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A NEW LOOK AT NONNEGATIVITY ON CLOSED SETS AND

POLYNOMIAL OPTIMIZATION

JEAN B. LASSERRE

Abstract. We first show that a continuous function f is nonnegative on a
closed set K ⊆ R

n if and only if (countably many) moment matrices of some
signed measure dν = fdµ with suppµ = K, are all positive semidefinite (if
K is compact µ is an arbitrary finite Borel measure with suppµ = K). In
particular, we obtain a convergent explicit hierarchy of semidefinite (outer)
approximations with no lifting, of the cone of nonnegative polynomials of de-
gree at most d. Wen used in polynomial optimization on certain simple closed
sets K (like e.g., the whole space R

n, the positive orthant, a box, a simplex,
or the vertices of the hypercube), it provides a nonincreasing sequence of up-
per bounds which converges to the global minimum by solving a hierarchy of
semidefinite programs with only one variable (in fact, a generalized eigenvalue
problem). In the compact case, this convergent sequence of upper bounds
complements the convergent sequence of lower bounds obtained by solving a
hierarchy of semidefinite relaxations as in e.g. [12].

1. Introduction

This paper is concerned with a concrete characterization of continuous functions
that are nonnegative on a closed set K ⊆ R

n and its application for optimization
purposes. By concrete we mean a systematic procedure, e.g. a numerical test that
can be implemented by an algorithm, at least in some interesting cases. For polyno-
mials, Stengle’s Nichtnegativstellensatz [22] provides a certificate of nonnegativity
(or absence of nonnegativity) on a semi-algebraic set. Moreover, in principle, this
certificate can be obtained by solving a single semidefinite program (although the
size of this semidefinite program is far beyond the capabilities of today’s comput-
ers). Similarly, for compact basic semi-algebraic sets, Schmüdgen’s and Putinar’s
Positivstellensätze [20, 18] provide certificates of strict positivity that can be ob-
tained by solving finitely many semidefinite programs (of increasing size). Exten-
sions of those certificates to some algebras of non-polynomial functions have been
recently proposed in Lasserre and Putinar [14] and in Marshall and Netzer [16].
However, and to the best of our knowledge, there is still no hierarchy of explicit
(outer or inner) semidefinite approximations (with or without lifting) of the cone
of polynomials nonnegative on a closed set K, except if K is compact and basic
semi-algebraic (in which case outer approximations exist). Another exception is
the convex cone of quadratic forms nonnegative on K = R

n
+ for which inner and

outer approximations are available; see e.g. Anstreicher and Burer [1], and Dür [7].
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Contribution: In this paper, we present a different approach based on a new
(at least to the best of our knowledge) and simple characterization of continuous
functions that are nonnegative on a closed set K ⊆ R

n. This characterization
involves a single (but known) measure µ with suppµ = K, and sums of squares of
polynomials. Namely, our contribution is twofold:

(a) We first show that a continuous function f is nonnegative on a closed set
K ⊆ R

n if and only if
∫

h2fdµ is nonnegative for all polynomials h ∈ R[x], where
µ is a finite Borel measure1 with suppµ = K. The measure µ is arbitrary if K is
compact. If K is not compact then one may choose for µ the finite Borel measure:

- dµ = exp(−∑i |xi|)dϕ if f is a polynomial, and
- dµ = (1 + f2)−1 exp(−∑i |xi|)dϕ, if f is not a polynomial,

where ϕ is any finite Borel measure with support exactly K. But many other
choices are possible.

Equivalently, f is nonnegative on K if and only if every element of the countable
family T of moment matrices associated with the signed Borel measure fdµ, is pos-
itive semidefinite. The absence of nonnegativity on K can be certified by exhibiting
a polynomial h ∈ R[x] such that

∫

h2fdµ < 0, or equivalently, when some moment
matrix in the family T is not positive semidefinite. And so, interestingly, as for
nonnegativity or positivity, our certificate for absence of nonnegativity is also in
terms of sums of squares. When f is a polynomial, these moment matrices are eas-
ily obtained from the moments of µ and this criterion for absence of nonnegativity
complements Stengle’s Nichtnegativstellensatz [22] (which provides a certificate of
nonnegativity on a semi-algebraic set K) or Schmüdgen and Putinar’s Positivstel-
lensätze [20, 18] (for certificates of strict positivity on compact basic semi-algebraic
sets). At last but not least, we obtain a convergent explicit hierarchy of semidefinite
(outer) approximations with no lifting, of the cone Cd of nonnegative polynomials
of degree at most 2d. That is, we obtain a nested sequence C0

d ⊃ · · · Ck
d ⊃ · · · ⊃ Cd

such that each Ck
d is a spectrahedron defined solely in terms of the vector of coeffi-

cients of the polynomial, with no additional variable (i.e., no projection is needed).
Similar explicit hierarchies can be obtained for the cone of polynomials nonnegative
on a closed set K (neither necessarily basic semi-algebraic nor compact), provided
that all moments of an appropriate measure µ (with support exactly K) can be
obtained. To the best of our knowledge, this is first result of this kind.

(b) As a potential application, we consider the problem of computing the global
minimum f∗ of a polynomial f on a closed set K, a notoriously difficult problem.
In nonlinear programming, a sequence of upper bounds on f∗ is usually obtained
from a sequence of feasible points (xk) ⊂ K, e.g., via some (local) minimization
algorithm. But it is important to emphasize that for non convex problems, provid-
ing a sequence of upper bounds (f(xk)), k ∈ N, that converges to f∗ is in general
impossible, unless one computes points on a grid whose mesh size tends to zero.

We consider the case where K ⊆ R
n is a closed set for which one may compute

all moments of a measure µ with suppµ = K. Typical examples of such sets are
e.g. K = R

n or K = R
n
+ in the non compact case and a box, a ball, an ellipsoid, a

simplex, or the vertices of an hypercube (or hyper rectangle) in the compact case.

1A finite Borel measure µ on Rn is a nonnegative set function defined on the Borel σ-algebra
of Rn (i.e., the σ-algebra generated by the open sets), such that µ(∅) = 0, µ(Rn) < ∞, and
µ(

⋃∞
i=1

Ei) =
∑∞

i=1
µ(Ei) for any collection of disjoint measurable sets Ei. Its support (denoted

suppµ) is the smallest closed set K such that µ(Rn \K) = 0; see e.g. Royden [19].
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We then provide a hierarchy of semidefinite programs (with only one variable!)
whose optimal values form a monotone nonincreasing sequence of upper bounds
which converges to the global minimum f∗. In fact, each semidefinite program is
a very specific one as it reduces to solving a generalized eigenvalue problem for a
pair of real symmetric matrices.. (Therefore, for efficiency one may use specialized
software packages instead of a SDP solver.) However, the convergence to f∗ is in
general only asymptotic and not finite (except whenK is a discrete set in which case
finite convergence takes place). This is in contrast with the hierarchy of semidefinite
relaxations defined in Lasserre [12, 13] which provide a nondecreasing sequence of
lower bounds that also converges to f∗, and very often in finitely many steps.
Hence, for compact basic semi-algebraic sets these two convergent hierarchies of
upper and lower bounds complement each other and permit to locate the global
minimum f∗ in smaller and smaller intervals.

Notice that convergence of the hierarchy of convex relaxations in [12] is guar-
anteed only for compact basic semi-algebraic sets, whereas for the new hierarchy
of upper bounds, the only requirement on K is to know all moments of a measure
µ with suppµ = K. On the other hand, in general computing such moments is
possible only for relatively simple (but not necessarily compact nor semi-algebraic)
sets.

