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Recursively Arbitrarily Vertex-Decomposable Graphs

Definition 1 A graph G = (V, E) with order n is Recursively Arbitrarily Vertex-Decomposable (in short R-AVD) iff

• G = K 1 or
• G is connected and for each decomposition τ = (τ 1 , . . . , τ k ) of n, k ≥ 2, it exists a partition of V : V 1 , . . . , V k such that for all i, 1 ≤ i ≤ k

-|V i | = τ i -G[V i ] is R-AVD
Remark 2 A graph G = (V, E) of order n is R-AVD iff for each integer 1 ≤ λ ≤ n 2 , it exists a subset V λ of V such that

• |V λ | = λ • G[V λ ] is R-AVD • G[V \V λ ] is R-AVD

Families of graphs

We present here some families of graphs and their notations, used in the further sections.

Let a be a positive integer. P a denotes the path of order a, C a the cycle of order a (cp.

Figures 1a and 1b) .

A k-pode T k (t 1 , . . . , t k ) is a tree of order 1 + k i=1 t i composed by k paths of order respectively t 1 , . . . , t k , connected to a unique node, called the root of the k-pode (cp. Figure 1c).

Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of order a + b, composed by three paths of order a, b and 2, sharing exactly one node, called the root of the caterpillar. Cat(a, b) is isomorphic to T 3 (a -1, b -1, 1) (cp. Figure 1d).

A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u 1 , . . . , u r whose deletion yields a cycle C n-r , and each vertex v i adjacent to u i is of degree three. If the sequence of vertices v i is situated on the cycle C n-r in such a way that there are exactly a i ≥ 0 vertices, each of degree two, between v i and v i+1 , i = 1, ..., r (the indices taken modulo r), then this sun is denoted by Sun(a 1 , . . . , a r ), and is unique up to isomorphism (cp. Figure 1e).

Note that the order of Sun(a 1 , . . . , a r ) equals n = 2r + a 1 + ... + a r .

On-line Arbitrarily Vertex-Decomposable Graphs

The notion of on-line arbitrarily vertex decomposable graph has been introduced by Horňák and al. in [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF].

Let G = (V, E) be a graph. Imagine now the following decomposition procedure consisting of k stages, where k is a random variable attaining values from [1, n]. In the i th stage, where i ∈ [1, k], a positive integer τ i arrives and we have to choose a subset V i of V of order τ i that is disjoint from all subsets of V chosen in previous stages (without a possibility of changing the choice in the future). More precisely, for every partial sequence (τ 1 , . . . τ i ) whose sum is less than n, there is a sequence (V 1 , . . . , V i ) of disjoint subsets of V such that for 1 ≤ j ≤ i, |V j | = τ j , with the following property: for all sequences (τ 1 , . . . , τ k ) with k ≥ i and summing to n, such that τ r = τ r for 1 ≤ r ≤ i, there is a decomposition of V into disjoint subsets V 1 , . . . , V k with |V j | = τ j and G[V j ] connected, for all j, and V j = V j for 1 ≤ j ≤ i.

Definition 3 [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] If the decomposition procedure can be accomplished for any (random) sequence of positive integers (τ 1 , . . . , τ k ) adding up to n, the graph G is said to be On-Line Arbitrarily Vertex-Decomposable, (in short OL-AVD).

Lemma 4 [HTW07]

A graph G = (V, E) of order n is OL-AVD iff for each integer 1 ≤ λ ≤ n -1, it exists a subset V λ of V such that • |V λ | = λ (a) Path P5 (b) Cycle C5 (c) 3-pode T3(3, 2, 2) (d) Cat(3, 5) (e) Sun(2, 3, 1) Figure 1: Examples of Graphs • G[V λ ] is connected • G[V \V λ ] is OL-AVD
Remark 5 A straightforward consequence of Lemma 4 and Remark 2 is that every R-AVDgraph is OL-AVD.

The opposite is not true. For example, the caterpillar Cat(8, 11) is OL-AVD [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF], but not R-AVD [START_REF] Baudon | Recursively arbitrarily vertex-decomposable graphs[END_REF].

The next result gives a complete characterization of OL-AVD suns.

Theorem 6 [KPWZ08]

A sun with one ray is always OL-AVD.

A sun with two rays Sun(a, b) is OL-AVD iff a and b take values given in Table 1a.

A sun with three rays Sun(a, b, c) is OL-AVD iff a, b and c take values given in Table 1b.

