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Abstract

A graph G = (V,E) is arbitrarily vertex decomposable if for any sequence τ of positive integers
adding up to |V |, there is a sequence of vertex-disjoints subsets of V whose orders are given by τ ,
and which induce connected graphs. The aim of this paper is to study the recursive version of this
problem on a special class of graphs called suns. This paper is a complement of [BGW10]

1 Terminology and preliminary results

In this paper, we deal only with simple graphs, that means graphs without loops or multiple edges.
We denote by n the number of vertices, also called order of the graph and by m the number of edges.
If G = (V,E) and A ⊆ V , G[A] will denote the subgraph of G induced by A. For more definitions on
graphs, please refer to [Die05]

1.1 Arbitrarily Vertex-Decomposable Graphs

Let n, τ1, . . . , τk be positive integers such that τ1 + . . . + τk = n. τ = (τ1, . . . , τk) is called a
decomposition of n. If the size of the decomposition is pertinent, we would precise k-decomposition.

Let G = (V,E) be a graph of order n, and τ a k-decomposition of n. G is τ -Vertex-Decomposable
iff it exists a partition of V : V1, . . . , Vk such that for each i, 1 ≤ i ≤ k
• |Vi| = τi

• G[Vi] is connected

A graph G = (V,E) of order n is Arbitrarily Vertex-Decomposable (in short AVD) iff for each
decomposition τ of n, G is τ -Vertex-Decomposable.

1.2 Recursively Arbitrarily Vertex-Decomposable Graphs

Definition 1 A graph G = (V,E) with order n is Recursively Arbitrarily Vertex-Decomposable (in
short R-AVD) iff
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• G = K1

or

• G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2, it exists a partition of
V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k

– |Vi| = τi
– G[Vi] is R-AVD

Remark 2 A graph G = (V,E) of order n is R-AVD iff for each integer 1 ≤ λ ≤ bn2 c, it exists a
subset Vλ of V such that

• |Vλ| = λ

• G[Vλ] is R-AVD

• G[V \Vλ] is R-AVD

1.3 Families of graphs

We present here some families of graphs and their notations, used in the further sections.
Let a be a positive integer. Pa denotes the path of order a, Ca the cycle of order a (cp. Fig-

ures 1a and 1b) .

A k-pode Tk(t1, . . . , tk) is a tree of order 1 +
∑k
i=1 ti composed by k paths of order respectively

t1, . . . , tk, connected to a unique node, called the root of the k-pode (cp. Figure 1c).
Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of order a+ b, composed by

three paths of order a, b and 2, sharing exactly one node, called the root of the caterpillar. Cat(a, b)
is isomorphic to T3(a− 1, b− 1, 1) (cp. Figure 1d).

A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u1, . . . , ur whose deletion
yields a cycle Cn−r, and each vertex vi adjacent to ui is of degree three. If the sequence of vertices
vi is situated on the cycle Cn−r in such a way that there are exactly ai ≥ 0 vertices, each of degree
two, between vi and vi+1, i = 1, ..., r (the indices taken modulo r), then this sun is denoted by
Sun(a1, . . . , ar), and is unique up to isomorphism (cp. Figure 1e).

Note that the order of Sun(a1, . . . , ar) equals n = 2r + a1 + ...+ ar.

1.4 On-line Arbitrarily Vertex-Decomposable Graphs

The notion of on-line arbitrarily vertex decomposable graph has been introduced by Horňák and al.
in [HTW07].

Let G = (V,E) be a graph. Imagine now the following decomposition procedure consisting of k
stages, where k is a random variable attaining values from [1, n]. In the ith stage, where i ∈ [1, k], a
positive integer τi arrives and we have to choose a subset Vi of V of order τi that is disjoint from all
subsets of V chosen in previous stages (without a possibility of changing the choice in the future).
More precisely, for every partial sequence (τ1, . . . τi) whose sum is less than n, there is a sequence
(V1, . . . , Vi) of disjoint subsets of V such that for 1 ≤ j ≤ i, |Vj | = τj , with the following property:
for all sequences (τ ′1, . . . , τ

′
k) with k ≥ i and summing to n, such that τ ′r = τr for 1 ≤ r ≤ i, there is

a decomposition of V into disjoint subsets V ′1 , . . . , V
′
k with |V ′j | = τ ′j and G[V ′j ] connected, for all j,

and V ′j = Vj for 1 ≤ j ≤ i.

Definition 3 [HTW07] If the decomposition procedure can be accomplished for any (random) se-
quence of positive integers (τ1, . . . , τk) adding up to n, the graph G is said to be On-Line Arbitrarily
Vertex-Decomposable, (in short OL-AVD).

Lemma 4 [HTW07] A graph G = (V,E) of order n is OL-AVD iff for each integer 1 ≤ λ ≤ n− 1,
it exists a subset Vλ of V such that

• |Vλ| = λ
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(a) Path P5 (b) Cycle C5 (c) 3-pode T3(3, 2, 2)

(d) Cat(3, 5) (e) Sun(2, 3, 1)

Figure 1: Examples of Graphs

• G[Vλ] is connected

• G[V \Vλ] is OL-AVD

Remark 5 A straightforward consequence of Lemma 4 and Remark 2 is that every R-AVDgraph is
OL-AVD.