At last but not least, the nonincreasing sequence of upper bounds converges to f∗

even if f∗ is not attained, which when K = R
n, could provide an alternative and/or

a complement to the hierarchy of convex relaxations provided in Schweighofer [21]
(based on gradient tentacles) and in Hà and Pham [8] (based on the truncated
tangency variety), which both provide again a monotone sequence of lower bounds.

Finally, we also give a very simple interpretation of the hierarchy of dual semi-
definite programs, which provides some information on the location of global min-
imizers.

2. Notation, definitions and preliminary results

A Borel measure on R
n is understood as a positive Borel measure, i.e., a non-

negative set function µ on the Borel σ-algebra B (i.e., the σ-algebra generated by
the open sets of Rn) such that µ(∅) = 0, and with the countably additive property

µ

(

∞
⋃

i=1

Ei

)

=

∞
∑

i=1

µ(Ei),

for any collection of disjoint measurable sets (Ei) ⊂ B; see e.g. Royden [19, pp.
253–254].

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn), and Σ[x] ⊂
R[x] its subset of polynomials that are sums of squares (s.o.s.). Denote by R[x]d ⊂
R[x] the vector space of polynomials of degree at most d, which forms a vector space

of dimension s(d) =
(

n+d
d

)

, with e.g., the usual canonical basis (xα) of monomials.
Also, denote by Σ[x]d ⊂ Σ[x] the convex cone of s.o.s. polynomials of degree at
most 2d. If f ∈ R[x]d, write f(x) =

∑

α∈Nn fαx
α in the canonical basis and denote

by f = (fα) ∈ R
s(d) its vector of coefficients. Let Sn denotes the vector space of

p × p real symmetric matrices. For a matrix A ∈ Sp the notation A � 0 (resp.
A ≻ 0) stands for A is positive semidefinite (resp. definite).
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Moment matrix. With y = (yα) being a sequence indexed in the canonical basis
(xα) of R[x], let Ly : R[x] → R be the linear functional

f (=
∑

α

fα xα) 7→ Ly(f) =
∑

α

fα yα,

and let Md(y) be the symmetric matrix with rows and columns indexed in the
canonical basis (xα), and defined by:

(2.1) Md(y)(α, β) := Ly(x
α+β) = yα+β, α, β ∈ N

n
d

with N
n
d := {α ∈ N

n : |α| (=∑i αi) ≤ d}.
If y has a representing measure µ, i.e., if yα =

∫

xαdµ for every α ∈ N
n, then

〈f ,Md(y)f〉 =

∫

f(x)2 dµ(x) ≥ 0, ∀ f ∈ R[x]d,

and so Md(y) � 0. A measure µ is said to be moment determinate if there is no
other measure with same moments. In particular, and as an easy consequence of the
Stone-Weierstrass theorem, every measure with compact support is determinate2.

Not every sequence y satisfying Md(y) � 0, d ∈ N, has a representing measure.
However:

Proposition 2.1 (Berg [3]). Let y = (yα) be such that Md(y) � 0, for every
d ∈ N. Then:

(a) The sequence y has a representing measure whose support is contained in the
ball [−a, a]n if there exists a, c > 0 such that |yα| ≤ c a|α| for every α ∈ N

n.
(b) The sequence y has a representing measure µ on R

n if

(2.2)
∞
∑

t=1

Ly(x
2t
i )−1/2t = +∞, ∀ i = 1, . . . , n.

In addition, in both cases (a) and (b) the measure µ is moment determinate.

Condition (b) is an extension to the multivariate case of Carleman’s condition
in the univariate case and is due to Nussbaum [17]. For more details see e.g. Berg
[3] and/or Maserick and Berg [11].

Localizing matrix. Similarly, with y = (yα) and f ∈ R[x] written

x 7→ f(x) =
∑

γ∈Nn

fγ x
γ ,

let Md(f y) be the symmetric matrix with rows and columns indexed in the canon-
ical basis (xα), and defined by:

(2.3) Md(f y)(α, β) := Ly

(

f(x)xα+β
)

=
∑

γ

fγ yα+β+γ , ∀α, β ∈ N
n
d .

If y has a representing measure µ, then 〈g,Md(f y)g〉 =
∫

g2fdµ, and so if µ is
supported on the set {x : f(x) ≥ 0}, then Md(f y) � 0 for all d = 0, 1, . . . because

(2.4) 〈g,Md(f y)g〉 =

∫

g(x)2f(x) dµ(x) ≥ 0, ∀ g ∈ R[x]d.

2To see this note that (a) two measures µ1, µ2 on a compact set K ⊂ R
n are identical if and

only if
∫
K

fdµ1 =
∫
K

fdµ2 for all continuous functions f on K, and (b) by Stone-Weierstrass, the

polynomials are dense in the space of continuous functions for the sup-norm.
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3. Nonnegativity on closed sets

Recall that if X is a separable metric space with Borel σ-field B, the support
suppµ of a Borel measure µ on X is the (unique) smallest closed set B ∈ B such
that µ(X \ B) = 0. Given a Borel measure µ on R

n and a measurable function
f : Rn → R, the mapping B 7→ ν(B) :=

∫

B
fdµ, B ∈ B, defines a set function on B.

If f is nonnegative then ν is a Borel measure (which is finite if f is µ-integrable);
see e.g. Royden [19, p. 276 and p. 408]. If f is not nonnegative then setting
B1 := {x : f(x) ≥ 0} and B2 := {x : f(x) < 0}, the set function ν can be written
as the difference

(3.1) ν(B) = ν1(B)− ν2(B), B ∈ B,
of the two positive Borel measures ν1, ν2 defined by

(3.2) ν1(B) =

∫

B1∩B

fdµ, ν2(B) = −
∫

B2∩B

fdµ, ∀B ∈ B.

Then ν is a signed Borel measure provided that either ν1(B1) or ν2(B2) is finite;
see e.g. Royden [19, p. 271]. We first provide the following auxiliary result which
is also of self-interest.

Lemma 3.1. Let X be a separable metric space, K ⊆ X a closed set, and µ a Borel
measure on X with suppµ = K. A continuous function f : X → R is nonnegative
on K if and only if the set function B 7→ ν(B) =

∫

K∩B fdµ, B ∈ B, is a positive
measure.

Proof. The only if part is straightforward. For the if part, if ν is a positive measure
then f(x) ≥ 0 for µ-almost all x ∈ K. That is, there is a Borel set G ⊂ K such
that µ(G) = 0 and f(x) ≥ 0 on K \ G. Indeed, otherwise suppose that there
exists a Borel set B0 with µ(B0) > 0 and f < 0 on B0; then one would get the
contradiction that ν is not positive because ν(B0) =

∫

B0
fdµ < 0. In fact, f is called

the Radon-Nikodym derivative of ν with respect to µ; see Royden [19, Theorem 23,
p. 276].

Next, observe that K \G ⊂ K and µ(K \G) = µ(K). Therefore K \G = K

because suppµ (= K) is the unique smallest closed set such that µ(X \ K) = 0.

Hence, let x ∈ K be fixed, arbitrary. As K = K \G, there is a sequence (xk) ⊂
K \G, k ∈ N, with xk → x as k → ∞. But since f is continuous and f(xk) ≥ 0
for every k ∈ N, we obtain the desired result f(x) ≥ 0. �

Lemma 3.1 itself (of which we have not been able to find a trace in the literature)
is a characterization of nonnegativity on K for a continuous function f on X.
However, one goal of this paper is to provide a more concrete characterization. To
do so we first consider the case of a compact set K ⊂ R

n.

3.1. The compact case. Let K be a compact subset of Rn. For simplicity, and
with no loss of generality, we may and will assume that K ⊆ [−1, 1]n.