A sun with four rays is OL-AVD iff it is isomorphic to Sun(0, 0, 1, d), where d ≡ 2, 4 (mod 6).

A sun with five or more rays is never OL-AVD. 

Recursively Arbitrarily Vertex-Decomposable trees

(b) Values a, b, c (c ≥ b ≥ a), such that Sun(a, b, c) is R-AVD Table 3: Values for R-AVD Suns Proof.
Since every R-AVD graph is also OL-AVD, so, we shall use the complete characterization of OL-AVD suns given in Theorem 6, and Remark 2.

The labelling used in the proof follows that one from Figure 2.

v 2 v 1 x a+1 u 2 v 3 x a+b+c+... x a u 3
x a+b u 1

x a+b+1

x 1 Sun with one ray A sun with one ray is traceable. Thus, it is R-AVD.

Sun with two rays Without loss of generality, we consider Sun (a,b) with b ≥ a.

• Sun (0, b) is traceable and then is R-AVD.

• and

G[V \V λ ] are given in Table 5. -For the last possible values of b, that is b ∈ {5, 9, 13, 17, 18, 19}, Sun(4, b) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table 5. • Sun (5, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {6, 18}.
-Consider the case b ≡ 2, 4 (mod 6). For λ = 18, the only possibility is that G[V 18 ] = P 18 . But in that case, G[V \V 18 ] must be a caterpillar Cat(6, x) or Cat(8, x), which is impossible for n -18 ≥ 14, that is n ≥ 6.

• Sun (6, b) is OL-AVD only for b ∈ {6, 7, 8, 10, 11, 12, 14, 16}.

-Observe that Sun (6, b) contains, as a spanning tree, the caterpillar Cat (7, b + 3). Thus, 7.

Sun (a, b) is R-AVD for b ∈ {6, 8, 10, 12}. -For all the remaining values of b, that is b ∈ {7, 11, 14, 16}, Sun (6, b) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table
• Sun (7, b) is OL-AVD only for b ∈ {8, 10, 12, 14, 16}. For all of these values of b, it is not possible to find an edge

{w 1 , w 2 } such that G[V \{w 1 , w 2 }] is R-AVD. • Sun (8, b) is OL-AVD only for b ∈ {8, 9, 10, 11, 12}.
-For b ∈ {8, 10, 11, 12}, it is not possible to find a set of size 3 Sun with three rays Without loss of generality, we consider Sun (a,b,c) with c ≥ b ≥ a.

V 3 such that both G[V 3 ] and G[V \V 3 ] are R-AVD. -For b = 9, it is not possible to find an edge {w 1 , w 2 } such that G[V \{w 1 , w 2 }] is R-AVD. • Sun (9, b) is OL-AVD only for b ∈ {10, 12}. For these two values of b, it is not possible to find an edge {w 1 , w 2 } such that G[V \{w 1 , w 2 }] is R-AVD. b λ V λ G[V λ ] G[V \V λ ] 3,
, x 2 , v 2 , u 2 , x 3 } Cat(2, 3) P b+1 6 {u 1 , v 1 , x 1 , x 2 , v 2 , u 2 } P 6 P b 9, 12, 18, 21, 24, 36 7 {u 1 , v 1 , x 1 , x 2 , v 2 , u 2 , x 3 } Cat(2, 5) P b-1 12, 18, 21, 24, 36 8 {u 1 , v 1 , x 1 , x 2 , v 2 , u 2 , x 3 , x 4 } Cat(3, 5) P b-2 9 {u 1 , v 1 , x 1 , x 2 , v 2 , u 2 , x 3 , x 4 , x 5 } Cat(4, 5) P b-3 10 {x 1 , x 2 , v 2 , u 2 , x 3 , . . . , x 8 } Cat(3, 7) P b-4 18, 21, 24, 36 11 {x 1 , x 2 , v 2 , u 2 , x 3 , . . . , x 9 } Cat(3, 8) P b-5 12 {u 1 , v 1 , x 1 , x 2 , v 2 , u 2 , x 3 , . . . ,
of G[V λ ] and G[V \V λ ] for some Sun (2, b) b λ V λ G[V λ ] G[V \V λ ] 5,
of G[V λ ] and G[V \V λ ] for Sun (5, b) b λ V λ G[V λ ] G[V \V λ ] 7,
• Sun (0,0,c) is OL-AVD only for c ≡ 1, 2 (mod 3). Because Sun (0,0,c) contains Cat(3, c + 3) as a spanning tree, thus it is also R-AVD for c ≡ 1, 2 (mod 3).