The opposite is not true. For example, the caterpillar Cat(8, 11) is OL-AVD [HTW07], but not
R-AVD [BGW10].

The next result gives a complete characterization of OL-AVD suns.

Theorem 6 [KPWZ08]
A sun with one ray is always OL-AVD.
A sun with two rays Sun(a, b) is OL-AVD iff a and b take values given in Table 1a.
A sun with three rays Sun(a, b, c) is OL-AVD iff a, b and c take values given in Table 1b.
A sun with four rays is OL-AVD iff it is isomorphic to Sun(0, 0, 1, d), where d ≡ 2, 4 (mod 6).
A sun with five or more rays is never OL-AVD.

1.5 Recursively Arbitrarily Vertex-Decomposable trees

Theorem 7 [BGW10] A tree T is R-AVD if and only if either T is a path or T is a caterpillar
Cat(a, b) with a and b given in Table 2 or T is the 3-pode T3(2, 4, 6).
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a b

0 arbitrary

1, 3 ≡ 0 (mod 2)

2 6≡ 3 (mod 6), 3, 9, 21

4 ≡ 2, 4 (mod 6), [4, 19]\{15}
5 ≡ 2, 4 (mod 6), 6, 18

6 6, 7, 8, 10, 11, 12, 14, 16

7 8, 10, 12, 14, 16

8 8, 9, 10, 11,12

9 10, 12

(a) Values a, b (b ≥ a), such that Sun(a, b)
is OL-AVD

a b c

0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)
2 ≡ 2, 4 (mod 6), 3, 6, 7, 11, 18, 19

0 3 ≡ 2, 4 (mod 6)
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6, 8, 16

6, 7 8, 10
8 8, 9

1 2 ≡ 2, 4 (mod 6), 6, 18

2 3 4, 8, 16

(b) Values a, b, c (c ≥ b ≥ a), such that Sun(a, b, c) is
OL-AVD

Table 1: Values for OL-AVD Suns

a b

2, 4 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

5 6, 7, 9, 11, 14, 19

6 7

7 8, 9, 11, 13, 15

Table 2: Values a, b (b ≥ a), such that Cat(a, b) is R-AVD
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2 Recursively Arbitrarily Vertex-Decomposable Suns

This section presents the main result of this paper, a complete characterization of R-AVD suns.

Theorem 8
A sun with one ray is always R-AVD.
A sun with two rays Sun (a, b) is R-AVD if and only if a and b take values given in Table 3a.
A sun with three rays Sun (a, b, c) is R-AVD if and only if a, b and c take values given in Table 3b.
A sun with four rays is R-AVD if and only if it is isomorphic to Sun (0, 0, 1, 2) or to Sun (0, 0, 1, 4).
A sun with five or more rays in never R-AVD.

a b

0 arbitrary

1 ≡ 0 (mod 2)

2 6≡ 0 (mod 3), 3, 6, 9, 12, 18, 21, 24, 36

3 ≡ 0 (mod 2)

4 4 ≤ b ≤ 19 except for b = 15,
≡ 2, 4 (mod 6) with 20 ≤ b ≤ 46

5 ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 32, 6, 18

6 6, 7, 8, 10, 11, 12, 14, 16

(a) Values a, b (b ≥ a), such that Sun(a, b) is R-AVD

a b c

0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)

0 2 2, 3, 4, 6, 7, 8, 10, 11, 14, 16, 18, 19
3 4, 8, 10
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6

1 2 2, 4, 6, 8, 10, 14, 16, 18

2 3 4

(b) Values a, b, c (c ≥ b ≥ a), such that Sun(a, b, c) is
R-AVD

Table 3: Values for R-AVD Suns

Proof.
Since every R-AVD graph is also OL-AVD, so, we shall use the complete characterization of

OL-AVD suns given in Theorem 6, and Remark 2.
The labelling used in the proof follows that one from Figure 2.

v2

v1

xa+1
u2

v3

xa+b+c+...

xa

u3

xa+b u1

xa+b+1

x1

Figure 2: Sun (a, b, . . .)

Sun with one ray A sun with one ray is traceable. Thus, it is R-AVD.
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Sun with two rays Without loss of generality, we consider Sun (a,b) with b ≥ a.

• Sun (0, b) is traceable and then is R-AVD.

• Sun (1, b) contains Cat (2, b+3) as partial graph. Thus, Sun (1, b) with b ≡ 0 (mod 2) is R-AVD.

• Sun (2, b) is OL-AVD only for b 6≡ 3 (mod 6) or b = 3, 9, 21.

– Sun (2, b) contains Cat (3, b+ 3) as spanning tree and thus is R-AVD for b 6≡ 0 (mod 3).

– If b = 6k with k = 5 or k ≥ 7, it is not possible to find a partition into two R-AVD
subgraphs of size 18 and n− 18.

– If b ∈ {3, 6, 9, 12, 18, 21, 24, 36}, then Sun (2, b) is R-AVD and the values of G[Vλ] and
G[V \Vλ] are given in Table 4.

• Sun (3, b) contains Cat(4, b+ 1) as a spanning tree. Thus, it is R-AVD for b ≡ 0 (mod 2).

• Sun (4, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {4, . . . , 19}\{15}.
– Sun (4, b) contains Cat(5, b+3) as a spanning tree. Thus, it is R-AVD for b ∈ {4, 6, 8, 11, 16}.
– Similarly, Sun (4, b) contains Cat(7, b + 1) as a spanning tree. Thus, it is R-AVD for
b ∈ {7, 10, 12, 14}.