Theorem 3.2. Let K ⊆ [−1, 1]n be compact and let µ be an arbitrary, fixed, finite
Borel measure on K with suppµ = K, and with vector of moment y = (yα), α ∈ N

n.
Let f be a continuous function on R

n. Then:
(a) f is nonnegative on K if and only if

(3.3)

∫

K

g2 f dµ ≥ 0, ∀ g ∈ R[x],
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or, equivalently, if and only if

(3.4) Md(z) � 0, d = 0, 1, . . .

where z = (zα), α ∈ N
n, with zα =

∫

xαf(x)dµ(x), and with Md(z) as in (2.1).
If in addition f ∈ R[x] then (3.4) reads Md(f y) � 0, d = 0, 1, . . ., where

Md(f y) is the localizing matrix defined in (2.3).

(b) If in addition to be continuous, f is also concave on K, then f is nonnegative
on the convex hull co (K) of K if and only if (3.3) holds.

Proof. The only if part is straightforward. Indeed, if f ≥ 0 on K then K ⊆ {x :
f(x) ≥ 0} and so for any finite Borel measure µ on K,

∫

K
g2fdµ ≥ 0 for every

g ∈ R[x]. Next, if f is concave and f ≥ 0 on co (K) then f ≥ 0 on K and so the
“only if” part of (b) also follows.

If part. The set function ν(B) =
∫

B fdµ, B ∈ B, can be written as the difference
ν = ν2 − ν2 of the two positive finite Borel measures ν1, ν2 described in (3.1)-(3.2),
where B1 := {x ∈ K : f(x) ≥ 0} and B2 := {x ∈ K : f(x) < 0}. As K is compact
and f is continuous, both ν1, ν2 are finite, and so ν is a finite signed Borel measure;
see Royden [19, p. 271]. In view of Lemma 3.1 it suffices to prove that in fact ν
is a finite and positive Borel measure. So let z = (zα), α ∈ N

n, be the sequence
defined by:

(3.5) zα =

∫

K

xαdν(x) :=

∫

K

xαf(x)dµ(x), ∀α ∈ N
n.

Every zα, α ∈ N
n, is finite because K is compact and f is continuous. So the

condition
∫

K

g(x)2f(x) dµ(x) ≥ 0, ∀f ∈ R[x]d,

reads 〈g,Md(z)g〉 ≥ 0 for all g ∈ R
s(d), that is, Md(z) � 0, where Md(z) is the

moment matrix defined in (2.1). And so (3.3) implies Md(z) � 0 for every d ∈ N.
Moreover, as K ⊆ [−1, 1]n,

|zα| ≤ c :=

∫

K

|f |dµ, ∀α ∈ N
n.

Hence, by Proposition 2.1, z is the moment sequence of a finite (positive) Borel
measure ψ on [−1, 1]n, that is, as supp ν ⊆ K ⊆ [−1, 1]n,

(3.6)

∫

[−1,1]n
xα dν(x) =

∫

[−1,1]n
xα dψ(x), ∀α ∈ N

n.

But then using (3.1) and (3.6) yields
∫

[−1,1]n
xα dν1(x) =

∫

[−1,1]n
xα d(ν2 + ψ)(x), ∀α ∈ N

n,

which in turn implies ν1 = ν2 + ψ because measures on a compact set are determi-
nate. Next, this implies ψ = ν1 − ν2 (= ν) and so ν is a positive Borel measure on
K. Hence by Lemma 3.1, f(x) ≥ 0 on K.

If in addition f ∈ R[x], the sequence z = (zα) is obtained as a linear combination
of (yα). Indeed if f(x) =

∑

β fβ x
β then

zα =
∑

β∈Nn

fβ yα+β , ∀α ∈ N
n,
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and so in (3.4), Md(z) is nothing less than the localizing matrix Md(f y) associated
with y = (yα) and f ∈ R[x], defined in (2.3), and (3.4) reads Md(f y) � 0 for all
d = 0, 1, . . .

Finally, if f is concave then f ≥ 0 on K implies f ≥ 0 on co (K), and so the only
if part of (b) also follows. �

Therefore, to check whether a polynomial f ∈ R[x] is nonnegative on K, it
suffices to check if every element of the countable family of real symmetric matrices
(Md(f y)), d ∈ N, is positive semidefinite.

Remark 3.3. An informal alternative proof of Theorem 3.2 which does not use
Lemma 3.1 is as follows. If f is not nonnegative on K there exists a ∈ K such
that f(a) < 0, and so as K is compact, there is a continuous function, e.g, x 7→
h(x) := exp(−c‖x − a‖2) close to 1 in some open neighborhood B(a, δ) of a, and
very small in the rest of K. By the Stone-Weierstrass’s theorem, one may choose
h to be a polynomial. Next, the complement B(a, δ)c (= R

n \B(a, δ)) of B(a, δ) is
closed, and so K ∩B(a, δ)c is a closed set contained in K (hence smaller than K).
Therefore µ(B(a, δ)) > 0 because otherwise µ(K ∩ B(a, δ)c) = µ(K) which would
imply that K ∩ B(a, δ)c is a support of µ smaller than K, in contradiction with
suppµ = K. Hence, we would get the contradiction

∫

h2 f dµ ≈ h(a)2f(a)µ(B(a, δ)) < 0.

However, in the non compact case described in the next section, this argument is
not valid.

3.2. The non-compact case. We now consider the more delicate case where K

is a closed set of Rn, not necessarily compact. To handle arbitrary non compact
sets K and arbitrary continuous functions f , we need a reference measure µ with
suppµ = K and with nice properties so that integrals such as

∫

g2fdµ, g ∈ R[x],
are well-behaved.

So, let ϕ be an arbitrary finite Borel measure on R
n whose support is exactly

K, and let µ be the finite Borel measure defined by:

(3.7) µ(B) :=

∫

B

exp

(

−
n
∑

i=1

|xi|
)

dϕ(x), ∀B ∈ B(Rn).

Observe that suppµ = K and µ satisfies Carleman’s condition (2.2). Indeed, let
z = (zα), α ∈ N

n, be the sequence of moments of µ. Then for every i = 1, . . . , n,
and every k = 0, 1, . . ., using x2ki ≤ (2k)! exp |xi|,

(3.8) Lz(x
2k
i ) =

∫

K

x2ki dµ(x) ≤ (2k)!

∫

K

e|xi| dµ(x) ≤ (2k)!ϕ(K) =: (2k)!M.

Therefore for every i = 1, . . . , n, using (2k)! < (2k)2k for every k, yields

∞
∑

k=1

Lz(x
2k
i )−1/2k ≥

∞
∑

k=1

M−1/2k ((2k)!)−1/2k ≥
∞
∑

k=1

M−1/2k

2k
= +∞,

i.e., (2.2) holds. Notice also that all the moments of µ (defined in (3.7)) are finite,
and so every polynomial is µ-integrable.
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Theorem 3.4. Let K ⊆ R
n be closed and let ϕ be an arbitrary finite Borel measure

whose support is exactly K. Let f be a continuous function on R
n. If f ∈ R[x]

(i.e., f is a polynomial) let µ be as in (3.7) whereas if f is not a polynomial let µ
be defined by

(3.9) µ(B) :=

∫

B

exp (−∑n
i=1 |xi|)

1 + f(x)2
dϕ(x), ∀B ∈ B(Rn).

Then (a) and (b) of Theorem 3.2 hold.