• Sun (0,1,c) is OL-AVD only for c ≡ 0 (mod 2). Because Sun (0,1,c) contains Cat(4, c + 3) as a spanning tree, thus it is also R-AVD for c ≡ 0 (mod 2).

• Sun (0,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {3, 6, 7, 11, 18, 19}.

-Sun (0,2,c) contains Cat(5, c + 3) as a spanning tree, thus it is R-AVD for c ∈ {3, 6, 11}.

-For c ∈ {7, 18, 19}, Sun (0, 2, c) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table 8. -For c ≡ 2, 4 (mod 6), we first eliminate values of c such that Sun (0,2,c) is not R-AVD. * c ≡ 2 (mod 6), c = 2, 8, 14, 26

Consider λ = 10. The two possibilities for G[V 10 ] to be R-AVD are , c -7). If we consider only the cases where c ≥ 20 and c ≡ 2 (mod 6),

• Cat(3, 7) with V 10 = {u 2 , v 2 , v 1 , u 1 , x c+2 , . . . , x c-3 }, and thus G[V \V 10 ] = Cat(3, c- 5). Cat(3, c -5) is not R-AVD for c ≡ 2 (mod 6). • P 10 with V 10 = {u 1 , v 1 , x c+2 , . . . , x c-5 }. Then G[V \V 10 ] = Cat(5
G[V \V 10 ] is R-AVD only if c = 26. * c = 26
Consider λ = 13. The possibilities for G[V 13 ] to be R-AVD are

• Cat(3, 10) with V 13 = {u 2 , v 2 , v 1 , u 1 , x c+2 , . . . , x c-6 }. If c = 26, then G[V \V 13 ] = Cat(3, 18) which is not R-AVD. • P 13 with V 13 = {u 1 , v 1 , x c+2 , . . . , x c-8 }. If c = 26, G[V \V 13 ] = Cat(5, 16) which is not R-AVD. * c ≡ 4 (mod 6
), c ≥ 22 First, observe that because n = c + 8 and c ≡ 4 (mod 6), we have n ≡ 0 (mod 6) and then n ≡ 0 (mod 3). We consider λ = 15. Both 15 and n -15 ≡ 0 (mod 3). Therefore, both G 15 and G[V \V 15 ] cannot be realized as a R-AVD caterpillar of the form Cat(3, b). Because Cat(5, 10) is not R-AVD the only remaining possibility is that G 15 is a path P 15 and G[V \V 15 ] is a caterpillar Cat(5, c -12). But Cat(5, c -12) is not R-AVD for c = 22, 28 or c ≥ 34. In conclusion, for c ≡ 2, 4 (mod 6), the only remaining values are 2, 4, 8, 10, 14 and 16. For all of these values, Sun (0,2,c) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table 8.

• Sun (0,3,c) is OL-AVD only for c ≡ 2, 4 (mod 6).

Consider first λ = 6. Because there is no R-AVD caterpillar of order 6, G[V 6 ] must be a path of length 6. The two possibilities are that 6) or Cat(6, 7) and then c = 8 or c = 10. For c ∈ {4, 8, 10}, Sun (0,3,c) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table 9.

V 6 = {u 1 , v 1 , x c+3 , . . . , x c } or {u 3 , v 3 , x 4 , . . . x 7 }. If V 6 = {u 3 , v 3 , x 4 , . . . x 7 }, G[V \V 6 ] is R-AVD if and only if G[V \V 6 ] is a caterpillar Cat(3, 4) and c = 4. If V 6 = {u 1 , v 1 , x c+3 , . . . , x c }, G[V \V 6 ] is R-AVD if and only if G[V \V 6 ] is a caterpillar Cat(5,
• Sun (0,4,c) is OL-AVD only for c ∈ {4, 5, 6, 8, 10, 11, 12, 14, 16}. For all of these values of c, Sun (0,4,c) is also R-AVD and values of G[V λ ] and G[V \V λ ] are given in Table 10. • Sun (0,5,c) is OL-AVD only for c ∈ {6, 8, 16}. Consider λ = 2. There is only two possibilities for V 2 , either 11.