– Let us consider the case where b ≡ 2, 4 (mod 6).

∗ If b ≥ 50, then n = b + 8 ≥ 58. Then, we have to consider the case λ = 30 with
n − λ ≥ 28. Because there is no caterpillar with order 30, G[Vλ] must be a path and
G[V \Vλ] a caterpillar Cat(5, x) or Cat(7, x). But such a caterpillar has a maximum
order 24. Thus, if b ≥ 50, Sun(4, b) cannot be R-AVD.

∗ For b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46, all the Sun(4,b) are R-AVD and the values of G[Vλ]
and G[V \Vλ] are given in Table 5.

– For the last possible values of b, that is b ∈ {5, 9, 13, 17, 18, 19}, Sun(4, b) is R-AVD and
the values of G[Vλ] and G[V \Vλ] are given in Table 5.

• Sun (5, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {6, 18}.
– Consider the case b ≡ 2, 4 (mod 6). For λ = 18, the only possibility is that G[V18] = P18.

But in that case, G[V \V18] must be a caterpillar Cat(6, x) or Cat(8, x), which is impossible
for n − 18 ≥ 14, that is n ≥ 32 and b ≥ 23. Thus Sun (5, b) may be R-AVD only for
b ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 22 or b ∈ {6, 18}.

– For all the remaining values of b, that is b ∈ {6, 8, 10, 14, 16, 18, 20, 22}, Sun (5, b) is R-AVD
and the values of G[Vλ] and G[V \Vλ] are given in Table 6.

• Sun (6, b) is OL-AVD only for b ∈ {6, 7, 8, 10, 11, 12, 14, 16}.
– Observe that Sun (6, b) contains, as a spanning tree, the caterpillar Cat (7, b + 3). Thus,

Sun (a, b) is R-AVD for b ∈ {6, 8, 10, 12}.
– For all the remaining values of b, that is b ∈ {7, 11, 14, 16}, Sun (6, b) is R-AVD and the

values of G[Vλ] and G[V \Vλ] are given in Table 7.

• Sun (7, b) is OL-AVD only for b ∈ {8, 10, 12, 14, 16}. For all of these values of b, it is not possible
to find an edge {w1, w2} such that G[V \{w1, w2}] is R-AVD.

• Sun (8, b) is OL-AVD only for b ∈ {8, 9, 10, 11, 12}.
– For b ∈ {8, 10, 11, 12}, it is not possible to find a set of size 3 V3 such that both G[V3] and
G[V \V3] are R-AVD.

– For b = 9, it is not possible to find an edge {w1, w2} such that G[V \{w1, w2}] is R-AVD.

• Sun (9, b) is OL-AVD only for b ∈ {10, 12}. For these two values of b, it is not possible to find
an edge {w1, w2} such that G[V \{w1, w2}] is R-AVD.
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b λ Vλ G[Vλ] G[V \Vλ]

3, 6, 9, 12, 18, 21, 24, 36 1 {u1} P1 Sun with one ray
2 {x1, x2} P2 Pb+4

3 {x3, x4, x5} P3 P6

6, 12, 18, 24, 36 3 {x2, v2, u2} P3 Cat(2, b+ 1)
9, 21 {xa+b−2, xa+b−1, xa+b} P3 Cat(5, b− 2)

3, 6, 9, 12, 18, 21, 24, 36 4 {u1, 12, x1, x2} P4 Pb+2

6, 9, 12, 18, 21, 24, 36 5 {x1, x2, v2, u2, x3} Cat(2, 3) Pb+1

6 {u1, v1, x1, x2, v2, u2} P6 Pb
9, 12, 18, 21, 24, 36 7 {u1, v1, x1, x2, v2, u2, x3} Cat(2, 5) Pb−1
12, 18, 21, 24, 36 8 {u1, v1, x1, x2, v2, u2, x3, x4} Cat(3, 5) Pb−2

9 {u1, v1, x1, x2, v2, u2, x3, x4, x5} Cat(4, 5) Pb−3
10 {x1, x2, v2, u2, x3, . . . , x8} Cat(3, 7) Pb−4

18, 21, 24, 36 11 {x1, x2, v2, u2, x3, . . . , x9} Cat(3, 8) Pb−5
12 {u1, v1, x1, x2, v2, u2, x3, . . . , x8} Cat(5, 7) Pb−6

21, 24, 36 13 {x1, x2, v2, u2, x3, . . . , x11} Cat(3, 10) Pb−7
24, 36 14 {x1, x2, v2, u2, x3, . . . , x12} Cat(3, 11) Pb−8

15 {x2, v2, u2, x3, . . . , x14} Cat(2, 13) Cat(2, b− 11)

16 {x1, x2, v2, u2, x3, . . . , x14} Cat(3, 13) P26

17 {x1, x2, v2, u2, x3, . . . , x15} Cat(3, 14) P25

36 18 {x21, . . . , x38} P18 Cat(5, 19)
19 {x1, x2, v2, u2, x3, . . . , x17} Cat(3, 16) P23

20 {x1, x2, v2, u2, x3, . . . , x18} Cat(3, 17) P22

21 {x2, v2, u2, x3, . . . , x20} Cat(2, 19) Cat(2, 19)