For a detailed proof see §6.
It is important to emphasize that in Theorem 3.2 and 3.4, the set K is an

arbitrary closed set of Rn, and to the best of our knowledge, the characterization of
nonnegativity of f in terms of positive definiteness of the moment matrices Md(z)
is new. But of course, this characterization becomes even more interesting when
one knows how the compute the moment sequence z = (zα), α ∈ N

n, which is
possible in a few special cases only.

Important particular cases of nice such sets K include boxes, hyper rectangles,
ellipsoids, and simplices in the compact case, and the positive orthant, or the whole
space R

n in the non compact case. For instance, for the whole space K = R
n one

may choose for µ in (3.7) the multivariate Gaussian (or normal) probability measure

µ(B) := (2π)−n/2

∫

B

exp(−1

2
‖x‖2) dx, B ∈ B(Rn),

which the n-times product of the one-dimensional normal distribution

µi(B) :=
1√
2π

∫

B

exp(−x2i /2) dxi, B ∈ B(R),

whose moments are all easily available in closed form. In Theorem 3.4 this corre-
sponds to the choice

(3.10) ϕ(B) = (2π)−n/2

∫

B

exp(−‖x‖2/2)
exp(−∑n

i=1 |xi|)
dx, B ∈ B(Rn).

WhenK is the positive orthantRn
+ one may choose for µ the exponential probability

measure

(3.11) µ(B) :=

∫

B

exp(−
n
∑

i=1

xi) dx, B ∈ B(Rn
+),

which the n-times product of the one-dimensional exponential distribution

µi(B) :=

∫

B

exp(−xi) dxi, B ∈ B(R+),

whose moments are also easily available in closed form. In Theorem 3.4 this corre-
sponds to the choice

ϕ(B) = 2n
∫

B

exp(−
n
∑

i=1

xi) dx, B ∈ B(Rn
+).
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3.3. The cone of nonnegative polynomials. The convex cone Cd ⊂ R[x]2d of
nonnegative polynomials of degree at most 2d (a nonnegative polynomial has nec-
essarily even degree) is much harder to characterize than its subcone Σ[x]d of sums
of squares. Indeed, while the latter has a simple semidefinite representation with
lifting (i.e. Σ[x]d is the projection in R

s(2d) of a spectrahedron3 in a higher di-
mensional space), so far there is no such simple representation for the former. In
addition, when d is fixed, Blekherman [4] has shown that after proper normaliza-
tion, the “gap” between Cd and Σ[x]d increases unboundedly with the number of
variables.

We next provide a convergent hierarchy of (outer) semidefinite approximations
(Ck

d ), k ∈ N, of Cd where each Ck
d has a semidefinite representation with no lift-

ing (i.e., no projection is needed and Ck
d is a spectrahedron). To the best of our

knowledge, this is the first result of this kind.
Recall that with every f ∈ R[x]d is associated its vector of coefficients f = (fα),

α ∈ N
n
d , in the canonical basis of monomials, and conversely, with every f ∈ R

s(d)

is associated a polynomial f ∈ R[x]d with vector of coefficients f = (fα) in the
canonical basis. Recall that for every k = 1, . . .,

γp :=
1√
2π

∫ ∞

−∞

xp e−x2/2 dx =

{

0 if p = 2k + 1,
∏k

j=1(2j − 1) if p = 2k,

as γ2k = (2k − 1)γ2(k−1) for every k ≥ 1.

Corollary 3.5. Let µ be the probability measure on R
n which is the n-times product

of the normal distribution on R, and so with moments y = (yα), α ∈ N
n,

(3.12) yα =

∫

Rn

xα dµ =
n
∏

i=1

(

1√
2π

∫ ∞

−∞

xαie−x2/2dx

)

, ∀α ∈ R
n.

For every k ∈ N, let Ck
d := {f ∈ R

s(2d) : Mk(f y) � 0}, where Mk(f y) is the
localizing matrix in (2.3) associated with y and f ∈ R[x]2d. Each Ck

d is a closed
convex cone and a spectrahedron.

Then C0
d ⊃ C1

d · · · ⊃ Ck
d · · · ⊃ Cd and f ∈ Cd if and only if its vector of coefficients

f ∈ R
s(2d) satisfies f ∈ Ck

d , for every k = 0, 1, . . ..

Proof. Following its definition (2.3), all entries of the localizing matrix Mk(f y) are
linear in f ∈ R

s(2d), and so Mk(f y) � 0 is an LMI. Therefore Ck
d is a spectrahedron

and a closed convex cone. Next, let K := R
n and let µ be as in Corollary 3.5 and so

of the form (3.7) with ϕ as in (3.10). Then µ satisfies Carleman’s condition (2.2).
Hence, by Theorem 3.4 with K = R

n, f is nonnegative on K if and only if (3.4)
holds, which is equivalent to stating that Mk(f y) � 0, k = 0, 1, . . ., which in turn
is equivalent to stating that f ∈ Ck

d , k = 0, 1, . . . �

So the nested sequence of convex cones C0
d ⊃ Ck

d · · · ⊃ Cd defines arbitrary close
outer approximations of Cd. In fact ∩∞

k=0Ck
d is closed and Cd = ∩∞

k=0Ck
d . It is worth

emphasizing that each Ck
d is a spectrahedron with no lifting, that is, Ck

d is defined
solely in terms of the vector of coefficients f with no additional variable (i.e., no
projection is needed).

3A spectrahedron is the intersection of the cone of positive semidefinite matrices with an
affine-linear space. Its algebraic representation is called a Linear Matrix Inequality (LMI).
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For instance, the first approximation C0
d is just the set {f ∈ R

s(2d) :
∫

fdµ ≥ 0},
which is a half-space of Rs(2d). And with n = 2,

C1
d =



























f ∈ R
s(d) :















∫

fdµ

∫

x1fdµ

∫

x2fdµ
∫

x1fdµ

∫

x21fdµ

∫

x1x2fdµ
∫

x2fdµ

∫

x1x2fdµ

∫

x22fdµ















� 0



























,

or, equivalently, C1
d is the convex basic semi-algebraic set:

{

f ∈ R
s(2d) :

∫

fdµ ≥ 0

(
∫

x2i fdµ

)(
∫

fdµ

)

≥
(
∫

xifdµ

)2

, i = 1, 2

(
∫

x21fdµ

)(
∫

x22fdµ

)

≥
(
∫

x1x2fdµ

)2

(
∫

fdµ

)

[

(
∫

x21fdµ

)(
∫

x22fdµ

)

−
(
∫

x1x2fdµ

)2
]

−

(
∫

x1fdµ

)2(∫

x22fdµ

)

−
(
∫

x2fdµ

)2(∫

x21fdµ

)

+

2

(
∫

x1fdµ

)(
∫

x2fdµ

)(
∫

x1x2fdµ

)

≥ 0

}

,

where we have just expressed the nonnegativity of all principal minors of M1(f y).
A very similar result holds for the convex cone Cd(K) of polynomials of degree

at most d, nonnegative on a closed set K ⊂ R
n.

Corollary 3.6. Let K ⊂ R
n be a closed set and let µ be defined in (3.7) where ϕ

is a an arbitrary finite Borel measure whose support is exactly K.
For every k ∈ N, let Ck

d (K) := {f ∈ R
s(d) : Mk(f y) � 0}, where Mk(f y) is the

localizing matrix in (2.3) associated with y and f ∈ R[x]d. Each Ck
d (K) is a closed

convex cone and a spectrahedron.
Then C0

d(K) ⊃ C1
d(K) · · · ⊃ Ck

d (K) · · · ⊃ Cd(K) and f ∈ Cd(K) if and only if its

vector of coefficients f ∈ R
s(d) satisfies f ∈ Ck

d (K), for every k = 0, 1, . . ..