c λ V λ G[V λ ] G[V \V λ ] 2,
{u 1 , v 1 , v 2 , u 2 , x 1 } Cat(2, 3) Cat(2, c + 1) 7, 19 5 {x c+2 , v 1 , u 1 , v 2 , u 2 } Cat(2, 3) Cat(3, c) 4,
, v 2 , v 1 , u 1 , x c+2 , . . . , x c-3 } Cat(3, 7) Cat(3, c -5) 14, 16, 18, 19 11 {u 2 , v 2 , x 1 , x 2 , v 3 , u 3 , x 3 , . . . , x 7 } Cat(5, 6) P c-3 16, 18, 19 12 {u 2 , v 2 , x 1 , x 2 , v 3 , u 3 , x 3 , . . . , x 8 } Cat(5, 7) P c-4 18, 19 13 {u 2 , v 2 , v 1 , u 1 , x c+2 , . . . , x c-6 } Cat(3, 10) Cat(3, c -8) Table 8: Values of G[V λ ] and G[V \V λ ] for some Sun (0, 2, c) c λ V λ G[V λ ] G[V \V λ ] 1 {u 3 } P 1 P c+8 2 {u 2 , v 2 } P 2 Cat(4, c + 3) 4, 8, 10 3 {u 2 , v 2 , x 1 } P 3 Cat(3, c + 3) 4 {u 2 , v 2 , x 1 , x 2 } P 4 Cat(2, c + 3) 5 {u 2 , v 2 , x 1 , x 2 , x 3 } P 5 P c+4 4 {u 3 , v 3 , x 4 , . . . x 7 } P 6 Cat(3, 4) 8, 10 6 {u 1 , v 1 , x c+3 , . . . , x c } P 6 Cat(6, c -3) 8, 10 7 {u 2 , v 2 , x 1 , x 2 , x 3 , v 3 , u 3 } P 7 P c+2 8, 10 8 {u 2 , v 2 , v 1 , u 1 , x c+3 , . . . , x c } Cat(3, 5) Cat(4, c -3) 10 9 {x 1 , x 2 , x 3 , v 3 , u 3 , x 4 , . . . , x 7 } Cat(4, 5) Cat(3, 7) Table 9: Values of G[V λ ] and G[V \V λ ] for Sun (0, 3, c) c λ V λ G[V λ ] G[V \V λ ] 4,
V 2 = {u 2 , v 2 }, or V 2 = {u 1 , v 1 }. If V 2 = {u 2 , v 2 }, then G[V \V 2 ] = Cat(6, c + 3) which is not R-AVD for any c ∈ {6, 8, 16}. If V 2 = {u 1 , v 1 }, then G[V \V 2 ] = Cat(8, c + 
• Sun (0,6,c) is OL-AVD only for c ∈ {8, 10}. Consider λ = 3. The two possibilities for V 3 are {u 2 , v 2 , x 1 } and {u 1 , v 1 , x c+6 }. In the first case, G[V \V 3 ] = Cat(6, c + 3), in the second case G[V \V 3 ] = Cat(9, c). In both cases, G[V \V 3 ] is not R-AVD for c = 8 or c = 10.

• Sun (0,7,c) is OL-AVD only for c ∈ {8, 10}. Consider λ = 2. There is only two possibilities for V 2 , either

V 2 = {u 2 , v 2 }, or V 2 = {u 1 , v 1 }. If V 2 = {u 2 , v 2 }, then G[V \V 2 ] = Cat(8, c + 3). If V 2 = {u 1 , v 1 }, then G[V \V 2 ] = Cat(10, c + 1).
Both Cat(8, c + 3) and Cat(10, c + 1) are not R-AVD for c = 8 and c = 10.

• Sun (0,8,c) is OL-AVD only for c ∈ {8, 9}. Consider again λ = 2 and the two possibilities for

V 2 : V 2 = {u 2 , v 2 }, or V 2 = {u 1 , v 1 }. If V 2 = {u 2 , v 2 }, then G[V \V 2 ] = Cat(9, c + 3). If V 2 = {u 1 , v 1 }, then G[V \V 2 ] = Cat(11, c + 1).
Both Cat(9, c + 3) and Cat(11, c + 1) are not R-AVD for c = 8 and c = 9.