Table 4: Values of G[Vλ] and G[V \Vλ] for some Sun (2, b)
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b λ Vλ G[Vλ] G[V \Vλ]

5, 9, 13, 17, 18, 19 Sun with
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 1 {u1} P1 one ray

5, 13, 17, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x1, x2} P2 Cat(3, b+ 3)

9 2 {x5, x6} P2 Cat(7, 8)
18 {u1, v1} P2 Cat(5, 19)

5, 13, 17 {x5, x6, x7} P3 Cat(7, b− 2)
9, 19 3 {u2, v2, x5} P3 Cat(5, b)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x1, x2, x3} P3 Cat(2, b+ 3)

5, 9, 13, 17, 18, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 4 {x1, . . . , x4} P4 Pb+4

5, 13, 17, 19 {x3, x4, v2, u2, x5} Cat(2, 3) Cat(3, b)
9 5 {x5, . . . , x9} P5 Cat(5, 7)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x4, v2, u2, x5, x6} Cat(2, 3) Cat(4, b− 1)

5, 9, 13, 17, 18, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 6 {u1, v1, x1, . . . , x4} P6 Pb+2

9, 13, 19 {x3, x4, v2, u2, x5, x6, x7} Cat(3, 4) Cat(3, b− 2)
17 7 {x15, . . . , x21} P7 Cat(7, 11)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x4, v2, u2, x5, . . . , x8} Cat(2, 5) Cat(4, b− 3)

9, 13, 17, 18, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 8 {u1, v1, x1, . . . , x4, v2, u2} P8 Pb

13, 17, 18, 19 9 {x1, . . . , x4, v2, u2, x5, x6, x7} Cat(4, 5) Pb−1
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 10 {u1, v1, x1, . . . , x4, v2, u2, x5, x6} Cat(3, 7) Pb−2

17, 18, 19 11 {x1, . . . , x4, v2, u2, x5, . . . , x9} Cat(5, 6) Pb−3
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 12 {x1, . . . , x4, v2, u2, x5, . . . , x10} Cat(5, 7) Pb−4

18, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 13 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x9} Cat(6, 7) Pb−5
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 14 {x1, . . . , x4, v2, u2, x5, . . . , x12} Cat(5, 9) Pb−6
b ≡ 2, 4 (mod 6), 22 ≤ b ≤ 46 15 {x4, v2, u2, x5, . . . , x16} Cat(2, 13) Cat(4, b− 11)

16 {x1, . . . , x4, v2, u2, x5, . . . , x14} Cat(5, 11) Pb−8
26, 28, 32, 34, 38, 40, 44, 46 17 {x4, v2, u2, x5, . . . , x18} Cat(2, 15) Cat(4, b− 13)

28, 32, 34, 38, 40, 44, 46 18 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x14} Cat(7, 11) Pb−10
19 {x4, v2, u2, x5, . . . , x20} Cat(2, 17) Cat(4, b− 15)

32, 34, 38, 40, 44, 46 20 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x16} Cat(7, 13) Pb−12
34, 38, 40, 44, 46 21 {x4, v2, u2, x5, . . . , x22} Cat(2, 19) Cat(4, b− 17)

22 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x18} Cat(7, 15) Pb−14
38, 40, 44, 46 23 {x4, v2, u2, x5, . . . , x24} Cat(2, 21) Cat(4, b− 19)

40, 44, 46 24 {x1, . . . , x4, v2, u2, x5, . . . , x22} Cat(5, 19) Pb−16
25 {x4, v2, u2, x5, . . . , x26} Cat(2, 23) Cat(4, b− 21)

44, 46 26 {x3, x4, v2, u2, x5, . . . , x26} Cat(3, 23) Cat(3, b− 21)

46 27 {x4, v2, u2, x5, . . . , x28} Cat(2, 25) Cat(4, 23)

Table 5: Values of G[Vλ] and G[V \Vλ] for some Sun (4, b)
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b λ Vλ G[Vλ] G[V \Vλ]

1 {u1} P1 Sun with one ray
6, 8, 10, 14, 16, 18, 20, 22 2 {x1, x2} P2 Cat(4, b+ 7)

6, 18 {u1, v1, x1} P3 Cat(5, b+ 1)
8, 10, 14, 16, 20, 22 3 {x1, x2, x3} P3 Cat(3, b+ 3)

4 {x1, x2, x3, x4} P4 Cat(2, b+ 5)
6, 8, 10, 14, 16, 18, 20, 22 5 {x1 . . . , x5} P5 Pb+4

6 {x2 . . . , x5, v2, u2} P6 Cat(2, b+ 1)
7 {u1, v1, x1 . . . , x5} P7 Pb+2

8, 10, 14, 16, 18, 20, 22 8 {x2 . . . , x5, v2, u2, x6, x7} Cat(3, 5) Cat(2, b− 1)

10, 14, 16, 18, 20, 22 9 {u1, v1, x1 . . . , x5, v2, u2} P9 Pb
10 {x4, x5, v2, u2, x6, . . . , x11} Cat(3, 7) Cat(4, b− 5)

14, 16, 18, 20, 22 11 {u1, v1, x1 . . . , x5, v2, u2, x6, x7} Cat(3, 8) Pb−2
16, 18, 20, 22 12 {x2, . . . , x5, v2, u2, x6, . . . , x11} Cat(5, 7) Cat(2, b− 5)