The proof which mimicks that of Corollary 3.5 is omitted. Of course, for practical
computation, one is restricted to sets K where one may compute effectively the
moments of the measure µ. An example of such a set K is the positive orthant,
in which case one may choose the measure µ in (3.11) for which all moments are
explicitly available. For compact sets K let us mention balls, boxes, ellipsoids,
and simplices. But again, any compact set where one knows how to compute all
moments of some measure with support exactly K, is fine.

To the best of our knowledge this is the first characterization of an outer ap-
proximation of the cone Cd(K) in a relatively general context. Indeed, for the basic
semi-algebraic set

(3.13) K = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m },
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Stengle’s Nichtnegativstellensatz [22] states that f ∈ R[x] is nonnegative on K if
and only if

(3.14) p f = f2s + q,

for some integer s and polynomials p, q ∈ P (g), where P (g) is the preordering4

associated with the gj’s. In addition, there exist bounds on the integer s and the
degree of the s.o.s. weights in the definition of p, q ∈ P (g), so that in principle,
when f is known, checking whether f ≥ 0 on K reduces to solving a single SDP
to compute h, p in the nonnegativity certificate (3.14). However, the size of this
SDP is potentially huge and makes it unpractical. Moreover, the representation of
Cd(K) in (3.14) is not convex in the vector of coefficients of f because it involves
f2s as well as the product pf .

Remark 3.7. If in Corollary 3.6 one replaces the finite-dimensional convex cone
Cd(K) ⊂ R[x]d with the infinite-dimensional convex cone C(K) ⊂ R[x] of all poly-
nomials nonnegative on K, and Ck

d (K) ⊂ R[x]d with Ck(K) = {f ∈ R
s(2k) :

Mk(f y) � 0}, then the nested sequence of (increasing but finite-dimensional)
convex cones Ck(K), k ∈ N, provides finite-dimensional approximations of C(K).

4. Application to polynomial optimization

Consider the polynomial optimization problem

(4.1) P : f∗ = inf
x
{ f(x) : x ∈ K },

where K ⊆ R
n is closed and f ∈ R[x].

If K is compact let µ be a finite Borel measure with suppµ = K and if K is not
compact, let ϕ be an arbitrary finite Borel measure with suppϕ = K and let µ be as
in (3.7). In both cases, the sequence of moments y = (yα), α ∈ N

n, is well-defined,
and we assume that yα is available or can be computed, for every α ∈ N

n.
Consider the sequence of semidefinite programs:

(4.2) λd = sup
λ∈R

{λ : Md(fλ y) � 0 }

where fλ ∈ R[x] is the polynomial x 7→ f(x) − λ. Notice that (4.2) has only one
variable!

Theorem 4.1. Consider the hierarchy of semidefinite programs (4.2) indexed by
d ∈ N. Then:

(i) (4.2) has an optimal solution λd ≥ f∗ for every d ∈ N
n.

(ii) The sequence (λd), d ∈ N, is monotone nonincreasing and λd ↓ f∗ as d→ ∞.

Proof. (i) Since f − f∗ ≥ 0 on K, by Theorem 3.2, λ := f∗ is a feasible solution of
(4.2) for every d. Hence λd ≥ f∗ for every d ∈ N. Next, let d ∈ N be fixed, and let
λ be an arbitrary feasible solution of (4.2). From the condition Md(fλ y) � 0, the
diagonal entry Md(fλ y)(1, 1) must be nonnegative, i.e., λy0 ≤ ∑

α fα yα, and so,
as we maximize and y0 > 0, (4.2) must have an optimal solution λd.

(ii) Obviously λd ≤ λm whenever d ≥ m, because Md(fλ y) � 0 implies
Mm(fλ y) � 0. Therefore, the sequence (λd), d ∈ N, is monotone nonincreas-
ing and being bounded below by f∗, converges to λ∗ ≥ f∗. Next, suppose that

4The preordering P (g) associated with the gj ’s is the set of polynomials of the form
∑

α∈{0,1}m σα g
α1

1
· · · gαm

m where σα ∈ Σ[x] for each α.
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λ∗ > f∗; fix k ∈ N, arbitrary. The convergence λd ↓ λ∗ implies Mk(fλ∗ y) � 0.
As k was arbitrary, we obtain that Md(fλ∗ y) � 0 for every d ∈ N. But then by
Theorem 3.2 or Theorem 3.4, f − λ∗ ≥ 0 on K, and so λ∗ ≤ f∗, in contradiction
with λ∗ > f∗. Therefore λ∗ = f∗. �

For each d ∈ N, the semidefinite program (4.2) provides an upper bound on the
optimal value f∗ only. We next show that the dual contains some information on
global minimizers, at least when d is sufficiently large.

4.1. Duality. Let Sd be the space of real symmetric s(d) × s(d) matrices. One
may write the semidefinite program (4.2) as

(4.3) λd = sup
λ
{λ : λMd(y) � Md(f y)},

which in fact is a generalized eigenvalue problem for the pair of matrices Md(y)
and Md(f y). Its dual is the semidefinite program

inf
X∈Sd

{ 〈X,Md(f y)〉 : 〈X,Md(y)〉 = 1; X � 0 },

or, equivalently,

(4.4) λ∗d = inf
σ

{
∫

K

f σ dµ :

∫

K

σ dµ = 1; σ ∈ Σ[x]d

}

.

So the dual problem (4.4) is to find a sum of squares polynomial σ of degree at
most 2d (normalized to satisfy

∫

σdµ = 1) that minimizes the integral
∫

fσdµ, and
a simple interpretation of (4.4) is as follows:

With M(K) being the space of Borel probability measures on K, we know that

f∗ = inf
ϕ∈M(K)

∫

K

fdϕ. Next, let Md(µ) ⊂ M(K) be the space of probability mea-

sures on K which have a density σ ∈ Σ[x]d with respect to µ. Then (4.4) reads

inf
ϕ∈Md(µ)

∫

K

fdϕ, which clearly shows why one obtains an upper bound on f∗. In-

deed, instead of searching in M(K) one searches in its subset Md(µ). What is not
obvious at all is whether the obtained upper bound obtained in (4.4) converges to
f∗ when the degree of σ ∈ Σ[x]d is allowed to increase!

Theorem 4.2. Suppose that f∗ > −∞ and K has nonempty interior. Then :
(a) There is no duality gap between (4.2) and (4.4) and (4.4) has an optimal

solution σ∗ ∈ Σ[x]d which satisfies

∫

K

(f(x) − λd)σ
∗(x)dµ(x) = 0.

(b) If K is convex and f is convex, let x∗
d :=

∫

xσ∗(x)dµ(x). Then x∗
d ∈ K

and f∗ ≤ f(x∗
d) ≤ λd, so that f(x∗

d) → f∗ as d → ∞. Moreover, if the set
{x ∈ K : f(x) ≤ f0} is compact for some f0 > f∗, then any accumulation point
x∗ ∈ K of the sequence (x∗

d), d ∈ N, is a minimizer of problem (4.1), that is,
f(x∗) = f∗.

Proof. (a) Any scalar λ < f∗ is a feasible solution of (4.2) and in addition, Md((f−
λ)y) ≻ 0 because since K has nonempty interior and f − λ > 0 on K,

〈g,Md((f − λ)y)g〉 =

∫

K

(f(x)− λ)g(x)2µ(dx) > 0, ∀g ∈ R[x]d.
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But this means that Slater’s condition5 holds for (4.2) which in turn implies that
there is no duality gap and (4.4) has an optimal solution σ∗ ∈ Σ[x]d; see e.g. [23].
And so,

∫

K

(f(x)− λd)σ
∗(x) dµ(x) =

∫

K

f σ∗ dµ− λd = 0.

