Let ρ(n) ∈ MM denote

the associated sequence of minimizers with occupation numbers (λ
(n)
j )j∈N. According to (2.8),

we know that
λ
(n)
j = (β′)−1

(

(µ(n) − µ
(n)
j )/Tn

)

∀ j ∈ N ,

where, for any n ∈ N,
(
µ
(n)
j

)

j∈N
denotes the sequence of eigenvalues of Hρ(n) and µ(n) ≤ 0

is the associated chemical potential. Since ρ(n) is a minimizing sequence for FT=0, we know
that

lim
n→∞

µ
(n)
j = µ0j ≤ 0

where (µ0j)j∈N are the eigenvalues of H0. Arguing by contradiction, we assume that

lim inf
n→∞

λ
(n)
1 = ǫ > 0 .

By (2.8) and the fact that β′ is increasing, this implies: µ(n) > µ
(n)
1 → µ01 as n→ ∞. Then

M = λ00 ≥ lim
→∞

λ
(n)
0 = lim

→∞
(β′)−1

(

µ(n)−µ
(n)
0

Tn

)

≥ lim
→∞

(β′)−1

(

µ0
1−µ

(n)
0

Tn

)

= +∞ .

This proves that there exists an interval [0, Tc) with Tc > 0 such that, for any Tn ∈ [0, Tc), it

holds µ(n) < µ
(n)
1 , and, as a consequence, ρ(n) is of rank one. Hence, for any T ∈ [0, Tc), the

minimizer of FT in HM is also a minimizer of EH + T β(M). From [14], we know that it is
unique and given by ρ0, in which case iM,T = iM,0 − T S[ρ0] = iM,0 + T β[M ]. �

As an immediate consequence of Lemmata 5.1 and 5.2 we obtain the following corollary.

Corollary 5.3. Assume that (β1)–(β3) hold. There is a pure state minimizer of mass M if
and only if T ∈ [0, Tc].

Proof. A pure state satisfies iM,T = iM,0 + T β(M) and from the concavity property stated
in Lemma 5.1 we conclude iM,T < iM,0 + T β(M) for all T > Tc. �

We finally give a characterization of Tc.

Proposition 5.4. Assume that (β1)–(β3) hold. For any M > 0, the critical temperature
satisfies

Tc(M) =
µ01 − µ00
β′(M)

,

where µ00 and µ01 are the two lowest eigenvalues of H0 defined in (5.1).
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Proof. For T ≤ Tc, there exists a unique pure state minimizer ρ0. For such a pure state,
the Lagrange multiplier associated to the mass constraint tr ρ0 = M is given by µ = µ(T ).
According to 2.7, it is given by T β′(M) + µ00 − µ(T ) = 0 for any T < Tc (as long as the
minimizer is of rank one). This uniquely determines µ(T ). On the other hand we know
that 0 6= λ1 = (β′)−1

(
(µ01 − µ(T ))/T

)
if T > (µ01 − µ00)/β

′(M), thus proving that Tc ≤
(µ01 − µ00)/β

′(M).

It remains to prove equality: By using Lemmas 5.1 and 5.2, we know that iM,Tc = iM,0 +
Tc β(M). Let ρ be a minimizer for T = Tc. The two inequalities, iM,0 ≤ EH [ρ] and β(M) ≤
tr β(ρ) hold as equalities if and only if, in both cases, ρ is of rank one. Consider a sequence

(T (n))n∈N such that limn→∞ T (n) = Tc, T
(n) > Tc for any n ∈ N and, if (ρ(n))n∈N denotes a

sequence of associated minimizers with
(
µ
(n)
j

)

j∈N
and µ(n) ≤ 0 as in the proof of Lemma 5.2,

we have µ(n) > µ
(n)
1 so that λ

(n)
1 > 0 for any n ∈ N. The sequence (ρ(n))n∈N is minimizing for

iM,Tc , thus proving that limn→∞ λ
(n)
1 = 0, so that limn→∞ µ(n) = µ01. Passing to the limit in

M µ(n) =
∑

j∈N

λ
(n)
j

(

µ
(n)
j + T (n) β′(λ

(n)
j )
)

completes the proof. �

6. Estimates on the maximal temperature

All above results require T < T ∗, the maximal temperature. In some situations, we can
prove that T ∗ is finite.

Proposition 6.1. Let β(s) = sp with p ∈ (1, 7/5). Then, for any M > 0, the maximal
temperature T ∗ = T ∗(M) is finite.