• Sun (1,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {6, 18}. Consider first λ = 11. That means that n ≥ 22 and thus c ≥ 13. We consider four possibilities to obtain a R-AVD graph with order 11:

-V 11 = {u 2 , v 2 , x 1 , v 1 , u 1 , x c+3 , . . . , x c-2 }. In that case, G[V \V 11 ] = Cat(3, c -5). λ V λ G[V λ ] G[V \V λ ] 1 {u 3 } P 1 P 16 2 {u 1 , v 1 } P 2 Cat(7, 8) 3 {u 2 , v 2 , x 1 } P 3 Cat(5, 9) 4 {u 2 , v 2 , x 1 , x 2 } P 4 Cat(4, 9) 5 {u 1 , v 1 , v 2 , u 2 , x 1 } Cat(2, 3) Cat(5, 7) 6 {u 2 , v 2 , x 1 , . . . , x 4 } P 6 Cat(2, 9) 7 {u 2 , v 2 , x 1 , . . . , x 5 } P 7 P 10 8 {u 1 , v 1 , v 2 , u 2 , x 1 , . . . , x 4 } Cat(3, 5) Cat(2, 7) Table 11: Values of G[V λ ] and G[V \V λ ] for Sun (0, 5, 6) -V 11 = {u 2 , v 2 , x 2 , x 3 , v 3 , u 3 , x 4 , . . . , x 8 }. Thus, G[V \V 11 ] = Cat(2, c -4).
-V 11 = {x 2 , x 3 , v 3 , u 3 , x 4 , . . . , x 1 0}. Thus, G[V \V 11 ] = Cat(4, c -6).

-V 11 = {x 1 , v 1 , u 1 , x c+3 , . . . , x c-4 }. Thus, G[V \V 11 ] = Cat(5, c -7). For all these cases, G[V \V 11 ] is not R-AVD for c ≥ 13, c ≡ 2 (mod 6), except for G[V \V 11 ] = Cat(5, 7) or Cat(5, 19) and c = 14 or 26. Consider now λ = 13. That means that n ≥ 26 and thus c ≥ 17. We consider three possibilities to obtain a R-AVD graph with order 13:

-V 13 = {x 2 , x 3 , v 3 , u 3 , x 4 , . . . , x 1 3}. Thus, G[V \V 13 ] = Cat(4, c -8).

-V 13 = {u 2 , v 2 , x 1 , v 1 , u 1 , x c+3 , . . . , x c-4 }. In that case, G[V \V 13 ] = Cat(3, c -7).

-V 13 = {x 1 , v 1 , u 1 , x c+3 , . . . , x c-6 }. Thus, G[V \V 13 ] = Cat(5, c -9). For all these cases, G[V \V 13 ] is not R-AVD for c ≥ 17, c ≡ 4 (mod 6), except when G[V \V 13 ] = Cat(5, 19) and c = 28. At last, consider an induced subgraph with order 18. Because the only caterpillar with this order is Cat(7, 11), the only way to have a R-AVD subgraph of Sun (1, 2, c) with order 18 is a path P 18 . In the cases of c = 26 or c = 28, the remaining subgraph contains four leaves and then, cannot be R-AVD. Thus, the only remaining values for c are 2, 4, 6, 8, 10, 14, 16 and 18. For all these values of c, Sun (1, 2, c) is R-AVD and values of G[V λ ] and G[V \V λ ] are given in Table 12.

• Sun (2,3,c) is OL-AVD only for c ∈ {4, 8, 16}.

Let us consider λ = 2. If V 2 = {u 1 , v 1 }, V 2 = {u 2 , v 2 } or V 2 = {u 3 , v 3 }, then G[V \V 2 ] has four leaves and then is not R-AVD. The only remaining possibility is V 2 = {x 1 , x 2 }, and thus G[V \V 2 ] = Cat(6, c + 3). Then, Sun (2, 3, c) cannot be R-AVD with c = 8 or c = 16. Sun (2, 3, 4) is R-AVD and values of G[V λ ] and G[V \V λ ] are given in Table 13.

Sun with four rays A sun with four rays is OL-AVD if and only if it is isomorphic to Sun (0, 0, 1, d) with d ≡ 2, 4 (mod 6). Consider λ = 6. Since an R-AVD graph with order 6 must be a path, the only possibility is to have We prove that both Sun (0, 0, 1, 2) and Sun (0, 0, 1, 4) are R-AVD, by giving the values of G[V λ ] and G[V \V λ ] in Table 14.