(b) Let ν be the Borel probability measure onK defined by ν(B) =
∫

B σ
∗dµ, B ∈ B.

As f is convex, by Jensen’s inequality (see e.g. McShane [15]),
∫

K

fσ∗dµ =

∫

K

fdν ≥ f

(
∫

K

x dν

)

= f(x∗
d).

In addition, if K is convex then x∗
d ∈ K and so, λd ≥ f(x∗

d) ≥ f∗. Finally if for
some f0 > f∗, the set H := {x ∈ K : f(x) ≤ f0} is compact, and since λd → f∗,
then f(x∗

d) ≤ f0 for d sufficiently large, i.e., x∗
d ∈ H for sufficiently large d. By

compactness there is a subsequence (dℓ), ℓ ∈ N, and a point x∗ ∈ K such that
x∗
dℓ

→ x∗ as ℓ → ∞. Continuity of f combined with the convergence f(x∗
d) → f∗

yields f(x∗
dℓ
) → f(x∗) = f∗ as ℓ → ∞. As the convergent subsequence (x∗

dℓ
) was

arbitrary, the proof is complete. �

So in case where f is a convex polynomial and K is a convex set, Theorem 4.2
provides a means of approximating not only the optimal value f∗, but also a global
minimizer x∗ ∈ K.

In the more subtle nonconvex case, one still can obtain some information on
global minimizers from an optimal solution σ∗ ∈ Σ[x]d of (4.4). Let ǫ > 0 be fixed,
and suppose that d is large enough so that f∗ ≤ λd ≤ f∗ + ǫ. Then, by Theorem
4.4(a),

∫

K

(f(x) − f∗)σ∗(x) dµ(x) = λd − f∗ < ǫ.

As f − f∗ ≥ 0 on K, necessarily the measure dν = σ∗dµ gives very small weight to
regions of K where f(x) is significantly larger than f∗. For instance, if ǫ = 10−2

and ∆ := {x ∈ K : f(x) ≥ f∗+1}, then ν(∆) ≤ 10−2, i.e., the set ∆ contributes to
less than 1% of the total mass of ν. So if µ is uniformly distributed on K (which is a
reasonable choice if one has to compute all moments of µ) then a simple inspection
of the values of σ∗(x) provides some rough indication on where (in K) f(x) is close
to f∗.

The interpretation (4.4) of the dual shows that in general the monotone conver-
gence is only asymptotic and cannot be finite. Indeed if K has a nonempty interior
then the probability measure dν = σdµ cannot be a Dirac measure at any global
minimizer x∗ ∈ K. An exception is the discrete case, i.e., when K is a finite number
of points, like in e.g. 0/1 programs. Indeed we get:

Corollary 4.3. Let K ⊂ R
n be a discrete set (x(k)) ⊂ R

n, k ∈ J , and let µ be the
probability measure uniformly distributed in K, i.e.,

µ =
1

s

s
∑

k=1

δx(k),

where s = |J | and δx denote the Dirac measure at the point x. Then the optimal
value λd of (4.2) satisfies λd = f∗ for some integer d.

5For an optimization problem infx{f0(x) : fj(x) ≥ 0, j = 1, . . . ,m}, Slater’s condition states

that there exists x0 such that fj(x0) > 0 for every j = 1, . . . ,m.
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Proof. Let x∗ = x(j∗) (for some j∗ ∈ J) be the global minimizer of min{f(x) :
x ∈ K}. For each k = 1, . . . , s there exists a polynomial qk ∈ R[x] such that
qk(x(j)) = δk=j for every j = 1, . . . , s (where δk=j denotes the Kronecker symbol).
The polynomials (qk) are called interpolation polynomials. So let σ∗ := sq2j∗ ∈ Σ[x],
so that

∫

K

f(x)σ∗(x)dµ(x) = f(x(j∗)) = f∗ and

∫

K

σ∗dµ = 1.

Hence as soon as d ≥ deg qj∗ , σ
∗ ∈ Σ[x]d is a feasible solution of (4.4), and so

from f∗ =
∫

fσ∗dµ ≥ λ∗d ≥ λd ≥ f∗ we deduce that λ∗d = λd = f∗, the desired
result. �

There are several interesting cases where the above described methodology can
apply, i.e., cases where y can be obtained either explicitly in closed form or numer-
ically. In particular, when K is either:

• A box B :=
∏n

i=1[ai, bi] ⊂ R
n, with µ being the normalized Lebesgue

measure on B. The sequence y = (yα) is trivial to obtain in closed form.
• The discrete set {−1, 1}n with µ being uniformly distributed and normal-
ized. Again the sequence y = (yα) is trivial to obtain in closed form. Notice
that in this case we obtain a new hierarchy of semidefinite relaxations (with
only one variable) for the celebrated MAXCUT problem (and any nonlinear
0/1 program).

• The unit Euclidean ball B := {x : ‖x‖2 ≤ 1} with µ uniformly distributed,
and similarly the unit sphere S := {x : ‖x‖2 = 1}, with µ being the
rotation invariant probability measure on S. In both cases the moments
y = (yα) are obtained easily.

• A simplex ∆ ⊂ R
n, in which case if one takes µ as the Lebesgue measure

then all moments of µ can be computed numerically. In particular, with d
fixed, this computation can be done in time polynomial time. See e.g. the
recent work of [2].

• The whole space R
n in which case µ may be chosen to be the product

measure ⊗n
i=1νi with each νi being the normal distribution. Observe that

one then obtains a new hierarchy of semidefinite approximations (upper
bounds) for unconstrained global optimization. The corresponding mono-
tone sequence of upper bounds converges to f∗ no matter if the problem
has a global minimizer or not. This may be an alternative and/or a com-
plement to the recent convex relaxations provided in Schweighofer [21] and
Hà and Vui [8] which also work when f∗ is not attained, and provide a
convergent sequence of lower bounds.

• The positive orthant Rn
+, in which case µ may be chosen to be the product

measure ⊗n
i=1νi with each νi being the exponential distribution νi(B) =

∫

R+∩B e−xdx, B ∈ B. In particular if x 7→ f(x) := xTAx where A ∈ Sn,
then one obtains a hierarchy of numerical tests to check whether A is a
copositive matrix. Indeed, if λd is an optimal solution of (4.3) then A is
copositive if and only if λd ≥ 0 for all d ∈ N. Notice that we also obtain a
hierarchy of outer approximations (COPd) ⊂ Sn of the cone COP of n× n
copositive matrices. Indeed, for every A ∈ Sn, let fA be the quadratic form
x 7→ fA(x) := xTAx. Then, for every d, the set

COPd := {A ∈ Sn : Md(fA y) � 0 }
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is a convex cone defined only in terms of the coefficients of the matrix A.
It is even a spectrahedron since Md(fA y) is a linear matrix inequality in
the coefficients of A. And in view of Theorem 3.2(a), COP =

⋂

d∈N
COPd.

4.2. Examples. In this section we provide three simple examples to illustrate the
above methodology.

Example 1. Consider the global minimization on K = R
2
+ of the Motzkin-like

polynomial x 7→ f(x) = x21x
2
2 (x

2
1+x

2
2− 1) whose global minimum is f∗ = −1/27 ≈

−0.037, attained at (x∗1, x
∗
2) = (±

√

1/3,±
√

1/3). Choose for µ the probability
measure µ(B) :=

∫

B e−x1−x2dx, B ∈ B(R2
+), for which the sequence of moments

y = (yij), i, j ∈ N, is easy to obtain. Namely yij = i!j! for every i, j ∈ N. Then
the semidefinite relaxations (4.2) yield λ0 = 92, λ1 = 1.5097, and λ14 = −0.0113,
showing a significant and rapid decrease in first iterations with a long tail close
to f∗, illustrated in Figure 1. Then after d = 14, one encounters some numerical
problems and we cannot trust the results anymore.