18, 20, 22 13 {x1, . . . , x5, v2, u2, x6, . . . , x11} Cat(6, 7) Pb−4
20, 22 14 {x2, . . . , x5, v2, u2, x6, . . . , x13} Cat(5, 9) Cat(2, b− 7)

22 15 {u1, v1, x1 . . . , x5, v2, u2, x6, . . . , x11} Cat(7, 8) P16

Table 6: Values of G[Vλ] and G[V \Vλ] for Sun (5, b)

b λ Vλ G[Vλ] G[V \Vλ]

7, 11, 14, 16 1 {u1} P1 Sun with one ray

7, 14 {u1, v1} P2 Cat(7, b+ 1)
11, 16 2 {x1, x2} P2 Cat(5, b+ 3)

7 {x7, x8, x9} P3 Cat(5, 9)
11 3 {v2, u2, x7} P3 Cat(7, b)

14, 16 {x1, x2, x3} P3 Cat(4, b+ 3)

7, 11, 14, 16 4 {x1, . . . , x4} P4 Cat(3, b+3)

7, 11 {x5, x6, v2, u2, x7} Cat(2, 3) Cat(5, b)
14, 16 5 {x1, . . . , x5} P5 Cat(2, b+ 3)

7, 11, 14, 16 6 {x1, . . . , x6} P6 Pb+4

7, 11 {x3, . . . , x6, v2, u2, x7} Cat(2, 5) Cat(3, b)
14, 16 7 {x2, . . . , x6, v2, u2} P7 Cat(2, b+ 1)

7, 11, 14, 16 8 {x1, . . . , x6, v2, u2} P8 Pb+2

9
11, 14, 16 10

11 {x1, . . . , x6, v2, u2, x7, . . . , xλ−2} Cat(λ− 7, 7) Pb+10−λ
14, 16 12

16 13

Table 7: Values of G[Vλ] and G[V \Vλ] for some Sun (6, b)
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Sun with three rays Without loss of generality, we consider Sun (a,b,c) with c ≥ b ≥ a.

• Sun (0,0,c) is OL-AVD only for c ≡ 1, 2 (mod 3). Because Sun (0,0,c) contains Cat(3, c + 3) as
a spanning tree, thus it is also R-AVD for c ≡ 1, 2 (mod 3).

• Sun (0,1,c) is OL-AVD only for c ≡ 0 (mod 2). Because Sun (0,1,c) contains Cat(4, c + 3) as a
spanning tree, thus it is also R-AVD for c ≡ 0 (mod 2).

• Sun (0,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {3, 6, 7, 11, 18, 19}.
– Sun (0,2,c) contains Cat(5, c+ 3) as a spanning tree, thus it is R-AVD for c ∈ {3, 6, 11}.
– For c ∈ {7, 18, 19}, Sun (0, 2, c) is R-AVD and the values of G[Vλ] and G[V \Vλ] are given

in Table 8.

– For c ≡ 2, 4 (mod 6), we first eliminate values of c such that Sun (0,2,c) is not R-AVD.

∗ c ≡ 2 (mod 6), c 6= 2, 8, 14, 26
Consider λ = 10. The two possibilities for G[V10] to be R-AVD are

· Cat(3, 7) with V10 = {u2, v2, v1, u1, xc+2, . . . , xc−3}, and thus G[V \V10] = Cat(3, c−
5). Cat(3, c− 5) is not R-AVD for c ≡ 2 (mod 6).

· P10 with V10 = {u1, v1, xc+2, . . . , xc−5}. Then G[V \V10] = Cat(5, c − 7). If we
consider only the cases where c ≥ 20 and c ≡ 2 (mod 6), G[V \V10] is R-AVD only if
c = 26.

∗ c = 26
Consider λ = 13. The possibilities for G[V13] to be R-AVD are

· Cat(3, 10) with V13 = {u2, v2, v1, u1, xc+2, . . . , xc−6}. If c = 26, then G[V \V13] =
Cat(3, 18) which is not R-AVD.

· P13 with V13 = {u1, v1, xc+2, . . . , xc−8}. If c = 26, G[V \V13] = Cat(5, 16) which is
not R-AVD.

∗ c ≡ 4 (mod 6), c ≥ 22
First, observe that because n = c + 8 and c ≡ 4 (mod 6), we have n ≡ 0 (mod 6) and
then n ≡ 0 (mod 3).
We consider λ = 15. Both 15 and n − 15 ≡ 0 (mod 3). Therefore, both G15 and
G[V \V15] cannot be realized as a R-AVD caterpillar of the form Cat(3, b). Because
Cat(5, 10) is not R-AVD the only remaining possibility is that G15 is a path P15 and
G[V \V15] is a caterpillar Cat(5, c−12). But Cat(5, c−12) is not R-AVD for c = 22, 28
or c ≥ 34.

In conclusion, for c ≡ 2, 4 (mod 6), the only remaining values are 2, 4, 8, 10, 14 and 16. For
all of these values, Sun (0,2,c) is R-AVD and the values of G[Vλ] and G[V \Vλ] are given in
Table 8.

• Sun (0,3,c) is OL-AVD only for c ≡ 2, 4 (mod 6).