• d = 2,V 6 = {u 1 , v 1 , x 3 , x 2 , v
2

Figure 2 :

 2 Figure 2: Sun (a, b, . . .)

  Sun (1, b) contains Cat (2, b+3) as partial graph. Thus, Sun (1, b) with b ≡ 0 (mod 2) is R-AVD. • Sun (2, b) is OL-AVD only for b ≡ 3 (mod 6) or b = 3, 9, 21. -Sun (2, b) contains Cat (3, b + 3) as spanning tree and thus is R-AVD for b ≡ 0 (mod 3). -If b = 6k with k = 5 or k ≥ 7, it is not possible to find a partition into two R-AVD subgraphs of size 18 and n -18. -If b ∈ {3, 6, 9, 12, 18, 21, 24, 36}, then Sun (2, b) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table 4. • Sun (3, b) contains Cat(4, b + 1) as a spanning tree. Thus, it is R-AVD for b ≡ 0 (mod 2). • Sun (4, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {4, . . . , 19}\{15}. -Sun (4, b) contains Cat(5, b+3) as a spanning tree. Thus, it is R-AVD for b ∈ {4, 6, 8, 11, 16}. -Similarly, Sun (4, b) contains Cat(7, b + 1) as a spanning tree. Thus, it is R-AVD for b ∈ {7, 10, 12, 14}. -Let us consider the case where b ≡ 2, 4 (mod 6). * If b ≥ 50, then n = b + 8 ≥ 58. Then, we have to consider the case λ = 30 with n -λ ≥ 28. Because there is no caterpillar with order 30, G[V λ ] must be a path and G[V \V λ ] a caterpillar Cat(5, x) or Cat(7, x). But such a caterpillar has a maximum order 24. Thus, if b ≥ 50, Sun(4, b) cannot be R-AVD. * For b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46, all the Sun(4,b) are R-AVD and the values of G[V λ ]

  32 and b ≥ 23. Thus Sun (5, b) may be R-AVD only for b ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 22 or b ∈ {6, 18}. -For all the remaining values of b, that is b ∈ {6, 8, 10, 14, 16, 18, 20, 22}, Sun (5, b) is R-AVD and the values of G[V λ ] and G[V \V λ ] are given in Table

  1) which is R-AVD for c = 6 but not for c = 8 or c = 16. In fact, Sun (0, 5, 6) is R-AVD and values of G[V λ ] and G[V \V λ ] are given in Table

  4 , u 4 } and G[V \V 6 ] = Cat(2, 3) or • d = 4, V 6 = {u 1 , v 1 , x 5 , x 4 , x 3 , x 2 } and G[V \V 6 ] = Cat(4, 3)

  Theorem 7 [BGW10] A tree T is R-AVD if and only if either T is a path or T is a caterpillar Cat(a, b) with a and b given in Table2or T is the 3-pode T 3 (2, 4, 6).

	2 Recursively Arbitrarily Vertex-Decomposable Suns
	This section presents the main result of this paper, a complete characterization of R-AVD suns.
	Theorem 8	
	A sun with one ray is always R-AVD.	
	A sun with two rays Sun (a, b) is R-AVD if and only if a and b take values given in Table 3a.
	a 0 1, 3 A sun with three rays Sun (a, b, c) is R-AVD if and only if a, b and c take values given in Table 3b. b arbitrary a b c 0 A sun with four rays is R-AVD if and only if it is isomorphic to Sun (0, 0, 1, 2) or to Sun (0, 0, 1, 4). ≡ 1, 2 (mod 3) 1 A sun with five or more rays in never R-AVD. ≡ 0 (mod 2) ≡ 0 (mod 2) 2 2 ≡ 2, 4 (mod 6), 3, 6, 7, 11, 18, 19 ≡ 3 (mod 6), 3, 9, 21 4 ≡ 2, 4 (mod 6), [4, 19]\{15} 5 ≡ 2, 4 (mod 6), 6, 18 6 6, 7, 8, 10, 11, 12, 14, 16 7 8, 10, 12, 14, 16 8 8, 9, 10, 11,12 9 10, 12 0 3 ≡ 2, 4 (mod 6) 4 a b a b c 4, 5, 6, 8, 10, 11, 12, 14, 16 5 0 arbitrary 0 ≡ 1, 2 (mod 3) 6, 8, 16 6, 7 1 ≡ 0 (mod 2) 1 ≡ 0 (mod 2) 8, 10 8 2 ≡ 0 (mod 3), 3, 6, 9, 12, 18, 21, 24, 36 0 2 2, 3, 4, 6, 7, 8, 10, 11, 14, 16, 18, 19 8, 9 1 2 3 ≡ 0 (mod 2) 3 4, 8, 10 ≡ 2, 4 (mod 6), 6, 18 2 3 4 4 ≤ b ≤ 19 except for b = 15, 4 4, 5, 6, 8, 10, 11, 12, 14, 16 4, 8, 16 ≡ 2, 4 (mod 6) with 20 ≤ b ≤ 46 5 6
	is OL-AVD 5 ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 32, 6, 18 (b) Values a, b, c (c ≥ b ≥ a), such that Sun(a, b, c) is 1 2 2, 4, 6, 8, 10, 14, 16, 18 OL-AVD 6 6, 7, 8, 10, 11, 12, 14, 16 2 3 4
	Table 1: Values for OL-AVD Suns (a) Values a, b (b ≥ a), such that Sun(a, b) is R-AVD
	a	b
	2, 4	≡ 1 (mod 2)
	3	≡ 1, 2 (mod 3)
	5	6, 7, 9, 11, 14, 19
	6	7
	7	8, 9, 11, 13, 15
	Table 2: Values a, b (b ≥ a), such that Cat(a, b) is R-AVD