If we now minimize the same polynomial f on the box [0, 1]2, one choose for µ
the probability uniformly distributed on [0, 1]2, whose moments y = (yij), i, j ∈ N,
are also easily obtained by yij = (i+ 1)−1(j + 1)−1. Then one obtains λ0 = 0.222,
λ1 = −0.055, and λ10 = −0.0311, showing again a rapid decrease in first iterations
with a long tail close to f∗, illustrated in Figure 2.

0 2 4 6 8 10 12 14
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1. Minimizing the Motzkin-like polynomial in R
2
+

Example 2. Still on K = R
2
+, consider the global minimization of the polynomial

x 7→ x21 + (1 − x1x2)
2 whose global minimum f∗ = 0 is not attained. Again,

choose for µ the probability measure µ(B) :=
∫

B e−x1−x2dx, B ∈ B(R2
+). Then the

semidefinite relaxations (4.2) yield λ0 = 5, λ1 = 1.9187 and λ15 = 0.4795, showing
again a significant and rapid decrease in first iterations with a long tail close to f∗,
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1 2 3 4 5 6 7 8 9 10 11
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 2. Minimizing the Motzkin-like polynomial in [0, 1]2

illustrated in Figure 3; numerical problems occur after d = 15. However, this kind
of problems where the global minimum f∗ is not attained, is notoriously difficult.
Even the semidefinite relaxations defined in [8] (which provide lower bounds on f∗)
and especially devised for such problems, encounter numerical difficulties; see [8,
Example 4.8].

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3. Minimizing x21 + (1− x1x2)
2 on R

2
+
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Example 3. The following example illustrates the duality results of Section §4.1.
The univariate polynomial x 7→ f(x) := 0.375−5x+21x2−32x3+16x4 displayed in
Fig 4 has two global minima at x∗1 = 0.1939 and x∗2 = 0.8062, with f∗ = −0.0156.

In Fig 5 is plotted the sequence of upper bounds λd → f∗ as d̂ → ∞, with again
a rapid decrease in first iterations. One has plotted in Fig 6 the s.o.s. polynomial
x 7→ σ(x), optimal solution of (4.4) with d = 10, associated with the probability
density σ(x)dx as explained in §4.1. As expected, two peaks appear at the points
x̃i ≈ x∗i , i = 1, 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4. f(x) = 0.375− 5x+ 21x2 − 32x3 + 16x4 on [0, 1]

Example 4. We finally consider a discrete optimization problem, namely the cel-
ebrated MAXCUT problem

f∗ = min
x

{xTQx : x ∈ {−1, 1}n},

where Q = (Qij) ∈ R
n×n is a real symmetric matrix whose all diagonal elements

vanish. The measure µ is uniformly distributed on {−1, 1}n so that its moments
are readily available. We first consider the equal weights case, i.e., Qij = 1/2 for
all (i, j) with i 6= j in which case f∗ = −⌊n/2⌋. With n = 11 the successive values
for λd, d ≤ 4, are displayed in Table 1 and λ4 is relatively close to f∗. Next we
have generated five random instances of MAXCUT with n = 11 but Qij = 0 with
probability 1/2, and if Qij 6= 0 it is randomly generated using the Matlab “rand”
function. The successive values of λd, d ≤ 4, are displayed in Table 2, and again,
λ4 is quite close to f∗6.

The above examples seem to indicate that even though one chooses a measure µ
uniformly distributed on K, one obtains a rapid decrease in the first iterations and

6The optimal value f∗ has been computed using the GloptiPoly software [10] dedicated to
solving the Generalized Problem of Moments
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Figure 5. Minimizing 0.375− 5x+ 21x2 − 32x3 + 16x4 on [0, 1]
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Figure 6. The probability density σ(x)dx on [0, 1]

then a slow convergence close to f∗. If on the one hand the convergence to f∗ is
likely to be slow, on the other hand, one has to solve semidefinite programs (4.2)
with only one variable! In fact solving the semidefinite program (4.3) is computing
the smallest generalized eigenvalue associated with the pair of real symmetric ma-
trices (Md(f y),Md(y)), for which specialized codes are available (instead of using



NONNEGATIVITY ON CLOSED SETS AND OPTIMIZATION 19

d d = 0 d = 1 d = 2 d = 3 d = 4 f∗

λd 0 -1 -2.662 -3.22 -4 -5

Table 1. MAXCUT: n = 11; Q(i, j) = 1 for all i 6= j.

d λ0 λ1 λ2 λ3 λ4 f∗

Ex1 0 -1.928 -3.748 -5.22 -6.37 -7.946
Ex2 0 -1.56 -3.103 -4.314 -5.282 -6.863
Ex3 0 -1.910 -3.694 -5.078 -6.161 -8.032
Ex4 0 -2.164 -4.1664 -5.7971 -7.06 -9.198
Ex5 0 -1.825 -3.560 -4.945 -5.924 -7.467

Table 2. MAXCUT: n = 11; Q random.

a solver for semidefinite programs). However, one has to remember that the choice
is limited to measures µ with suppµ = K and whose moments are available or easy
to compute. Hence, the present methodology is so far limited to simple sets K as
described before. Finally, analyzing how the convergence to f∗ depends on µ is
beyond the scope of the present paper and is a topic of further research.

4.3. Discusssion. In nonlinear programming, sequences of upper bounds on the
global minimum f∗ are usually obtained from feasible points x ∈ K, e.g., via some
(local) minimization algorithm. But for non convex problems, providing a sequence
of upper bounds that converges to the global minimum f∗ is in general impossible
unless one computes points on a grid whose mesh size tends to zero. In the above
methodology one provides a monotone nonincreasing sequence of upper bounds
converging to f∗ for polynomial optimization problems on sets K, non necessarily
compact but such that one may compute all moments of some finite Borel measure
µ with suppµ = K. In fact, if there are only finitely many (say up to order 2d)
moments available then one obtains a finite sequence of upper bounds.

In contrast to the hierarchy of semidefinite relaxations in e.g. [12, 13] which
provide lower bounds converging to f∗ when K is a compact basic semi-algebraic
set, the convergence of the upper bounds to f∗ is only asymptotic and never finite,
except when K is a discrete set. However, and even if we expect the convergence
to be rather slow when close to f∗, to our knowledge it is the first approach of this
kind, and in a few iterations one may obtain upper bounds which (even if crude)
complements the lower bounds obtained in [12] (in the compact case).

Also note that to solve (4.3) several improvements are possible. For instance, we
have already mentioned that it could be solved via specialized packages for general-
ized eigenvalue problems. Next, if instead of using the canonical basis of monomial
(xα), one now expresses the moment matrix Md(y) with rows and columns indexed
in the basis of polynomials (pα) ⊂ R[x] (up to degree d) orthogonal7 with respect
to µ, then Md(y) becomes the identity matrix. And so problem (4.3) reduces to
a standard eigenvalue problem, namely that of computing the smallest eigenvalue
of the (real and symmetric) localizing matrix Md(f y) (expressed in the basis of

7A family of univariate polynomials (pk) ⊂ R[x] is orthogonal with respect to a finite measure
µ on R if

∫
pipkdµ = δi=k. For extensions to the multivariate case see e.g. [6, 9].
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orthogonal polynomials)! And it turns out that computing the orthogonal poly-
nomials is easy once the moment matrix Md(y) is available, since they can be
obtained via computing certain determinants, as explained in e.g. [6, 9].