Consider first λ = 6. Because there is no R-AVD caterpillar of order 6, G[V6] must be a path
of length 6. The two possibilities are that V6 = {u1, v1, xc+3, . . . , xc} or {u3, v3, x4, . . . x7}.
If V6 = {u3, v3, x4, . . . x7}, G[V \V6] is R-AVD if and only if G[V \V6] is a caterpillar Cat(3, 4)
and c = 4.

If V6 = {u1, v1, xc+3, . . . , xc}, G[V \V6] is R-AVD if and only if G[V \V6] is a caterpillar Cat(5,
6) or Cat(6, 7) and then c = 8 or c = 10.

For c ∈ {4, 8, 10}, Sun (0,3,c) is R-AVD and the values of G[Vλ] and G[V \Vλ] are given in
Table 9.

• Sun (0,4,c) is OL-AVD only for c ∈ {4, 5, 6, 8, 10, 11, 12, 14, 16}.
For all of these values of c, Sun (0,4,c) is also R-AVD and values of G[Vλ] and G[V \Vλ] are given
in Table 10.
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c λ Vλ G[Vλ] G[V \Vλ]

2, 4, 7, 8, 10, 14, 16, 18, 19 1 {u3} P1 Pc+7

2, 4, 7, 8, 10, 14, 16, 19 {u1, v1} P2 Cat(3, c+ 3)
18 2 {x1, x2} P2 Cat(5, 19)

2, 4, 8, 10, 14, 16, 18 {u2, v2, x1} P3 Cat(2, c+ 3)
7, 19 3 {u1, v1, xc+2} P3 Cat(5, c)

2, 4, 7, 8, 10, 14, 16, 18, 19 4 {u2, v2, x1, x2} P4 Pc+4

2, 4, 8, 10, 14, 16, 18 {u1, v1, v2, u2, x1} Cat(2, 3) Cat(2, c+ 1)
7, 19 5 {xc+2, v1, u1, v2, u2} Cat(2, 3) Cat(3, c)

4, 7, 8, 10, 14, 16, 18, 19 6 {u2, v2, x1, x2, v3, u3} P6 Pc+2

7, 8, 10, 14, 16, 18, 19 7 {u2, v2, x1, x2, v3, u3, x3} Cat(2, 5) Pc+1

8, 10, 14, 16, 18, 19 8 {u1, v1, v2, u2, x1, x2, v3, u3} Cat(3, 5) Pc
10, 14, 16, 18, 19 9 {u2, v2, x1, x2, v3, u3, x3, x4, x5} Cat(4, 5) Pc−1

14 {u1, v1, x16, . . . , x9} P10 Cat(5, 7)
16, 18, 19 10 {u2, v2, v1, u1, xc+2, . . . , xc−3} Cat(3, 7) Cat(3, c− 5)

14, 16, 18, 19 11 {u2, v2, x1, x2, v3, u3, x3, . . . , x7} Cat(5, 6) Pc−3
16, 18, 19 12 {u2, v2, x1, x2, v3, u3, x3, . . . , x8} Cat(5, 7) Pc−4

18, 19 13 {u2, v2, v1, u1, xc+2, . . . , xc−6} Cat(3, 10) Cat(3, c− 8)

Table 8: Values of G[Vλ] and G[V \Vλ] for some Sun (0, 2, c)

c λ Vλ G[Vλ] G[V \Vλ]

1 {u3} P1 Pc+8

2 {u2, v2} P2 Cat(4, c+ 3)
4, 8, 10 3 {u2, v2, x1} P3 Cat(3, c+ 3)

4 {u2, v2, x1, x2} P4 Cat(2, c+ 3)
5 {u2, v2, x1, x2, x3} P5 Pc+4

4 {u3, v3, x4, . . . x7} P6 Cat(3, 4)
8, 10 6 {u1, v1, xc+3, . . . , xc} P6 Cat(6, c− 3)

8, 10 7 {u2, v2, x1, x2, x3, v3, u3} P7 Pc+2

8, 10 8 {u2, v2, v1, u1, xc+3, . . . , xc} Cat(3, 5) Cat(4, c− 3)

10 9 {x1, x2, x3, v3, u3, x4, . . . , x7} Cat(4, 5) Cat(3, 7)

Table 9: Values of G[Vλ] and G[V \Vλ] for Sun (0, 3, c)
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c λ Vλ G[Vλ] G[V \Vλ]

4, 5, 6, 8, 10, 11, 12, 14, 16 1 {u3} P1 Pc+9

4, 6, 11, 16 {u2, v2} P2 Cat(5, c+ 3)
5, 8, 10, 12, 14 2 {u1, v1} P2 Cat(7, c+ 1)

4, 6, 8, 10, 12, 14, 16 {u2, v2, x1} P3 Cat(4, c+ 3)
5, 11 3 {u1, v1, xc+4} P3 Cat(7, c)

4, 5, 8, 10, 11, 14, 16 {x1, . . . , x4} P4 Cat(3, c+ 3)
6, 12 4 {u1, v1, xc+4, xc+3} P4 Cat(7, c− 1)

4, 6, 8, 10, 12, 14, 16 {u2, v2, x1, x2, x3} P5 Cat(2, c+ 3)
5 5 {u1, v1, x9, x8, x7} P5 Cat(3, 7)
11 {u2, v2, v1, u1, x15} Cat(2, 3) Cat(5, 11)