(a) Values a, b (b ≥ a), such that Sun(a, b)

Table 4 :

 4 Values

	x 8 } Cat(5, 7)	P b-6

Table 6 :

 6 ≤ 46 13 {u 1 , v 1 , x 1 , . . . , x 4 , v 2 , u 2 , x 5 , . . . , x 9 } , v 2 , u 2 , x 5 , . . . , x 18 } Cat(2, 15) Cat(4, b -13) 28, 32, 34, 38, 40, 44, 46 18 {u 1 , v 1 , x 1 , . . . , x 4 , v 2 , u 2 , x 5 , . . . , x 14 } Cat(7, 11) P b-10 19 {x 4 , v 2 , u 2 , x 5 , . . . , x 20 } Cat(2, 17) Cat(4, b -15) 32, 34, 38, 40, 44, 46 20 {u 1 , v 1 , x 1 , . . . , x 4 , v 2 , u 2 , x 5 , . . . , x 16 } Cat(7, 13) P b-12 34, 38, 40, 44, 46 21 {x 4 , v 2 , u 2 , x 5 , . . . , x 22 } Cat(2, 19) Cat(4, b -17) 22 {u 1 , v 1 , x 1 , . . . , x 4 , v 2 , u 2 , x 5 , . . . , x 18 } Cat(7, 15) , v 1 , x 1 . . . , x 5 , v 2 , u 2 , x 6 , . . . , x 11 } Cat(7, 8) P 16 Values

	9, 13, 17, 18, 19

4 , v 2 , u 2 , x 5 , . . . , x 16 } Cat(2, 13) Cat(4, b -11) 16 {x 1 , . . . , x 4 , v 2 , u 2 , x 5 , . . . , x 14 } 4 , v 2 , u 2 , x 5 , . . . , x 28 } Cat(2, 25) Cat(4, 23) Table 5: Values of G[V λ ] and G[V \V λ ] for some Sun (4, b)

Table 7 :

 7 Values of G[V λ ] and G[V \V λ ] for some Sun (6, b)

	11, 14, 16 1	{u 1 }	P 1	Sun with one ray
	7, 14		{u 1 , v 1 }	P 2	Cat(7, b + 1)
	11, 16	2	{x 1 , x 2 }	P 2	Cat(5, b + 3)
	7		{x 7 , x 8 , x 9 }	P 3	Cat(5, 9)
	11	3	{v 2 , u 2 , x 7 }	P 3	Cat(7, b)
	14, 16		{x 1 , x 2 , x 3 }	P 3	Cat(4, b + 3)
	7, 11, 14, 16 4	{x 1 , . . . , x 4 }	P 4	Cat(3, b+3)
	7, 11		{x 5 , x 6 , v 2 , u 2 , x 7 }	Cat(2, 3)	Cat(5, b)
	14, 16	5	{x 1 , . . . , x 5 }	P 5	Cat(2, b + 3)
	7, 11, 14, 16 6	{x 1 , . . . , x 6 }	P 6	P b+4
	7, 11		{x 3 , . . . , x 6 , v 2 , u 2 , x 7 }	Cat(2, 5)	Cat(3, b)
	14, 16	7	{x 2 , . . . , x 6 , v 2 , u 2 }	P 7	Cat(2, b + 1)
	7, 11, 14, 16 8	{x 1 , . . . , x 6 , v 2 , u 2 }	P 8	P b+2
		9			
	11, 14, 16	10			
		11 {x 1 , . . . , x 6 , v 2 , u 2 , x 7 , . . . , x λ-2 } Cat(λ -7, 7)	P b+10-λ
	14, 16	12			
	16	13			