Inverse problem from moments. Finally, observe that the above methodology
perfectly fits inverse problems from moments, where precisely some Borel measure
µ is known only from its moments (via some measurement device), and one wishes
to recover (or approximately recover) its support K from the known moments; see
e.g. the work of Cuyt et al. [5] and the many references therein. Hence if f ∈ R[x]
is fixed then by definition f − f∗ ≥ 0 (on K) provides a strong valid (polynomial)
inequality for the unknown set K. So computing an optimal solution λd of (4.2) for
d sufficiently large, will provide an almost-valid polynomial inequality f − λd ≥ 0
for K. One may even let f ∈ R[x]d be unknown and search for the “best” valid
inequality f(x) − f∗ ≥ 0 where f varies in some family (e.g. linear or quadratic
polynomials) and minimizes ome appropriate (linear or convex) objective function
of its vector of coefficents f .

5. Conclusion

In this paper we have presented a new characterization of nonnegativity on a
closed set K which is based on the knowledge of a single finite Borel measure µ
with suppµ = K. It permits to obtain a hierarchy of spectrahedra which provides
a nested sequence of outer approximations of the convex cone of polynomials of
degree at most d, nonnegative on K. When used in polynomial optimization for
certain “simple sets” K, one obtains a hierarchy of semidefinite approximations
(with only one variable) which provides a nonincreasing sequence of upper bounds
converging to the global optimum, hence a complement to the sequence of upper
bounds provided by the hierarchy of semidefinite relaxations defined in e.g. [12, 13]
when K is compact and basic semi-algebraic. A topic of further investigation is to
analyze the efficiency of such an approach on a sample of optimization problems
on simple closed sets like the whole space R

n, the positive orthant R
n
+, a box, a

simplex, or an ellipsoid, as well as for some inverse problems from moments.

6. appendix

Proof of Theorem 3.4.

Proof. The only if part is exactly the same as in the proof of Theorem 3.2. For the
if part, let z = (zα) be the sequence defined in (3.5). The sequence z is well defined
because x 7→ xαf(x) is µ-integrable for all α ∈ N

n. Indeed, if f is a polynomial (so
that µ is defined in (3.7)) we have seen that all moments of µ are finite and since
xαf(x) is a polynomial the result follows. If f is not a polynomial (so that µ is
defined in (3.9)) then

∫

K

|xα f(x)| dµ(x) ≤
∫

K

|xα| exp(−
∑

i

|xi|) dϕ(x) ≤ ϕ(Rn)

n
∏

i=1

αi!,

where we have used that |xαi

i | ≤ αi! exp |xi|, and |f |/(1 + f2) ≤ 1 for all x. As in
the proof of Theorem 3.2, the set function B 7→ ν(B) :=

∫

B fdµ, B ∈ B, is a signed
Borel measure because again ν can be written as the difference ν1 − ν2 of the two
positive Borel measures ν1, ν2 in (3.1)-(3.2). With same majorizations as above,
both ν1 and ν2 are finite Borel measures and so ν is a finite signed Borel measure.
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The same arguments as in the proof of Theorem 3.2 show that Md(z) � 0 for
every d ∈ N. Next, the sequence z satisfies the generalized Carleman’s condition
(2.2).

Indeed, first consider the case where f is a polynomial (and so µ is as in (3.7)).
Let 1 ≤ i ≤ n be fixed arbitrary, and let 2s ≥ degf . Observe that whenever |α| ≤ k,
|x|α ≤ |xj |k on the subset Wj := {x ∈ R

n \ [−1, 1]n : |xj | = maxi |xi|}. And so,
|f(x)| ≤ ‖f‖1 |xj |2s for all x ∈ Wj (and where ‖f‖1 :=

∑

α |fα|). Hence,

Lz(x
2k
i ) =

∫

K

f(x)x2ki dµ(x)

≤
∫

K∩[−1,1]n
|f(x)|x2ki dµ(x) + ‖f‖1

n
∑

j=1

∫

K∩WJ

x
2(k+s)
j dµ(x)

≤ ‖f‖1µ(K) +Mn‖f‖1 (2(k + s))! ≤ 2Mn‖f‖1 (2(k + s))!,(6.1)

where M is as in (3.8) and assuming with no loss of generality that µ(K) ≤
Mn(2(k + s))! (otherwise rescale ϕ). And so we have

Lz(x
2k
i )−1/2k ≥ (2Mn‖f‖1)−1/2k

(

(2(k + s))!)−1/2(k+s)
)(k+s)/k

≥ 1

2

(

(2(k + s))!)−1/2(k+s)
)(k+s)/k

≥ 1

2

(

1

2(k + s)

)(k+s)/k

,

where k ≥ k0 is sufficiently large so that (2Mn‖f‖1)−1/2k ≥ 1/2. Therefore,

∞
∑

k=1

Lz(x
2k
i )−1/2k ≥ 1

2

∞
∑

k=k0

(

1

2(k + s)

)(k+s)/k

= +∞,

where the last equality follows from
∑∞

k=1(2k)
−1 = +∞. Indeed, ( 1

2(k+s) )
(k+s)/k =

( 1
2(k+s) )(

1
2(k+s) )

s/k and ( 1
2(k+s) )

s/k ≥ 1/2 whenever k is sufficiently large, say k ≥
k1. Hence the sequence z satisfies Carleman’s condition (2.2).

If f is not a polynomial then µ is as in (3.9) and so

Lz(x
2k
i ) =

∫

x2ki
exp (−∑n

i=1 |xi|)
1 + f2

f(x) dϕ(x)

≤
∫

x2ki
exp (−∑n

i=1 |xi|)
1 + f2

|f(x)| dϕ(x)

≤
∫

x2ki exp

(

−
n
∑

i=1

|xi|
)

dϕ(x) ≤ (2k)!M,(6.2)

where we have used that |f |/(1 + f2) ≤ 1 for all x, and x2ki ≤ (2k)! exp |xi|. And
so again, the sequence z satisfies Carleman’s condition (2.2).

Next, asMd(z) � 0 for every d ∈ N, by Proposition 2.1, z is the moment sequence
of a measure ψ on R

n and ψ is determinate. In addition, from the definition (3.5)
of ν and z, we have

(6.3)

∫

Rn

xα dψ(x) = zα =

∫

K

xαdν(x), ∀α ∈ N
n.
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But then using ν = ν1 − ν2 in (3.1)-(3.2), (6.3) reads

(6.4)

∫

Rn

xα d(ψ + ν2)(x) =

∫

K

xαdν1(x), ∀α ∈ N
n.

Let v = (vα), α ∈ N
n, be the sequence of moments associated with ν1. Of course,

Md(v) � 0 for all d ∈ N. Next,

Lv(x
2k
i ) =

∫

B1

x2ki f(x) dµ(x) ≤
∫

K

x2ki |f(x)| dµ(x),

and so, depending on whether f is a polynomial or not, we obtain Lv(x
2k
i ) ≤

2Mn‖f‖1 (2(k+ s))! as in (6.1) or Lv(x
2k
i ) ≤ (2k)!M as in (6.2). In both cases the

sequence v satisfies Carleman’s condition (2.2) and since Md(v) � 0 for all d ∈ N,
by Proposition 2.1, ν1 is moment determinate. But then (6.4) yields ν1 = ψ + ν2,
or equivalently, ψ = ν1 − ν2 (= ν), that is, ν is a positive measure. The rest of the
proof is exactly the same as for proof of Theorem 3.2. �
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