4, 5, 6, 8, 10, 11, 12, 14, 16 6 {u2, v2, x1, . . . , x4} P6 Pc+4

4, 6, 8, 10, 12, 14, 16 {u1, v1, v2, u2, x1, x2, x3} Cat(3, 4) Cat(2, c+ 1)
5, 11 7 {u2, v2, v1, u1, xc+4, xc+3, xc+2} Cat(3, 4) Cat(5, c− 2)

6, 8, 10, 11, 12, 14, 16 8 {u2, v2, x1, . . . , x4, v3, u3} P8 Pc+2

8, 10, 11, 12, 14, 16 9 {u2, v2, x1, . . . , x4, v3, u3, x5} Cat(2, 7) Pc+1

10, 11, 12, 14, 16 10 {u2, v2, x1, . . . , x4, v3, u3, x5, x6} Cat(3, 7) Pc
12, 14, 16 11 {u2, v2, x1, . . . , x4, v3, u3, x5, x6, x7} Cat(4, 7) Pc−1

14, 16 12 {u2, v2, x1, . . . , x4, v3, u3, x5, . . . , x8} Cat(5, 7) Pc−2
16 13 {u2, v2, x1, . . . , x4, v3, u3, x5, . . . , x9} Cat(6, 7) Pc−3

Table 10: Values of G[Vλ] and G[V \Vλ] for Sun (0, 4, c)

• Sun (0,5,c) is OL-AVD only for c ∈ {6, 8, 16}.
Consider λ = 2. There is only two possibilities for V2, either V2 = {u2, v2}, or V2 = {u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat(6, c+ 3) which is not R-AVD for any c ∈ {6, 8, 16}.
If V2 = {u1, v1}, then G[V \V2] = Cat(8, c + 1) which is R-AVD for c = 6 but not for c = 8 or
c = 16.

In fact, Sun (0, 5, 6) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in Table 11.

• Sun (0,6,c) is OL-AVD only for c ∈ {8, 10}.
Consider λ = 3. The two possibilities for V3 are {u2, v2, x1} and {u1, v1, xc+6}. In the first case,
G[V \V3] = Cat(6, c+ 3), in the second case G[V \V3] = Cat(9, c). In both cases, G[V \V3] is not
R-AVD for c = 8 or c = 10.

• Sun (0,7,c) is OL-AVD only for c ∈ {8, 10}.
Consider λ = 2. There is only two possibilities for V2, either V2 = {u2, v2}, or V2 = {u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat(8, c+3). If V2 = {u1, v1}, then G[V \V2] = Cat(10, c+1).
Both Cat(8, c+ 3) and Cat(10, c+ 1) are not R-AVD for c = 8 and c = 10.

• Sun (0,8,c) is OL-AVD only for c ∈ {8, 9}.
Consider again λ = 2 and the two possibilities for V2: V2 = {u2, v2}, or V2 = {u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat(9, c+3). If V2 = {u1, v1}, then G[V \V2] = Cat(11, c+1).
Both Cat(9, c+ 3) and Cat(11, c+ 1) are not R-AVD for c = 8 and c = 9.

• Sun (1,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {6, 18}.
Consider first λ = 11. That means that n ≥ 22 and thus c ≥ 13. We consider four possibilities
to obtain a R-AVD graph with order 11:

– V11 = {u2, v2, x1, v1, u1, xc+3, . . . , xc−2}. In that case, G[V \V11] = Cat(3, c− 5).
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λ Vλ G[Vλ] G[V \Vλ]

1 {u3} P1 P16

2 {u1, v1} P2 Cat(7, 8)

3 {u2, v2, x1} P3 Cat(5, 9)

4 {u2, v2, x1, x2} P4 Cat(4, 9)

5 {u1, v1, v2, u2, x1} Cat(2, 3) Cat(5, 7)

6 {u2, v2, x1, . . . , x4} P6 Cat(2, 9)

7 {u2, v2, x1, . . . , x5} P7 P10

8 {u1, v1, v2, u2, x1, . . . , x4} Cat(3, 5) Cat(2, 7)

Table 11: Values of G[Vλ] and G[V \Vλ] for Sun (0, 5, 6)

– V11 = {u2, v2, x2, x3, v3, u3, x4, . . . , x8}. Thus, G[V \V11] = Cat(2, c− 4).

– V11 = {x2, x3, v3, u3, x4, . . . , x10}. Thus, G[V \V11] = Cat(4, c− 6).

– V11 = {x1, v1, u1, xc+3, . . . , xc−4}. Thus, G[V \V11] = Cat(5, c− 7).

For all these cases, G[V \V11] is not R-AVD for c ≥ 13, c ≡ 2 (mod 6), except for G[V \V11] =
Cat(5, 7) or Cat(5, 19) and c = 14 or 26.

Consider now λ = 13. That means that n ≥ 26 and thus c ≥ 17. We consider three possibilities
to obtain a R-AVD graph with order 13:

– V13 = {x2, x3, v3, u3, x4, . . . , x13}. Thus, G[V \V13] = Cat(4, c− 8).

– V13 = {u2, v2, x1, v1, u1, xc+3, . . . , xc−4}. In that case, G[V \V13] = Cat(3, c− 7).

– V13 = {x1, v1, u1, xc+3, . . . , xc−6}. Thus, G[V \V13] = Cat(5, c− 9).