Proof. Let V be a given non-negative potential. From [7], we know that

2T tr β(ρ) + tr(−∆ ρ)− tr(V ρ) ≥ −(2T )
− 1

p−1 (p − 1) p
− p

p−1

∑

j

|µj(V )|γ

where γ = p
p−1 and µj(V ) denotes the negative eigenvalues of −∆− V . The sum is extended

to all such eigenvalues. By the Lieb-Thirring inequality, we have the estimate
∑

j

|µj(V )|γ ≤ CLT(γ)

∫

R3

|V |q dx

with q = γ + 3
2 . In summary, this amounts to

2T tr β(ρ) + tr(−∆ ρ)− tr(V ρ) ≥ −(2T )
− 1

p−1 (p − 1) p
− p

p−1 CLT(γ)

∫

R3

|V |q dx .

Applying the above inequality to V = Vρ = nρ ∗ | · |−1, we find that

FT [ρ] =
1

2
tr(−∆ ρ) +

1

2

[

(2T ) tr β(ρ) + tr(−∆ ρ)− tr(Vρ ρ)
]

≥ 1

2
tr(−∆ ρ)− T− 1

p−1 (2 p)−
p

p−1 CLT(γ)

∫

R3

|Vρ|q dx .

Next, we invoke the Hardy-Littlewood-Sobolev inequality
∫

R3

|Vρ|q dx ≤ CHLS ‖nρ‖qLr(R3)
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for some r > 1 such that 1
r = 2

3 +
1
q . Notice that r > 1 means q > 3 and hence p < 3. Hölder’s

inequality allows to estimate the right hand side by

‖nρ‖Lr(R3) ≤ ‖nρ‖θL1(R3) ‖nρ‖1−θ
L3(R3)

with θ = 3
2

(
1
r − 1

3

)
. Since ‖nρ‖L3(R3) is controlled by ‖∇√

nρ‖2L2 using Sobolev’s embedding,
which is itself bounded by tr(−∆ ρ), we conclude that

∫

R3

|Vρ|q dx ≤ cM q θ (tr(−∆ ρ))q (1−θ)

for some positive constant c and, as a consequence,

(6.1) FT [ρ] ≥
1

2
tr(−∆ ρ)− T

− 1
p−1 K tr(−∆ ρ)q (1−θ),

for some K > 0. Moreover we find that

q (1− θ) = 1 + η with η =
7− 5 p

4 (p − 1)
,

so that η is positive if p ∈ (1, 7/5).
Assume that iM,T < 0 and consider an admissible ρ ∈ HM such that FT [ρ] = iM,T . Since

tr β(ρ) is positive, as in the proof of (2.1), we know that for some positive constant C, which
is independent of T > 0,

0 > FT [ρ] > EH [ρ] ≥ tr(−∆ ρ)− CM3/2 tr(−∆ ρ)
1
2 ,

and, as a consequence,

tr(−∆ ρ) ≤ C2M3 .

On the other hand, by (6.1), we know that FT [ρ] < 0 means that

tr(−∆ ρ) >

(

T
1

p−1

2K

) 1
η

.

The compatibility of these two conditions amounts to

T
1

p−1 ≤ 2KC2 ηM3 η ,

which provides an upper bound for T ∗(M). �

Finally, we infer the following asymptotic property for the infimum of FT [ρ].

Lemma 6.2. Assume that (β1)–(β2) hold. If T ∗ < +∞, then limT→T ∗

−
iM,T = 0.

Proof. The proof follows from the concavity of T 7→ iM,T (see Lemma 5.1). Let ρT0 denote
the minimizer at T0 < T ∗, with FT0 [ρT0 ] = −δ for some δ > 0. Then we observe

iM,T ≤ (T − T0)
∑

j∈N

β(λj) + FT0 [ρT0 ] ≤ (T − T0)β(M)− δ < 0 ,

for all T such that: T − T0 ≤ δ/β(M), which is in contradiction with the definition of T ∗

given in (1.8) if lim infT→T ∗

−
iM,T < 0. �
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7. Concluding remarks

Assumption (β3) is needed for Corollary 2.6, which is used itself in the proof of Proposi-
tion 4.2 (compactness of minimizing sequences). When β(s) = sp, this means that we have
to introduce the restriction p ≤ 3. If look at the details of the proof, what is really needed is

that µ =
∂ iM,T

∂M takes negative values. To further clarify the role of the threshold p = 3, we
can state the following result.

Proposition 7.1. Assume that β(s) = sp for some p > 1. Then we have

(7.1) M
∂ iM,T

∂M
+ (3− p)T

∂ iM,T

∂T
≤ 3 iM,T

and, as a consequence:

(i) if p ≤ 3, then iM,T ≤ ( M
M0

)3 iM,T0 for any M > M0 > 0 and T > 0.

(ii) if p ≥ 3, then iM,T ≤ ( T
T0
)3/(3−p) iM,T0 for any M > 0 and T > T0 > 0.