  , v 1 , v 2 , u 2 , x 1 , x 2 , v 3 , u 3 } , v 2 , x 1 , x 2 , v 3 , u 3 , x 3 , x 4 , x 5 }

	7, 8, 10, 14, 16, 18, 19	6	{u 2 , v 2 , x 1 , x 2 , v 3 , u 3 }	P 6	P c+2
	7, 8, 10, 14, 16, 18, 19	7	{u 2 , v 2 , x 1 , x 2 , v 3 , u 3 , x 3 }	Cat(2, 5)	P c+1
	8, 10, 14, 16, 18, 19	8	{u 1 Cat(3, 5)	P c
	10, 14, 16, 18, 19	9	{u 2 Cat(4, 5)	P c-1
	14		{u 1 , v 1 , x 16 , . . . , x 9 }	P 10	Cat(5, 7)
	16, 18, 19	10	{u 2		

Table 10 :

 10 , v 2 , x 1 , . . . , x 4 , v 3 , u 3 , x 5 , x 6 } , v 2 , x 1 , . . . , x 4 , v 3 , u 3 , x 5 , x 6 , x 7 } Cat(4, 7) P c-1 14, 1612 {u 2 , v 2 , x 1 , . . . , x 4 , v 3 , u 3 , x 5 , . . . , x 8 } Cat(5, 7) P c-2 16 13 {u 2 , v 2 , x 1 , . . . , x 4 , v 3 , u 3 , x 5 , . . . , x 9 } Cat(6, 7)P c-3 Values of G[V

	5, 6, 8, 10, 11, 12, 14, 16 1	{u 3 }	P 1	P c+9
	4, 6, 11, 16		{u 2 , v 2 }	P 2	Cat(5, c + 3)
	5, 8, 10, 12, 14	2	{u 1 , v 1 }	P 2	Cat(7, c + 1)
	4, 6, 8, 10, 12, 14, 16		{u 2 , v 2 , x 1 }	P 3	Cat(4, c + 3)
	5, 11	3	{u 1 , v 1 , x c+4 }	P 3	Cat(7, c)
	4, 5, 8, 10, 11, 14, 16		{x 1 , . . . , x 4 }	P 4	Cat(3, c + 3)
	6, 12	4	{u 1 , v 1 , x c+4 , x c+3 }	P 4	Cat(7, c -1)
	4, 6, 8, 10, 12, 14, 16		{u 2 , v 2 , x 1 , x 2 , x 3 }	P 5	Cat(2, c + 3)
	5	5	{u 1 , v 1 , x 9 , x 8 , x 7 }	P 5	Cat(3, 7)
	11		{u 2 , v 2 , v 1 , u 1 , x 15 }	Cat(2, 3)	Cat(5, 11)
	4, 5, 6, 8, 10, 11, 12, 14, 16 6	{u 2 , v 2 , x 1 , . . . , x 4 }	P 6	P c+4
	4, 6, 8, 10, 12, 14, 16		{u 1 , v 1 , v 2 , u 2 , x 1 , x 2 , x 3 }	Cat(3, 4) Cat(2, c + 1)
	5, 11	7	{u 2 , v 2 , v 1 , u 1 , x c+4 , x c+3 , x c+2 }	Cat(3, 4) Cat(5, c -2)
	6, 8, 10, 11, 12, 14, 16	8	{u 2 , v 2 , x 1 , . . . , x 4 , v 3 , u 3 }	P 8	P c+2
	8, 10, 11, 12, 14, 16	9	{u 2 , v 2 , x 1 , . . . , x 4 , v 3 , u 3 , x 5 }	Cat(2, 7)	P c+1
	10, 11, 12, 14, 16	10	{u 2 Cat(3, 7)	P c
	12, 14, 16	11 {u 2		

λ ] and G[V \V λ ] for Sun (0, 4, c)
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Table 13: Values of G[V λ ] and G[V \V λ ] for Sun (2, 3, 4)

{u 2 , v 2 , v 3 , u 3 , x 1 } Cat(2, 3) P d+4 4 6 {u 1 , v 1 , x 5 , x 4 , x 3 , x 2 } P 6 Cat(4, 3)