For all these cases, G[V \V13] is not R-AVD for c ≥ 17, c ≡ 4 (mod 6), except when G[V \V13] =
Cat(5, 19) and c = 28.

At last, consider an induced subgraph with order 18. Because the only caterpillar with this
order is Cat(7, 11), the only way to have a R-AVD subgraph of Sun (1, 2, c) with order 18 is a
path P18. In the cases of c = 26 or c = 28, the remaining subgraph contains four leaves and
then, cannot be R-AVD.

Thus, the only remaining values for c are 2, 4, 6, 8, 10, 14, 16 and 18. For all these values of c,
Sun (1, 2, c) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in Table 12.

• Sun (2,3,c) is OL-AVD only for c ∈ {4, 8, 16}.
Let us consider λ = 2. If V2 = {u1, v1}, V2 = {u2, v2} or V2 = {u3, v3}, then G[V \V2] has
four leaves and then is not R-AVD. The only remaining possibility is V2 = {x1, x2}, and thus
G[V \V2] = Cat(6, c+ 3). Then, Sun (2, 3, c) cannot be R-AVD with c = 8 or c = 16.

Sun (2, 3, 4) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in Table 13.

Sun with four rays A sun with four rays is OL-AVD if and only if it is isomorphic to Sun (0, 0, 1, d)
with d ≡ 2, 4 (mod 6).

Consider λ = 6. Since an R-AVD graph with order 6 must be a path, the only possibility is to
have

• d = 2,V6 = {u1, v1, x3, x2, v4, u4} and G[V \V6] = Cat(2, 3)
or

• d = 4, V6 = {u1, v1, x5, x4, x3, x2} and G[V \V6] = Cat(4, 3)

We prove that both Sun (0, 0, 1, 2) and Sun (0, 0, 1, 4) are R-AVD, by giving the values of G[Vλ]
and G[V \Vλ] in Table 14.
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c λ Vλ G[Vλ] G[V \Vλ]

2, 4, 6, 8, 10, 14, 16, 18 1 {u1} P1 Sun (2, c+ 2)

2, 4, 6, 8, 10, 14, 16, 18 2 {x2, x3} P2 Cat(4, c+ 3)

2, 4, 8, 10, 14, 16 {x1, v2, u2} P3 Cat(3, c+ 3)
6, 18 3 {u1, v1, x1} P3 Cat(5, c+ 1)

2, 4, 6, 8, 10, 14, 16, 18 4 {u2, v2, x2, x3} P4 Cat(2, c+ 3)

2, 4, 6, 8, 10, 14, 16, 18 5 {x1, v2, u2, x2, x3} Cat(2, 3) Pc+4

4, 6, 8, 10, 14, 16, 18 6 {u2, v2, x2, x3, v3, u3} P6 Cat(2, c+ 1)

6, 8, 10, 14, 16, 18 7 {x1, v2, u2, x2, x3, v3, u3} Cat(2, 5) Pc+2

8, 10, 14, 16, 18 8 {u2, v2, x2, x3, v3, u3, x4, x5} Cat(3, 5) Cat(2, c− 1)

10, 14, 16, 18 9 {u1, v1, x1v2, u2, x2, x3, v3, u3} Cat(4, 5) Pc
14, 16, 18 10 {x2, x3, v3, u3, x4, . . . , x9} Cat(3, 7) Cat(4, c− 5)

14 {x1, v1, u1, xc+3, ‖dots, xc−4} Cat(2, 9) Cat(5, c− 7)
16, 18 11 {u2, v2, x1, v1, u1, xc+3, ‖dots, xc−2} Cat(4, 7) Cat(3, c− 5)

16, 18 12 {u2, v2, x2, x3, v3, u3, x4, . . . , x9} Cat(5, 7) Cat(2, c− 5)

18 13 {u2, v2, x1, v1, u1, x21, . . . , x9} Cat(4, 9) Cat(3, 11)

Table 12: Values of G[Vλ] and G[V \Vλ] for Sun (1, 2, c)

λ Vλ G[Vλ] G[V \Vλ]

1 {u3} P1 Sun (2, 8)

2 {x1, x2} P2 Cat(6, 7)

3 {x3, x4, x5} P3 Cat(5, 7)

4 {x1, x2, v2, u2} P4 Cat(4, 7)

5 {x1, x2, v2, u2, x3} Cat(2, 3) Cat(3, 7)

6 {u1, v1, x1, x2, v2, u2} P6 Cat(4, 5)

7 {u2, v2, x3, x4, x5, v3, u3} P7 Cat(3, 5)

Table 13: Values of G[Vλ] and G[V \Vλ] for Sun (2, 3, 4)

d λ Vλ G[Vλ] G[V \Vλ]

2, 4 1 {u1} P1 Sun (0, 1, d+ 1)

2, 4 2 {u2, v2} P2 Cat(4, d+ 3)

2, 4 3 {u3, v3, x1} P3 Cat(3, d+ 3)

2, 4 4 {u2, v2, v3, u3} P4 Cat(2, d+ 3)

2, 4 5 {u2, v2, v3, u3, x1} Cat(2, 3) Pd+4

4 6 {u1, v1, x5, x4, x3, x2} P6 Cat(4, 3)

Table 14: Values of G[Vλ] and G[V \Vλ] for Sun (0, 0, 1, d)
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