Proof. Let ρ ∈ HM and, using the representation (1.1), define

ρλ := λ4
∑

j∈N

λj |ψj(λ·)〉〈ψj(λ·)|.

With M [ρ] := tr ρ =
∫

R3 nρ dx, we find that

M [ρλ] = λM [ρ] = λM

and

Fλ3−p T [ρλ] = λ3 FT [ρ] .

As a consequence, we have

iλM,λ3−p T ≤ λ3 iM,T ,

which proves (7.1) by differentiating at λ = 1. In case (i), since T 7→ iM,T is non-decreasing,
we have

iλM0,T ≤ iλM0,λ3−p T ≤ λ3 iM0,T ∀ λ > 1

and the conclusion holds with λ =M/M0. In case (ii), since M 7→ iM,T is non-increasing, we
have

iM,λ3−p T0
≤ iλM,λ3−p T0

≤ λ3 iM,T0 ∀ λ ∈ (0, 1)

and the conclusion holds with λ = (T/T0)
1/(3−p). �

Assume that β(s) = sp for any s ∈ R
+. We observe that for T < T ∗(M),

∂ iM,T

∂M ≤ 3
M iM,T

if p ≤ 3, but we have no such estimate if p > 3. In Proposition 2.3 (iii), the sufficient
condition for showing that T ∗(M) = ∞ is precisely p > 3. Hence, at this stage, we do not
have an example of a function β satisfying Assumptions (β1) and (β2) for which existence of
a minimizer of iM,T in HM is granted for any M > 0 and any T > 0. In other words, with
T ∗ can be infinite for a well chosen function β, for instance β(s) = sp, s ∈ R

+, for p > 3.
However, in such a case we do not know if the Lagrange multiplier µ(T ) is negative for any
T > 0 and as a consequence, the existence of a minimizer corresponding to iM,T is an open
question for large values of T .
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Appendix A. Proof of Proposition 3.1

Consider the minimizer ρ of Proposition 3.1 and let µ < 0 be the Lagrange multiplier
corresponding to the mass constraint tr ρ =M . Define

Gµ
T [ρ] := FT [ρ]− µ tr(ρ) .

The density operator ρ is a minimizer of the unconstrained minimization problem infρ∈H Gµ
T [ρ].

By the same argument as in the proof of Proposition 2.4 we know that ρ also solves the
linearized minimization problem infσ∈H Lµ[σ] where

Lµ[σ] := tr
[(
Hρ − µ+ T β′(ρ)

)
σ
]
.

Consider the cut-off functions χR and ξR defined in (2.2) and let ρR := χR ρχR. By
Lemma 2.2, we know that, as R→ ∞,

tr(−∆ ρ) ≥ tr(−∆ ρR) + tr(−∆(ξR ρ ξR))−
C

R2

for some positive constant C. Next we rewrite the potential energy as

Epot[ρ] =
∫∫

R3×R3

nρ(x)χ
2
R(y)nρ(y)

|x− y| dxdy +

∫∫

R3×R3

χ2
R/4(x)nρ(x) ξ

2
R(y)nρ(y)

|x− y| dxdy

+

∫∫

R3×R3

ξ2R/4 (x)nρ(x) ξ
2
R(y)nρ(y)

|x− y| dxdy .

In the second integral we use the fact that |x− y| ≥ R/2, whereas the third integral can be
estimated by Lemma 3.2. Using the fact that

ε(R) := tr(−∆(ξR ρ ξR))

=
∑

j∈N

λj

∫

R3

|∇(ξR ψj)|2 dx ≤ 2
M

R2
‖∇ξ‖2L∞ + 2

∑

j∈N

λj

∫

R3

ξ2R |∇ψj |2 dx

converges to 0 as R → ∞, we obtain that ‖ξ2R/4 nρ ∗ | · |−1‖L∞ ≤ C
√

ε(R/4) → 0 and can

estimate the third integral by
∫∫

R3×R3

ξ2R/4 (x)nρ(x) ξ
2
R(y)nρ(y)

|x− y| dxdy ≤ C
√

ε(R/4)

∫

R3

ξ2R(y)nρ(y) dx .

In summary this yields

Epot[ρ] ≤ tr(Vρ ρR) + o(1)

∫

R3

ξ2R nρ dx .

Collecting all estimates, we have proved that

Lµ[ρR] ≤ Lµ[ρ]− ε(R) + (µ+ o(1))

∫

R3

ξ2R nρ dx+
C

R2

as R → ∞. Recall that ε(R) is non-negative, µ is negative (by Lemma 2.5) and ρ is a
minimizer of Lµ so that Lµ[ρ] ≤ Lµ[ρR]. As a consequence,

(µ+ o(1))

∫

R3

ξ2R nρ dx+
C

R2
≥ 0

for R large enough, which completes the proof of Proposition 3.1. �
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